Prediction of GPS-TEC on Mw>5 Earthquake Days Using Bayesian Regularization Backpropagation Algorithm

Detection of earthquake precursor signals a few days before the earthquake day is one of the most studied subjects today. In recent years, a strong correlation is observed between earthquakes and ionospheric parameters. In this study, a Feed Forward Backpropagation Artificial Neural Network Bayesian...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing letters Ročník 20; s. 1
Hlavní autoři: Karatay, Secil, Gul, Saide Eda
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.01.2023
Témata:
ISSN:1545-598X, 1558-0571
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Detection of earthquake precursor signals a few days before the earthquake day is one of the most studied subjects today. In recent years, a strong correlation is observed between earthquakes and ionospheric parameters. In this study, a Feed Forward Backpropagation Artificial Neural Network Bayesian Regularization algorithm is applied to detect the seismic disturbances and anomalies by predicting GPS-TEC on earthquake days with magnitude greater than 5. It is observed that TEC is predicted with greater error margins for the stations at a maximum distance of 50 km from the epicenters. The errors for earthquakes less than Mw 7 are smaller than those for greater than 7.
AbstractList Detection of earthquake precursor signals a few days before the earthquake day is one of the most studied subjects today. In recent years, a strong correlation is observed between earthquakes and ionospheric parameters. In this study, a Feed Forward Backpropagation Artificial Neural Network Bayesian Regularization algorithm is applied to detect the seismic disturbances and anomalies by predicting GPS-TEC on earthquake days with magnitude greater than 5. It is observed that TEC is predicted with greater error margins for the stations at a maximum distance of 50 km from the epicenters. The errors for earthquakes less than Mw 7 are smaller than those for greater than 7.
Author Karatay, Secil
Gul, Saide Eda
Author_xml – sequence: 1
  givenname: Secil
  orcidid: 0000-0002-1942-6728
  surname: Karatay
  fullname: Karatay, Secil
  organization: Department of Electrical and Electronics Engineering, Kastamonu University, Kastamonu, Turkey
– sequence: 2
  givenname: Saide Eda
  surname: Gul
  fullname: Gul, Saide Eda
  organization: Department of Electrical and Electronics Engineering, Kastamonu University, Kastamonu, Turkey
BookMark eNp9kM1OwkAUhScGEwF9ABMX8wLF-WGm7cYEENEEI-EncddcZ6ZlpLQ4U2Lw6W3BhXHh6tyTnHNy83VQqygLg9A1JT1KSXw7ncwXPUYY73Ema43OUJsKEQVEhLTV3H0RiDh6vUAd798JYf0oCtvIzJzRVlW2LHCZ4slsESzHI1y75887gcfgqvXHHjYG38PB45W3RYaHcDDeQoHnJtvn4OwXHAeGoDY7V-4gO_lBnpXOVuvtJTpPIffm6ke7aPUwXo4eg-nL5Gk0mAaKSVkFEDJKUsap5jIWhiojQ82J0mAIV6QOEQ4xVSBCLVjc1_pNSUiVlLHknEreReFpV7nSe2fSRNnq-EvlwOYJJUlDK2loJQ2t5IdW3aR_mjtnt-AO_3ZuTh1rjPmVJxHlEeffM4N4Vg
CODEN IGRSBY
CitedBy_id crossref_primary_10_1029_2024SW004121
crossref_primary_10_1002_esp_5992
crossref_primary_10_1007_s11069_025_07275_3
crossref_primary_10_1016_j_asr_2025_06_080
crossref_primary_10_1007_s12665_025_12216_1
crossref_primary_10_3390_rs15245690
crossref_primary_10_1051_ro_2025070
crossref_primary_10_1109_LGRS_2024_3373445
Cites_doi 10.1162/neco.1992.4.3.415
10.1007/s00190-020-01416-1
10.1109/SIU.2014.6830333
10.1109/TIE.2012.2183833
10.1029/2004RS003061
10.1029/2018GL081251
10.1016/j.asoc.2012.10.014
10.1016/j.spasta.2020.100442
10.1029/2007JA012459
10.1134/S001679321908005X
10.1029/2002JA009605
10.1007/s00521-014-1767-x
10.2174/1874149501509010522
10.3906/elk-1401-57
10.1016/j.asr.2020.01.042
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LGRS.2023.3262028
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1558-0571
EndPage 1
ExternalDocumentID 10_1109_LGRS_2023_3262028
10081383
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
~02
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
ID FETCH-LOGICAL-c266t-a7210f231d3695e1ce67d30cdae03c0c2603a91ca57d5294ddbc6afc669633163
IEDL.DBID RIE
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000968028000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-598X
IngestDate Sat Nov 29 05:54:15 EST 2025
Tue Nov 18 20:15:39 EST 2025
Wed Aug 27 02:21:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-a7210f231d3695e1ce67d30cdae03c0c2603a91ca57d5294ddbc6afc669633163
ORCID 0000-0002-1942-6728
0000-0001-7085-4157
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_LGRS_2023_3262028
crossref_primary_10_1109_LGRS_2023_3262028
ieee_primary_10081383
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE geoscience and remote sensing letters
PublicationTitleAbbrev LGRS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
References Glantz (ref18) 2016
ref12
ref15
Cavuslu (ref17) 2012; 5
(ref14) 2022
ref11
ref10
ref2
ref1
ref16
ref19
ref8
ref7
ref9
ref4
ref3
ref6
ref5
(ref13) 2022
References_xml – ident: ref15
  doi: 10.1162/neco.1992.4.3.415
– ident: ref3
  doi: 10.1007/s00190-020-01416-1
– ident: ref7
  doi: 10.1109/SIU.2014.6830333
– ident: ref16
  doi: 10.1109/TIE.2012.2183833
– ident: ref11
  doi: 10.1029/2004RS003061
– ident: ref9
  doi: 10.1029/2018GL081251
– ident: ref6
  doi: 10.1016/j.asoc.2012.10.014
– ident: ref10
  doi: 10.1016/j.spasta.2020.100442
– ident: ref12
  doi: 10.1029/2007JA012459
– ident: ref19
  doi: 10.1134/S001679321908005X
– ident: ref1
  doi: 10.1029/2002JA009605
– volume-title: Ionosphere Research Laboratory
  year: 2022
  ident: ref13
– ident: ref4
  doi: 10.1007/s00521-014-1767-x
– volume: 5
  start-page: 1
  issue: 1
  year: 2012
  ident: ref17
  article-title: Hardware implementation of neural network training with Levenberg–Marquardt algorithm
  publication-title: TBV J. Comput. Sci. Eng.
– volume-title: Primer of Applied Regression & Analysis of Variance
  year: 2016
  ident: ref18
– ident: ref8
  doi: 10.2174/1874149501509010522
– ident: ref5
  doi: 10.3906/elk-1401-57
– volume-title: United States Geological Survey
  year: 2022
  ident: ref14
– ident: ref2
  doi: 10.1016/j.asr.2020.01.042
SSID ssj0024887
Score 2.3980806
Snippet Detection of earthquake precursor signals a few days before the earthquake day is one of the most studied subjects today. In recent years, a strong correlation...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Backpropagation
Bayes methods
Earthquake
Earthquakes
Ionosphere
Neurons
Precursor
Prediction algorithms
Total Electron Content
Training
Title Prediction of GPS-TEC on Mw>5 Earthquake Days Using Bayesian Regularization Backpropagation Algorithm
URI https://ieeexplore.ieee.org/document/10081383
Volume 20
WOSCitedRecordID wos000968028000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024887
  issn: 1545-598X
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5WFE8-akVFJQdPQtpsk33kIvio9VBLqQ96W7LJrC3VVtet0n9vkl21FwVvmzCBJV82M9nJNx9Cx5HfTBMd-SShIiVcJpwIUJqASlMTkASecjzuh07Y7UaDgeiVZHXHhQEAd_kM6vbR5fL1VM3sr7KGLUTjmSNVBVXCMCjIWj-F9SKnhmdDAuKLaFCmMD0qGp12_7ZudcLrzNZft8rrC05oQVXFOZWrjX--ziZaL6NHfFbAvYWWYFJFa6WQ-XBeRattp9Q730bQy2wOxs47nqa43bsld60LbFo3H6c-bpklM3ydyTHgSzl_w-7qAD6Xc7CsStx3EvVZSdI0_Wpstlqz-RTts6fHaTbKh881dH_Vuru4JqWmAlHGFedEmhMfTU1Qp1kgfPAUBKFmVGkJlClqjCiTwlPSD7XfFFzrRAUyVUFgvlRmgrcdtDyZTmAXYZkIDmaAJ1POgdNIM6kpaAbAuc_CPUS_JjlWZcFxq3vxFLuDBxWxxSW2uMQlLnvo5HvIS1Ft4y_jmsVkwbCAY_-X_gO0nGczOEQr6j0fvWVHbv18Aod8xOk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB7xKIILtBRUysuHnio5eGN7s75U4hECaogiCCi3ldeeJQhIypK0yr_H9m5LLlTitrbGq5XH65nx-JsP4Fsi63lmE0kzpnIqdCaoQmMpmjx3DkkcmYDjvmk3Op2k31fdCqwesDCIGC6fYc0_hly-HZmJPyo78IVoIhdSzcOiFKLOSrjWa2m9JPDheaeASpX0qyRmxNRBu3V5VfNM4TXuK7B77vUZMzTDqxLMyunaOz_oI6xW_iM5LBX-CeZwuA7LFZX5YLoOS63A1Tv9DNgtfBbGzzwZ5aTVvaK95jFxrYs_PyRpukUzeJroeyQnevpMwuUBcqSn6HGV5DKQ1BcVTNP1m3u32brtp2wfPtyOirvx4HEDrk-bveMzWrEqUOOM8ZhqF_Ox3Ll1lsdKYmQwbljOjNXIuGFOiHGtIqNlw8q6EtZmJta5iWP3r3Lnvm3CwnA0xC9AdKYEugGRzoVAwRLLtWVoOaIQkje2gP2d5NRUJcc988VDGkIPplKvl9TrJa30sgXf_w35Vdbb-J_whtfJjGCpjq9v9O_D8lnvop22zzs_t2HFv6o8TdmBhXExwV34YH6P756LvbCwXgD9qco4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+GPS-TEC+on+Mw%3E5+Earthquake+Days+Using+Bayesian+Regularization+Backpropagation+Algorithm&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Karatay%2C+Secil&rft.au=Gul%2C+Saide+Eda&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1545-598X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FLGRS.2023.3262028&rft.externalDocID=10081383
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon