Prediction of GPS-TEC on Mw>5 Earthquake Days Using Bayesian Regularization Backpropagation Algorithm
Detection of earthquake precursor signals a few days before the earthquake day is one of the most studied subjects today. In recent years, a strong correlation is observed between earthquakes and ionospheric parameters. In this study, a Feed Forward Backpropagation Artificial Neural Network Bayesian...
Uloženo v:
| Vydáno v: | IEEE geoscience and remote sensing letters Ročník 20; s. 1 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.01.2023
|
| Témata: | |
| ISSN: | 1545-598X, 1558-0571 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Detection of earthquake precursor signals a few days before the earthquake day is one of the most studied subjects today. In recent years, a strong correlation is observed between earthquakes and ionospheric parameters. In this study, a Feed Forward Backpropagation Artificial Neural Network Bayesian Regularization algorithm is applied to detect the seismic disturbances and anomalies by predicting GPS-TEC on earthquake days with magnitude greater than 5. It is observed that TEC is predicted with greater error margins for the stations at a maximum distance of 50 km from the epicenters. The errors for earthquakes less than Mw 7 are smaller than those for greater than 7. |
|---|---|
| AbstractList | Detection of earthquake precursor signals a few days before the earthquake day is one of the most studied subjects today. In recent years, a strong correlation is observed between earthquakes and ionospheric parameters. In this study, a Feed Forward Backpropagation Artificial Neural Network Bayesian Regularization algorithm is applied to detect the seismic disturbances and anomalies by predicting GPS-TEC on earthquake days with magnitude greater than 5. It is observed that TEC is predicted with greater error margins for the stations at a maximum distance of 50 km from the epicenters. The errors for earthquakes less than Mw 7 are smaller than those for greater than 7. |
| Author | Karatay, Secil Gul, Saide Eda |
| Author_xml | – sequence: 1 givenname: Secil orcidid: 0000-0002-1942-6728 surname: Karatay fullname: Karatay, Secil organization: Department of Electrical and Electronics Engineering, Kastamonu University, Kastamonu, Turkey – sequence: 2 givenname: Saide Eda surname: Gul fullname: Gul, Saide Eda organization: Department of Electrical and Electronics Engineering, Kastamonu University, Kastamonu, Turkey |
| BookMark | eNp9kM1OwkAUhScGEwF9ABMX8wLF-WGm7cYEENEEI-EncddcZ6ZlpLQ4U2Lw6W3BhXHh6tyTnHNy83VQqygLg9A1JT1KSXw7ncwXPUYY73Ema43OUJsKEQVEhLTV3H0RiDh6vUAd798JYf0oCtvIzJzRVlW2LHCZ4slsESzHI1y75887gcfgqvXHHjYG38PB45W3RYaHcDDeQoHnJtvn4OwXHAeGoDY7V-4gO_lBnpXOVuvtJTpPIffm6ke7aPUwXo4eg-nL5Gk0mAaKSVkFEDJKUsap5jIWhiojQ82J0mAIV6QOEQ4xVSBCLVjc1_pNSUiVlLHknEreReFpV7nSe2fSRNnq-EvlwOYJJUlDK2loJQ2t5IdW3aR_mjtnt-AO_3ZuTh1rjPmVJxHlEeffM4N4Vg |
| CODEN | IGRSBY |
| CitedBy_id | crossref_primary_10_1029_2024SW004121 crossref_primary_10_1002_esp_5992 crossref_primary_10_1007_s11069_025_07275_3 crossref_primary_10_1016_j_asr_2025_06_080 crossref_primary_10_1007_s12665_025_12216_1 crossref_primary_10_3390_rs15245690 crossref_primary_10_1051_ro_2025070 crossref_primary_10_1109_LGRS_2024_3373445 |
| Cites_doi | 10.1162/neco.1992.4.3.415 10.1007/s00190-020-01416-1 10.1109/SIU.2014.6830333 10.1109/TIE.2012.2183833 10.1029/2004RS003061 10.1029/2018GL081251 10.1016/j.asoc.2012.10.014 10.1016/j.spasta.2020.100442 10.1029/2007JA012459 10.1134/S001679321908005X 10.1029/2002JA009605 10.1007/s00521-014-1767-x 10.2174/1874149501509010522 10.3906/elk-1401-57 10.1016/j.asr.2020.01.042 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/LGRS.2023.3262028 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1558-0571 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_LGRS_2023_3262028 10081383 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS ~02 5VS AAYXX AETIX AGSQL AIBXA CITATION EJD |
| ID | FETCH-LOGICAL-c266t-a7210f231d3695e1ce67d30cdae03c0c2603a91ca57d5294ddbc6afc669633163 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000968028000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-598X |
| IngestDate | Sat Nov 29 05:54:15 EST 2025 Tue Nov 18 20:15:39 EST 2025 Wed Aug 27 02:21:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-a7210f231d3695e1ce67d30cdae03c0c2603a91ca57d5294ddbc6afc669633163 |
| ORCID | 0000-0002-1942-6728 0000-0001-7085-4157 |
| PageCount | 1 |
| ParticipantIDs | crossref_citationtrail_10_1109_LGRS_2023_3262028 crossref_primary_10_1109_LGRS_2023_3262028 ieee_primary_10081383 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE geoscience and remote sensing letters |
| PublicationTitleAbbrev | LGRS |
| PublicationYear | 2023 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | Glantz (ref18) 2016 ref12 ref15 Cavuslu (ref17) 2012; 5 (ref14) 2022 ref11 ref10 ref2 ref1 ref16 ref19 ref8 ref7 ref9 ref4 ref3 ref6 ref5 (ref13) 2022 |
| References_xml | – ident: ref15 doi: 10.1162/neco.1992.4.3.415 – ident: ref3 doi: 10.1007/s00190-020-01416-1 – ident: ref7 doi: 10.1109/SIU.2014.6830333 – ident: ref16 doi: 10.1109/TIE.2012.2183833 – ident: ref11 doi: 10.1029/2004RS003061 – ident: ref9 doi: 10.1029/2018GL081251 – ident: ref6 doi: 10.1016/j.asoc.2012.10.014 – ident: ref10 doi: 10.1016/j.spasta.2020.100442 – ident: ref12 doi: 10.1029/2007JA012459 – ident: ref19 doi: 10.1134/S001679321908005X – ident: ref1 doi: 10.1029/2002JA009605 – volume-title: Ionosphere Research Laboratory year: 2022 ident: ref13 – ident: ref4 doi: 10.1007/s00521-014-1767-x – volume: 5 start-page: 1 issue: 1 year: 2012 ident: ref17 article-title: Hardware implementation of neural network training with Levenberg–Marquardt algorithm publication-title: TBV J. Comput. Sci. Eng. – volume-title: Primer of Applied Regression & Analysis of Variance year: 2016 ident: ref18 – ident: ref8 doi: 10.2174/1874149501509010522 – ident: ref5 doi: 10.3906/elk-1401-57 – volume-title: United States Geological Survey year: 2022 ident: ref14 – ident: ref2 doi: 10.1016/j.asr.2020.01.042 |
| SSID | ssj0024887 |
| Score | 2.3980806 |
| Snippet | Detection of earthquake precursor signals a few days before the earthquake day is one of the most studied subjects today. In recent years, a strong correlation... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Backpropagation Bayes methods Earthquake Earthquakes Ionosphere Neurons Precursor Prediction algorithms Total Electron Content Training |
| Title | Prediction of GPS-TEC on Mw>5 Earthquake Days Using Bayesian Regularization Backpropagation Algorithm |
| URI | https://ieeexplore.ieee.org/document/10081383 |
| Volume | 20 |
| WOSCitedRecordID | wos000968028000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024887 issn: 1545-598X databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhECbaaPTi2_gOB08mVLaUZfdiUrXWg5rGV3rbADvYprXVdavpvxfYVXvRxNtChmTDAPMNw8yH0CGnBoLIGGIUVaQeqIhICztITYjYEZsD87lVj1fi5ibqdOJ2mazuc2EAwD8-g6r79LH8dKTH7qrs2BWiCaxLNYtmhRBFstZPYb3Is-E5SEB4HHXKEGZA4-Or1u1d1fGEV5mrv-6Y16eM0BSrijcqF8v__J0VtFSiR9wo1L2KZmC4hhZKIvPuZA3NtzxT72QdQTtzMRg373hkcKt9R-6bZ9i2rj9OOG7aJdN9Hcs-4HM5ecP-6QA-lRNwWZX41lPUZ2WSpu3XfXvU2sOnaDcGT6Osl3efN9DDRfP-7JKUnApEW1OcE2k9PmosqEtZGHMINIQiZVSnEijT1ApRJuNASy5SXovraap0KI0OQ7tTmQVvm6gyHA1hC2HOmVYMJDMR1JUFNkYBUKO4CJQQodxG9GuSE10WHHe8F4PEOx40TpxeEqeXpNTLNjr6HvJSVNv4S3jD6WRKsFDHzi_9u2jRDS_uT_ZQJc_GsI_m9Hvee8sO_GL6BOtzxiM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB4VKIJLeZSKAKU-cKrk4I3X-7ggUQihIkQRpFVuK9s7Jog0gSUB5d9jexeaSytxW1uzq5XH9sx4_M0HcCCYwSAxhhrFFA0DlVBp3Q7aiOPUEZsj99iq3-2400n6_bRbgdU9FgYR_eUzrLtHn8vPx3rqjsoOXSGawIZUC7AkwrARlHCtv6X1Es-H55wCKtKkXyUxA5YetltX13XHFF7nrgK7416fM0NzvCrerJytvfOH1uFT5T-S41LhG_ABR5uwUlGZD2absNzyXL2zz4DdwmVh3MiTsSGt7jXtNU-IbV0-HwnStJNm8DCVd0hO5eyR-MsD5IecocNVkitPUl9UME3br-_sZmu3n7J9PLwZF7eTwZ8t-HXW7J2c04pVgWprjCdU2piPGevW5TxKBQYaozjnTOcSGdfMCjEu00BLEeeikYZ5rnQkjY4iu1a5dd--wOJoPMJtIEJwrThKbhIMlXVtjEJkRok4UHEcyRqw10HOdFVy3DFfDDMferA0c3rJnF6ySi81-P72yn1Zb-N_wltOJ3OCpTp2_tH_DVbOe5ftrP2zc7ELq-5T5WnKHixOiil-hY_6aXL7WOz7ifUCZavJag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+GPS-TEC+on+Mw%3E5+Earthquake+Days+Using+Bayesian+Regularization+Backpropagation+Algorithm&rft.jtitle=IEEE+geoscience+and+remote+sensing+letters&rft.au=Karatay%2C+Secil&rft.au=Gul%2C+Saide+Eda&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=1545-598X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FLGRS.2023.3262028&rft.externalDocID=10081383 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-598X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-598X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-598X&client=summon |