An Adaptive Classifier Based Approach for Crowd Anomaly Detection

Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use of data mining, machine learning and deep learning methods. In this paper a novel approach is proposed to identify abnormal occurrences in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers, materials & continua Jg. 72; H. 1; S. 349 - 364
Hauptverfasser: Nishath, Sofia, S. Nithya Darisini, P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Henderson Tech Science Press 2022
Schlagworte:
ISSN:1546-2226, 1546-2218, 1546-2226
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use of data mining, machine learning and deep learning methods. In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning. In this approach, Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes. We use multiple instance learning (MIL) to dynamically develop a deep anomalous ranking framework. This technique predicts higher anomalous values for abnormal video frames by treating regular and irregular video bags and video sections. We use the multi-objective whale optimization algorithm to optimize the entire process and get the best results. The performance parameters such as accuracy, precision, recall, and F-score are considered to evaluate the proposed technique using the Python simulation tool. Our simulation results show that the proposed method performs better than the conventional methods on the public live video dataset.
AbstractList Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use of data mining, machine learning and deep learning methods. In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning. In this approach, Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes. We use multiple instance learning (MIL) to dynamically develop a deep anomalous ranking framework. This technique predicts higher anomalous values for abnormal video frames by treating regular and irregular video bags and video sections. We use the multi-objective whale optimization algorithm to optimize the entire process and get the best results. The performance parameters such as accuracy, precision, recall, and F-score are considered to evaluate the proposed technique using the Python simulation tool. Our simulation results show that the proposed method performs better than the conventional methods on the public live video dataset.
Author Nishath, Sofia
S. Nithya Darisini, P.
Author_xml – sequence: 1
  givenname: Sofia
  surname: Nishath
  fullname: Nishath, Sofia
– sequence: 2
  givenname: P.
  surname: S. Nithya Darisini
  fullname: S. Nithya Darisini, P.
BookMark eNpNkDFPwzAQRi1UJNrCzmiJOcU-J3Y8hkABqRILzJbjnEWqNg52Cuq_J1AGpjudnu779BZk1oceCbnmbCVAsvzW7d0KGMCKgdCiOCNzXuQyAwA5-7dfkEVKW8aEFJrNSVX1tGrtMHafSOudTanzHUZ6ZxO2tBqGGKx7pz5EWsfwNZ36sLe7I73HEd3Yhf6SnHu7S3j1N5fkbf3wWj9lm5fH57raZA6kHLNS54JzpqDVVinVMCgKwSy4wuaqcY23ZSu5AosTIVE36F3puFesaJocrViSm9PfqdLHAdNotuEQ-ynSgNRclaCVmCh2olwMKUX0Zojd3saj4cz8ijKTKPMjypxEiW_w71x_
Cites_doi 10.1109/MIM.2020.9153576
10.1109/CVPR.2009.5206641
10.3233/JIFS-169908
10.1007/s11042-017-5244-2
10.1007/s11760-018-1267-z
10.1016/j.patrec.2019.09.003
10.1007/s11042-016-4100-0
10.1016/j.eng.2019.02.008
10.1016/j.patcog.2017.08.001
10.1007/s11042-018-5701-6
10.1007/s11042-016-3316-3
10.1007/s11042-019-7702-5
10.1007/s11042-017-5020-3
10.1007/s11042-017-5255-z
10.1016/j.patcog.2020.107355
10.1117/1.JEI.26.3.033013
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2022.023935
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 364
ExternalDocumentID 10_32604_cmc_2022_023935
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c266t-894311072d9a777b025530a2c5a47bcbfa8d6172ae2d96e9befc8c1f705bb4ea3
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000763378900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 04:18:07 EDT 2025
Sat Nov 29 03:13:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-894311072d9a777b025530a2c5a47bcbfa8d6172ae2d96e9befc8c1f705bb4ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2691782973?pq-origsite=%requestingapplication%
PQID 2691782973
PQPubID 2048737
PageCount 16
ParticipantIDs proquest_journals_2691782973
crossref_primary_10_32604_cmc_2022_023935
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Lee (ref13) 2018
Hu (ref1) 2018; 54
Ravanbaksh (ref5) 2017
Q. (ref15) 2021; 2021
ref22
Li (ref9) 2020; 108
Chong (ref3) 2017
Qasim (ref8) 2019; 128
Fang (ref21) 2016; 75
Bao (ref18) 2017; 7
Yu (ref4) 2017; 26
Bansod (ref19) 2019; 36
Harrou (ref10) 2020; 23
Sun (ref11) 2019; 78
Wang (ref12) 2019; 5
Gnouma (ref20) 2018; 77
Ionescu (ref17) 2019
Chen (ref14) 2018; 77
Ramachandran (ref7) 2020; 79
He (ref16) 2018; 77
Yuan (ref6) 2018; 73
Amraee (ref2) 2018; 12
References_xml – volume: 2021
  start-page: 1
  year: 2021
  ident: ref15
  article-title: Abnormal event detection in videos based on deep neural networks
  publication-title: Scientific Programming
– start-page: 1577
  year: 2017
  ident: ref5
  article-title: Abnormal event detection in videos using generative adversarial nets
– volume: 23
  start-page: 57
  year: 2020
  ident: ref10
  article-title: Malicious attacks detection in crowded areas using deep-learning based approach
  publication-title: IEEE Instrumentation & Measurement Magazine
  doi: 10.1109/MIM.2020.9153576
– ident: ref22
  doi: 10.1109/CVPR.2009.5206641
– volume: 36
  start-page: 1967
  year: 2019
  ident: ref19
  article-title: Transfer learning for video anomaly detection
  publication-title: Journal of Intelligent & Fuzzy Systems
  doi: 10.3233/JIFS-169908
– volume: 78
  start-page: 3633
  year: 2019
  ident: ref11
  article-title: Abnormal event detection for video surveillance using deep one-class learning
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-5244-2
– volume: 12
  start-page: 1115
  year: 2018
  ident: ref2
  article-title: Abnormal event detection in crowded scenes using one-class SVM
  publication-title: Signal Image and Video Preprocessing
  doi: 10.1007/s11760-018-1267-z
– volume: 128
  start-page: 220
  year: 2019
  ident: ref8
  article-title: A hybrid swarm intelligence-based approach for abnormal event detection in crowded environments
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2019.09.003
– volume: 7
  start-page: 23213
  year: 2017
  ident: ref18
  article-title: Abnormal event detection and localization in crowded scenesbased on PCANet
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-4100-0
– volume: 5
  start-page: 930
  year: 2019
  ident: ref12
  article-title: AED-Net: An abnormal event detection network
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.02.008
– volume: 73
  start-page: 99
  year: 2018
  ident: ref6
  article-title: Structured dictionary learning for abnormal event detection in crowded scenes
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.08.001
– start-page: 1323
  year: 2018
  ident: ref13
  article-title: STAN: Spatio-temporal adversarial networks for abnormal event detection
– volume: 77
  start-page: 24843
  year: 2018
  ident: ref20
  article-title: Abnormal events’ detection in crowded scenes
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-5701-6
– volume: 75
  start-page: 14617
  year: 2016
  ident: ref21
  article-title: Abnormal event detection in crowded scenes based on deep learning
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-016-3316-3
– volume: 79
  start-page: 35275
  year: 2020
  ident: ref7
  article-title: Unsupervised deep learning system for local anomaly event detection in crowded scenes
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-019-7702-5
– volume: 77
  start-page: 14137
  year: 2018
  ident: ref14
  article-title: Anomaly detection in crowded scenes using motion energy model
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-5020-3
– volume: 77
  start-page: 29573
  year: 2018
  ident: ref16
  article-title: An anomaly-introduced learning method for abnormal event detection
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-017-5255-z
– volume: 54
  start-page: 1
  year: 2018
  ident: ref1
  article-title: Abnormal event detection in crowded scenes using histogram of oriented contextual gradient descriptor
  publication-title: EURASIP Journal on Advances in Signal Processing
– volume: 108
  start-page: 107355(1
  year: 2020
  ident: ref9
  article-title: Abnormal event detection in surveillance videos based on low-rank and compact coefficient dictionary learning
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107355
– volume: 26
  start-page: 033013(1
  year: 2017
  ident: ref4
  article-title: Abnormal event detection in crowded scenes using two sparse dictionaries with saliency
  publication-title: Journal of Electronic Imaging
  doi: 10.1117/1.JEI.26.3.033013
– start-page: 7834
  year: 2019
  ident: ref17
  article-title: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video
– start-page: 189
  year: 2017
  ident: ref3
  article-title: Abnormal event detection in videos using spatiotemporal autoencoder
SSID ssj0036390
Score 2.253954
Snippet Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 349
SubjectTerms Algorithms
Anomalies
Classifiers
Computer simulation
Data mining
Deep learning
Frames (data processing)
Machine learning
Multiple objective analysis
Neural networks
Optimization
Optimization algorithms
Surveillance
Surveillance systems
Title An Adaptive Classifier Based Approach for Crowd Anomaly Detection
URI https://www.proquest.com/docview/2691782973
Volume 72
WOSCitedRecordID wos000763378900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20deHG-sRqlVm4cTE2j0kms5JUW3RhCaJQV2FehYJNaxsF_947yQTpxo2rQBJCONy559x5nIvQVQAi2NeSkySSglAaBUQwnxNOPRnpSMUeF1WzCTYeJ5MJz9yE29ptq2xyYpWo9ULZOfJ-EENhYc-BhrfLD2K7RtnVVddCYxu1rVMZxHl7MBxnz00uDoF_qyOREY1JAGxWL1SCZPFoX82thWEQ3NQ2YJvEtJmXK7IZdf77m_toz8lMnNZxcYC2THGIOk0LB-xG9BFK0wKnWixt0sNVg8zZFIgSD4DcNE6d4TgGZYvvoGCHW8ViLt6_8b0pq01cxTF6HQ1f7h6I66pAFJBxSazhui36As0FY0zaoiL0RKAiQZlUcioSbWWNMPBGbLg0U5Uof8q8SEpqRHiCWsWiMKcIcyWp1DxiTMU0UaH0jZIeUyACJICtu-i6gTRf1uYZORQdFfw5wJ9b-PMa_i7qNYDmbhit8180z_5-fI527bfquZEeapWrT3OBdtRXOVuvLl1UwDV7fMrefgAdP8C_
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsQwEB3BggQNN-LGBRQUhqzjxHGBULjEClhtARJUwddKSJBddhcQP8U3Ms4hRENHQZtElpw3mvfGxzyAHYYiuGm1pEmkFeU8YlSJpqSSBzqykYkDqQqzCdFuJ3d3sjMGn_VdGH-sss6JRaK2PePXyA9YjIWFvwcaHvVfqHeN8rurtYVGGRaX7uMdS7bhYesU8d1l7Pzs5uSCVq4C1CAZjahvOO6LHmalEkJoL6rDQDETKS600V2VWE_ryuEXsZPadU1iml0RRFpzp0IcdxwmuA_2Bkx0Wted-zr3h8j3xRXMiMeUIXuWG6MokQJ-YJ59y0TG9su2Yz-J8CcPFOR2PvvffssczFQymqRl3M_DmMsXYLa2qCBVxlqENM1JalXfJ3VSGIA-dlEIkGMkb0vSqqE6QeVOTga9d3yU957V0wc5daPikFq-BLd_MpFlaOS93K0AkUZzbWUkhIl5YkLddEYHwqDI0QiuXYW9GsKsXzYHybCoKuDOEO7Mw52VcK_CRg1gVqWJYfaN3trvr7dh6uLm-iq7arUv12Haj1uuA21AYzR4dZswad5Gj8PBVhWRBB7-Gu0vTGcc-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Classifier+Based+Approach+for+Crowd+Anomaly+Detection&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Nishath%2C+Sofia&rft.au=S.+Nithya+Darisini%2C+P.&rft.date=2022&rft.issn=1546-2226&rft.volume=72&rft.issue=1&rft.spage=349&rft.epage=364&rft_id=info:doi/10.32604%2Fcmc.2022.023935&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_023935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon