An Adaptive Classifier Based Approach for Crowd Anomaly Detection
Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use of data mining, machine learning and deep learning methods. In this paper a novel approach is proposed to identify abnormal occurrences in c...
Gespeichert in:
| Veröffentlicht in: | Computers, materials & continua Jg. 72; H. 1; S. 349 - 364 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Henderson
Tech Science Press
2022
|
| Schlagworte: | |
| ISSN: | 1546-2226, 1546-2218, 1546-2226 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use of data mining, machine learning and deep learning methods. In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning. In this approach, Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes. We use multiple instance learning (MIL) to dynamically develop a deep anomalous ranking framework. This technique predicts higher anomalous values for abnormal video frames by treating regular and irregular video bags and video sections. We use the multi-objective whale optimization algorithm to optimize the entire process and get the best results. The performance parameters such as accuracy, precision, recall, and F-score are considered to evaluate the proposed technique using the Python simulation tool. Our simulation results show that the proposed method performs better than the conventional methods on the public live video dataset. |
|---|---|
| AbstractList | Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use of data mining, machine learning and deep learning methods. In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning. In this approach, Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes. We use multiple instance learning (MIL) to dynamically develop a deep anomalous ranking framework. This technique predicts higher anomalous values for abnormal video frames by treating regular and irregular video bags and video sections. We use the multi-objective whale optimization algorithm to optimize the entire process and get the best results. The performance parameters such as accuracy, precision, recall, and F-score are considered to evaluate the proposed technique using the Python simulation tool. Our simulation results show that the proposed method performs better than the conventional methods on the public live video dataset. |
| Author | Nishath, Sofia S. Nithya Darisini, P. |
| Author_xml | – sequence: 1 givenname: Sofia surname: Nishath fullname: Nishath, Sofia – sequence: 2 givenname: P. surname: S. Nithya Darisini fullname: S. Nithya Darisini, P. |
| BookMark | eNpNkDFPwzAQRi1UJNrCzmiJOcU-J3Y8hkABqRILzJbjnEWqNg52Cuq_J1AGpjudnu779BZk1oceCbnmbCVAsvzW7d0KGMCKgdCiOCNzXuQyAwA5-7dfkEVKW8aEFJrNSVX1tGrtMHafSOudTanzHUZ6ZxO2tBqGGKx7pz5EWsfwNZ36sLe7I73HEd3Yhf6SnHu7S3j1N5fkbf3wWj9lm5fH57raZA6kHLNS54JzpqDVVinVMCgKwSy4wuaqcY23ZSu5AosTIVE36F3puFesaJocrViSm9PfqdLHAdNotuEQ-ynSgNRclaCVmCh2olwMKUX0Zojd3saj4cz8ijKTKPMjypxEiW_w71x_ |
| Cites_doi | 10.1109/MIM.2020.9153576 10.1109/CVPR.2009.5206641 10.3233/JIFS-169908 10.1007/s11042-017-5244-2 10.1007/s11760-018-1267-z 10.1016/j.patrec.2019.09.003 10.1007/s11042-016-4100-0 10.1016/j.eng.2019.02.008 10.1016/j.patcog.2017.08.001 10.1007/s11042-018-5701-6 10.1007/s11042-016-3316-3 10.1007/s11042-019-7702-5 10.1007/s11042-017-5020-3 10.1007/s11042-017-5255-z 10.1016/j.patcog.2020.107355 10.1117/1.JEI.26.3.033013 |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.32604/cmc.2022.023935 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 364 |
| ExternalDocumentID | 10_32604_cmc_2022_023935 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c266t-894311072d9a777b025530a2c5a47bcbfa8d6172ae2d96e9befc8c1f705bb4ea3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000763378900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Mon Jun 30 04:18:07 EDT 2025 Sat Nov 29 03:13:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-894311072d9a777b025530a2c5a47bcbfa8d6172ae2d96e9befc8c1f705bb4ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2691782973?pq-origsite=%requestingapplication% |
| PQID | 2691782973 |
| PQPubID | 2048737 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2691782973 crossref_primary_10_32604_cmc_2022_023935 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2022 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Lee (ref13) 2018 Hu (ref1) 2018; 54 Ravanbaksh (ref5) 2017 Q. (ref15) 2021; 2021 ref22 Li (ref9) 2020; 108 Chong (ref3) 2017 Qasim (ref8) 2019; 128 Fang (ref21) 2016; 75 Bao (ref18) 2017; 7 Yu (ref4) 2017; 26 Bansod (ref19) 2019; 36 Harrou (ref10) 2020; 23 Sun (ref11) 2019; 78 Wang (ref12) 2019; 5 Gnouma (ref20) 2018; 77 Ionescu (ref17) 2019 Chen (ref14) 2018; 77 Ramachandran (ref7) 2020; 79 He (ref16) 2018; 77 Yuan (ref6) 2018; 73 Amraee (ref2) 2018; 12 |
| References_xml | – volume: 2021 start-page: 1 year: 2021 ident: ref15 article-title: Abnormal event detection in videos based on deep neural networks publication-title: Scientific Programming – start-page: 1577 year: 2017 ident: ref5 article-title: Abnormal event detection in videos using generative adversarial nets – volume: 23 start-page: 57 year: 2020 ident: ref10 article-title: Malicious attacks detection in crowded areas using deep-learning based approach publication-title: IEEE Instrumentation & Measurement Magazine doi: 10.1109/MIM.2020.9153576 – ident: ref22 doi: 10.1109/CVPR.2009.5206641 – volume: 36 start-page: 1967 year: 2019 ident: ref19 article-title: Transfer learning for video anomaly detection publication-title: Journal of Intelligent & Fuzzy Systems doi: 10.3233/JIFS-169908 – volume: 78 start-page: 3633 year: 2019 ident: ref11 article-title: Abnormal event detection for video surveillance using deep one-class learning publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-5244-2 – volume: 12 start-page: 1115 year: 2018 ident: ref2 article-title: Abnormal event detection in crowded scenes using one-class SVM publication-title: Signal Image and Video Preprocessing doi: 10.1007/s11760-018-1267-z – volume: 128 start-page: 220 year: 2019 ident: ref8 article-title: A hybrid swarm intelligence-based approach for abnormal event detection in crowded environments publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2019.09.003 – volume: 7 start-page: 23213 year: 2017 ident: ref18 article-title: Abnormal event detection and localization in crowded scenesbased on PCANet publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-4100-0 – volume: 5 start-page: 930 year: 2019 ident: ref12 article-title: AED-Net: An abnormal event detection network publication-title: Engineering doi: 10.1016/j.eng.2019.02.008 – volume: 73 start-page: 99 year: 2018 ident: ref6 article-title: Structured dictionary learning for abnormal event detection in crowded scenes publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.08.001 – start-page: 1323 year: 2018 ident: ref13 article-title: STAN: Spatio-temporal adversarial networks for abnormal event detection – volume: 77 start-page: 24843 year: 2018 ident: ref20 article-title: Abnormal events’ detection in crowded scenes publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-5701-6 – volume: 75 start-page: 14617 year: 2016 ident: ref21 article-title: Abnormal event detection in crowded scenes based on deep learning publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-3316-3 – volume: 79 start-page: 35275 year: 2020 ident: ref7 article-title: Unsupervised deep learning system for local anomaly event detection in crowded scenes publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-019-7702-5 – volume: 77 start-page: 14137 year: 2018 ident: ref14 article-title: Anomaly detection in crowded scenes using motion energy model publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-5020-3 – volume: 77 start-page: 29573 year: 2018 ident: ref16 article-title: An anomaly-introduced learning method for abnormal event detection publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-017-5255-z – volume: 54 start-page: 1 year: 2018 ident: ref1 article-title: Abnormal event detection in crowded scenes using histogram of oriented contextual gradient descriptor publication-title: EURASIP Journal on Advances in Signal Processing – volume: 108 start-page: 107355(1 year: 2020 ident: ref9 article-title: Abnormal event detection in surveillance videos based on low-rank and compact coefficient dictionary learning publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107355 – volume: 26 start-page: 033013(1 year: 2017 ident: ref4 article-title: Abnormal event detection in crowded scenes using two sparse dictionaries with saliency publication-title: Journal of Electronic Imaging doi: 10.1117/1.JEI.26.3.033013 – start-page: 7834 year: 2019 ident: ref17 article-title: Object-centric auto-encoders and dummy anomalies for abnormal event detection in video – start-page: 189 year: 2017 ident: ref3 article-title: Abnormal event detection in videos using spatiotemporal autoencoder |
| SSID | ssj0036390 |
| Score | 2.253954 |
| Snippet | Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 349 |
| SubjectTerms | Algorithms Anomalies Classifiers Computer simulation Data mining Deep learning Frames (data processing) Machine learning Multiple objective analysis Neural networks Optimization Optimization algorithms Surveillance Surveillance systems |
| Title | An Adaptive Classifier Based Approach for Crowd Anomaly Detection |
| URI | https://www.proquest.com/docview/2691782973 |
| Volume | 72 |
| WOSCitedRecordID | wos000763378900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20deHG-sRqlVm4cTE2j0kms5JUW3RhCaJQV2FehYJNaxsF_947yQTpxo2rQBJCONy559x5nIvQVQAi2NeSkySSglAaBUQwnxNOPRnpSMUeF1WzCTYeJ5MJz9yE29ptq2xyYpWo9ULZOfJ-EENhYc-BhrfLD2K7RtnVVddCYxu1rVMZxHl7MBxnz00uDoF_qyOREY1JAGxWL1SCZPFoX82thWEQ3NQ2YJvEtJmXK7IZdf77m_toz8lMnNZxcYC2THGIOk0LB-xG9BFK0wKnWixt0sNVg8zZFIgSD4DcNE6d4TgGZYvvoGCHW8ViLt6_8b0pq01cxTF6HQ1f7h6I66pAFJBxSazhui36As0FY0zaoiL0RKAiQZlUcioSbWWNMPBGbLg0U5Uof8q8SEpqRHiCWsWiMKcIcyWp1DxiTMU0UaH0jZIeUyACJICtu-i6gTRf1uYZORQdFfw5wJ9b-PMa_i7qNYDmbhit8180z_5-fI527bfquZEeapWrT3OBdtRXOVuvLl1UwDV7fMrefgAdP8C_ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V25TsQwEB3BggQNN-LGBRQUhqzjxHGBULjEClhtARJUwddKSJBddhcQP8U3Ms4hRENHQZtElpw3mvfGxzyAHYYiuGm1pEmkFeU8YlSJpqSSBzqykYkDqQqzCdFuJ3d3sjMGn_VdGH-sss6JRaK2PePXyA9YjIWFvwcaHvVfqHeN8rurtYVGGRaX7uMdS7bhYesU8d1l7Pzs5uSCVq4C1CAZjahvOO6LHmalEkJoL6rDQDETKS600V2VWE_ryuEXsZPadU1iml0RRFpzp0IcdxwmuA_2Bkx0Wted-zr3h8j3xRXMiMeUIXuWG6MokQJ-YJ59y0TG9su2Yz-J8CcPFOR2PvvffssczFQymqRl3M_DmMsXYLa2qCBVxlqENM1JalXfJ3VSGIA-dlEIkGMkb0vSqqE6QeVOTga9d3yU957V0wc5daPikFq-BLd_MpFlaOS93K0AkUZzbWUkhIl5YkLddEYHwqDI0QiuXYW9GsKsXzYHybCoKuDOEO7Mw52VcK_CRg1gVqWJYfaN3trvr7dh6uLm-iq7arUv12Haj1uuA21AYzR4dZswad5Gj8PBVhWRBB7-Gu0vTGcc-Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Classifier+Based+Approach+for+Crowd+Anomaly+Detection&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Nishath%2C+Sofia&rft.au=S.+Nithya+Darisini%2C+P.&rft.date=2022&rft.issn=1546-2226&rft.volume=72&rft.issue=1&rft.spage=349&rft.epage=364&rft_id=info:doi/10.32604%2Fcmc.2022.023935&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_023935 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |