CStream: Parallel Data Stream Compression on Multicore Edge Devices

In the burgeoning realm of Internet of Things (IoT) applications on edge devices, data stream compression has become increasingly pertinent. The integration of added compression overhead and limited hardware resources on these devices calls for a nuanced software-hardware co-design. This paper intro...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering Vol. 36; no. 11; pp. 5889 - 5904
Main Authors: Zeng, Xianzhi, Zhang, Shuhao
Format: Journal Article
Language:English
Published: IEEE 01.11.2024
Subjects:
ISSN:1041-4347, 1558-2191
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In the burgeoning realm of Internet of Things (IoT) applications on edge devices, data stream compression has become increasingly pertinent. The integration of added compression overhead and limited hardware resources on these devices calls for a nuanced software-hardware co-design. This paper introduces CStream , a pioneering framework crafted for parallelizing stream compression on multicore edge devices. CStream grapples with the distinct challenges of delivering a high compression ratio, high throughput, low latency, and low energy consumption. Notably, CStream distinguishes itself by accommodating an array of stream compression algorithms, a variety of hardware architectures and configurations, and an innovative set of parallelization strategies, some of which are proposed herein for the first time. Our evaluation showcases the efficacy of a thoughtful co-design involving a lossy compression algorithm, asymmetric multicore processors, and our novel, hardware-conscious parallelization strategies. This approach achieves a <inline-formula><tex-math notation="LaTeX">2.8 \times</tex-math> <mml:math><mml:mrow><mml:mn>2</mml:mn><mml:mo>.</mml:mo><mml:mn>8</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zeng-ieq1-3386862.gif"/> </inline-formula> compression ratio with only marginal information loss, <inline-formula><tex-math notation="LaTeX">4.3 \times</tex-math> <mml:math><mml:mrow><mml:mn>4</mml:mn><mml:mo>.</mml:mo><mml:mn>3</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zeng-ieq2-3386862.gif"/> </inline-formula> throughput, 65% latency reduction and 89% energy consumption reduction, compared to designs lacking such strategic integration.
AbstractList In the burgeoning realm of Internet of Things (IoT) applications on edge devices, data stream compression has become increasingly pertinent. The integration of added compression overhead and limited hardware resources on these devices calls for a nuanced software-hardware co-design. This paper introduces CStream , a pioneering framework crafted for parallelizing stream compression on multicore edge devices. CStream grapples with the distinct challenges of delivering a high compression ratio, high throughput, low latency, and low energy consumption. Notably, CStream distinguishes itself by accommodating an array of stream compression algorithms, a variety of hardware architectures and configurations, and an innovative set of parallelization strategies, some of which are proposed herein for the first time. Our evaluation showcases the efficacy of a thoughtful co-design involving a lossy compression algorithm, asymmetric multicore processors, and our novel, hardware-conscious parallelization strategies. This approach achieves a <inline-formula><tex-math notation="LaTeX">2.8 \times</tex-math> <mml:math><mml:mrow><mml:mn>2</mml:mn><mml:mo>.</mml:mo><mml:mn>8</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zeng-ieq1-3386862.gif"/> </inline-formula> compression ratio with only marginal information loss, <inline-formula><tex-math notation="LaTeX">4.3 \times</tex-math> <mml:math><mml:mrow><mml:mn>4</mml:mn><mml:mo>.</mml:mo><mml:mn>3</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="zeng-ieq2-3386862.gif"/> </inline-formula> throughput, 65% latency reduction and 89% energy consumption reduction, compared to designs lacking such strategic integration.
Author Zeng, Xianzhi
Zhang, Shuhao
Author_xml – sequence: 1
  givenname: Xianzhi
  orcidid: 0009-0002-4613-9297
  surname: Zeng
  fullname: Zeng, Xianzhi
  email: xianzhi_xianzhi@mymail.sutd.edu.sg
  organization: Singapore University of Technology and Design, Singapore
– sequence: 2
  givenname: Shuhao
  orcidid: 0000-0002-9927-6925
  surname: Zhang
  fullname: Zhang, Shuhao
  email: shuhao.zhang@ntu.edu.sg
  organization: Nanyang Technological University, Singapore
BookMark eNp9kM9Kw0AQhxepYFt9AMHDvkDqzv7LrjdJWxUrCtZzmKYTWUmbshsF396U9iAehIEZfvDNMN-IDbbtlhi7BDEBEP56-TidTaSQeqKUs87KEzYEY1wmwcOgn4WGTCudn7FRSh9CCJc7GLKieO0i4eaGv2DEpqGGT7FDfkh50W52kVIK7Zb39fTZdKFqI_HZ-p34lL5CRemcndbYJLo49jF7m8-WxX22eL57KG4XWSWt7TK3EliDX4FZe5nLtc99LYz1oNGKSpGXUtceJXlbgbQGNeUa0a-MdFpBrsYMDnur2KYUqS53MWwwfpcgyr2Fcm-h3FsojxZ6Jv_DVKHDrv-nixiaf8mrAxmI6NclI6ywTv0AkAFq2g
CODEN ITKEEH
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3586539
Cites_doi 10.1109/DCC.2015.66
10.14778/2021017.2021021
10.1109/DCC.2019.00123
10.1145/3448016.3452793
10.1145/3387902.3394037
10.1145/3514221.3517836
10.1109/TWC.2021.3088910
10.1145/3583678.3596885
10.1109/HPCA.2013.6522303
10.1145/3299869.3300067
10.1109/JRPROC.1952.273898
10.1016/j.apr.2020.11.010
10.1145/3035918.3064007
10.1145/1620585.1620588
10.1109/ISCA.2005.51
10.1109/TPDS.2020.3045279
10.1145/2856125
10.1145/1498765.1498785
10.1007/s00778-014-0368-8
10.1109/TPDS.2021.3119402
10.1145/3372799.3394370
10.1145/2508148.2485927
10.1145/3342555
10.1145/2654822.2541971
10.1145/3447993.3448625
10.1109/ICECCT.2017.8117850
10.1145/1142473.1142548
10.1109/TC.2020.2984607
10.1145/3419634
10.1145/3323991
10.1109/ICASSP40776.2020.9053178
10.1145/1290672.1290686
10.1109/PATMOS.2015.7347594
10.1016/j.jbiomech.2018.08.015
10.1109/TIT.1978.1055934
10.1109/ISCA.2012.6237019
10.1109/CASES.2013.6662519
10.5555/1863103.1863113
10.1609/aaai.v33i01.33018893
10.1145/3297280.3297552
10.1145/362084.362137
10.1145/163090.163096
10.1145/2654822.2541974
10.1109/ICFPT52863.2021.9609952
10.1109/ICDE48307.2020.00136
10.1109/ICDE55515.2023.00078
10.1109/MS.2009.183
10.1145/3444943
10.1007/978-3-319-17248-4_7
10.14778/3402707.3402725
10.1109/TIT.1975.1055349
10.1016/j.jpdc.2020.12.004
10.1109/TVT.2019.2912942
10.1186/s12984-015-0081-x
10.1145/3264903
10.1145/3447993.3448628
10.1145/3296957.3173184
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2024.3386862
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 5904
ExternalDocumentID 10_1109_TKDE_2024_3386862
10506068
Genre orig-research
GrantInformation_xml – fundername: Future Communications Research and Development Programme
  grantid: FCP-SUTD-RG-2022-005
– fundername: MoE AcRF Tier 2
  grantid: MOE-T2EP20122-0010
– fundername: Info-communications Media Development Authority; Infocomm Media Development Authority
  funderid: 10.13039/501100008629
– fundername: National Research Foundation Singapore; National Research Foundation, Singapore
  funderid: 10.13039/501100001381
– fundername: NTU
  grantid: 023452-00001
GroupedDBID -~X
.DC
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TAF
TN5
UHB
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-8b0af19b15d9272d979f056914a60c3e9224f9a2e96c1265a4e74aa9b52843173
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001336378400071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Sat Nov 29 02:36:09 EST 2025
Tue Nov 18 21:25:32 EST 2025
Wed Aug 27 02:20:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-8b0af19b15d9272d979f056914a60c3e9224f9a2e96c1265a4e74aa9b52843173
ORCID 0009-0002-4613-9297
0000-0002-9927-6925
PageCount 16
ParticipantIDs ieee_primary_10506068
crossref_primary_10_1109_TKDE_2024_3386862
crossref_citationtrail_10_1109_TKDE_2024_3386862
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References Zeuch (ref6)
ref13
ref59
ref14
ref53
ref52
ref54
ref17
ref16
ref19
Lu (ref20)
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref86
ref41
ref85
ref43
ref49
ref8
ref7
(ref22) 2019
ref4
ref3
Pekhimenko (ref1)
ref5
ref82
ref81
Haque (ref83)
ref40
ref84
ref80
ref35
ref34
ref78
ref36
ref31
ref75
ref74
ref77
ref32
ref76
ref2
ref39
Reinsel (ref26) 2018; 16
ref71
ref70
ref73
ref72
ref68
ref69
ref64
ref63
Pekhimenko (ref37)
ref28
ref27
ref29
Wei (ref55)
Bharde (ref79) 2018
ref60
ref62
ref61
References_xml – volume-title: Proc. 10th Conf. Innov. Data Syst. Res.
  ident: ref6
  article-title: The nebulastream platform for data and application management in the internet of things
– ident: ref29
  doi: 10.1109/DCC.2015.66
– ident: ref86
  doi: 10.14778/2021017.2021021
– ident: ref50
  doi: 10.1109/DCC.2019.00123
– ident: ref64
  doi: 10.1145/3448016.3452793
– ident: ref49
  doi: 10.1145/3387902.3394037
– ident: ref5
  doi: 10.1145/3514221.3517836
– ident: ref84
  doi: 10.1109/TWC.2021.3088910
– ident: ref3
  doi: 10.1145/3583678.3596885
– ident: ref85
  doi: 10.1109/HPCA.2013.6522303
– ident: ref27
  doi: 10.1145/3299869.3300067
– ident: ref34
  doi: 10.1109/JRPROC.1952.273898
– start-page: 625
  volume-title: Proc. 50th Annu. IEEE/ACM Int. Symp. Microarchitecture
  ident: ref83
  article-title: Exploiting heterogeneity for tail latency and energy efficiency
– ident: ref61
  doi: 10.1016/j.apr.2020.11.010
– ident: ref17
  doi: 10.1145/3035918.3064007
– ident: ref28
  doi: 10.1145/1620585.1620588
– ident: ref70
  doi: 10.1109/ISCA.2005.51
– ident: ref72
  doi: 10.1109/TPDS.2020.3045279
– ident: ref41
  doi: 10.1145/2856125
– ident: ref68
  doi: 10.1145/1498765.1498785
– ident: ref80
  doi: 10.1007/s00778-014-0368-8
– ident: ref43
  doi: 10.1109/TPDS.2021.3119402
– ident: ref46
  doi: 10.1145/3372799.3394370
– ident: ref74
  doi: 10.1145/2508148.2485927
– ident: ref36
  doi: 10.1145/3342555
– start-page: 377
  volume-title: Proc. 21st Int. Conf. Parallel Architectures Compilation Techn.
  ident: ref37
  article-title: Base-delta-immediate compression: Practical data compression for on-chip caches
– ident: ref47
  doi: 10.1145/2654822.2541971
– ident: ref53
  doi: 10.1145/3447993.3448625
– start-page: 307
  volume-title: Proc. USENIX Annu. Tech. Conf.
  ident: ref1
  article-title: Tersecades: Efficient data compression in stream processing
– ident: ref35
  doi: 10.1109/ICECCT.2017.8117850
– ident: ref13
  doi: 10.1145/1142473.1142548
– ident: ref82
  doi: 10.1109/TC.2020.2984607
– ident: ref8
  doi: 10.1145/3419634
– ident: ref77
  doi: 10.1145/3323991
– ident: ref78
  doi: 10.1109/ICASSP40776.2020.9053178
– ident: ref52
  doi: 10.1145/1290672.1290686
– ident: ref45
  doi: 10.1109/PATMOS.2015.7347594
– ident: ref63
  doi: 10.1016/j.jbiomech.2018.08.015
– ident: ref16
  doi: 10.1109/TIT.1978.1055934
– ident: ref73
  doi: 10.1109/ISCA.2012.6237019
– ident: ref71
  doi: 10.1109/CASES.2013.6662519
– ident: ref51
  doi: 10.5555/1863103.1863113
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref55
  article-title: Online reinforcement learning in stochastic games
– ident: ref60
  doi: 10.1609/aaai.v33i01.33018893
– ident: ref7
  doi: 10.1145/3297280.3297552
– volume: 16
  start-page: 1
  year: 2018
  ident: ref26
  article-title: The digitization of the world from edge to core
  publication-title: Framingham: Int. Data Corporation
– ident: ref76
  doi: 10.1145/362084.362137
– ident: ref75
  doi: 10.1145/163090.163096
– ident: ref48
  doi: 10.1145/2654822.2541974
– ident: ref2
  doi: 10.1109/ICFPT52863.2021.9609952
– ident: ref54
  doi: 10.1109/ICDE48307.2020.00136
– ident: ref4
  doi: 10.1109/ICDE55515.2023.00078
– ident: ref40
  doi: 10.1109/MS.2009.183
– year: 2019
  ident: ref22
  article-title: Creator of the angry birds game
– ident: ref31
  doi: 10.1145/3444943
– ident: ref69
  doi: 10.1007/978-3-319-17248-4_7
– ident: ref19
  doi: 10.14778/3402707.3402725
– ident: ref32
  doi: 10.1109/TIT.1975.1055349
– volume-title: Proc. 3rd USENIX Workshop Hot Top. Edge Comput.
  ident: ref20
  article-title: Adaptively compressing {IoT} data on the resource-constrained edge
– ident: ref39
  doi: 10.1016/j.jpdc.2020.12.004
– volume-title: Proc. USENIX Workshop Hot Top. Edge Comput.
  year: 2018
  ident: ref79
  article-title: $\lbrace${Store-Edge $\rbrace$}$\lbrace${ RippleStream$\rbrace$}: Versatile infrastructure for $\lbrace${IoT$\rbrace$} data transfer,
– ident: ref59
  doi: 10.1109/TVT.2019.2912942
– ident: ref62
  doi: 10.1186/s12984-015-0081-x
– ident: ref14
  doi: 10.1145/3264903
– ident: ref42
  doi: 10.1145/3447993.3448628
– ident: ref81
  doi: 10.1145/3296957.3173184
SSID ssj0008781
Score 2.4636786
Snippet In the burgeoning realm of Internet of Things (IoT) applications on edge devices, data stream compression has become increasingly pertinent. The integration of...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 5889
SubjectTerms Asymmetric hardware
Compression algorithms
edge computing and IoT
Energy consumption
Hardware
Internet of Things
Multicore processing
Program processors
stream compression
Throughput
Title CStream: Parallel Data Stream Compression on Multicore Edge Devices
URI https://ieeexplore.ieee.org/document/10506068
Volume 36
WOSCitedRecordID wos001336378400071&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5s8aAHq7VifZGDJ2HrPtLNxpv0gSCUHir0tiSbRIS6lbr19ztJtqUeFIQ9LCHDLjM7r53MfAC3FK1iGEkdZIqygJpIBTLhAjWei9ioQlAqHNgEm0yy-ZxP62Z11wujtXaHz3TP3rpavloWa_urDDXcjsNLswY0GGO-WWtrdjPmEEkxvcCkKKGsLmHiQ-9nz8MRpoIx7WFCZlsifjihHVQV51TGrX--zjEc1dEjefTiPoE9XbahtUFmILWituFwZ8zgKQwGtvYs3h_IVKwsdsqCDEUliF8lltyfhi0JXq4l1w63JCP1qslQO1vSgZfxaDZ4CmrwhKBAn1sFmQyFibiM-orHLFaccYPBDo-oSMMi0Rx9t0F5aJ4WUZz2BdWMCsFlHx0WBhXJGTTLZanPgYTScKNEYoNJ1PdIJlSZmDOJwZ2Wqe5CuOFmXtSTxS3AxSJ3GUbIcyuA3AogrwXQhbstyYcfq_HX5o5l_s5Gz_eLX9Yv4cCS-47BK2hWq7W-hv3iq3r7XN24r-YbFlm81Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CurBaq1Ynzl4ErbuI_uIN-mDSmvpoUJvS7JJRKit1K2_30l2W-pBQdjDEpLdZWbnlcnMB3BLUSu6nlBOImnsUO1JRwSMo8Qz7muZcUq5BZuIh8NkMmGjsljd1sIopezhM9U0tzaXL-fZ0myVoYSbdnhRsg07IaW-V5RrrRVvEltMUgwwMCwKaFwmMfG19-N-u4PBoE-bGJKZoogfZmgDV8WalW71nx90BIel_0geC4Yfw5aa1aC6wmYgpajW4GCj0eAJtFom-8zfH8iILwx6ypS0ec5JMUrM8uI87IzgZYtyTXtL0pGvirSV1SZ1eOl2xq2eU8InOBla3dxJhMu1x4QXSubHvmQx0-juMI_yyM0CxdB6a-SIYlHm-VHIqYop50yEaLLQrQhOoTKbz9QZEFdopiUPjDuJEu-JgErts1ige6dEpBrgrqiZZmVvcQNxMU1tjOGy1DAgNQxISwY04G695KNorPHX5Loh_sbEgu7nv4zfwF5v_DxIB0_D_gXsm0cV9YOXUMkXS3UFu9lX_va5uLZ_0DcZccAc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CStream%3A+Parallel+Data+Stream+Compression+on+Multicore+Edge+Devices&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Zeng%2C+Xianzhi&rft.au=Zhang%2C+Shuhao&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=36&rft.issue=11&rft.spage=5889&rft.epage=5904&rft_id=info:doi/10.1109%2FTKDE.2024.3386862&rft.externalDocID=10506068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon