Where to Decide? Centralized Versus Distributed Vehicle Assignment for Platoon Formation

Platooning is a promising cooperative driving application for future intelligent transportation systems. In order to assign vehicles to platoons, some algorithm for platoon formation is required. Such vehicle-to-platoon assignments have to be computed on-demand, e.g., when vehicles join or leave the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems Jg. 25; H. 11; S. 17317 - 17334
Hauptverfasser: Heinovski, Julian, Dressler, Falko
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2024
Schlagworte:
ISSN:1524-9050, 1558-0016
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Platooning is a promising cooperative driving application for future intelligent transportation systems. In order to assign vehicles to platoons, some algorithm for platoon formation is required. Such vehicle-to-platoon assignments have to be computed on-demand, e.g., when vehicles join or leave the freeways. In order to get best results from platooning, individual properties of involved vehicles have to be considered during the assignment computation. In this paper, we explore the computation of vehicle-to-platoon assignments as an optimization problem based on similarity between vehicles. We define the similarity and, vice versa, the deviation among vehicles based on the desired driving speed of vehicles and their position on the road. We create three approaches to solve this assignment problem: centralized solver, centralized greedy, and distributed greedy, using a Mixed Integer Programming (MIP) solver and greedy heuristics, respectively. Conceptually, the approaches differ in both knowledge about vehicles as well as methodology. We perform a large-scale simulation study using PlaFoSim to compare all approaches. While the distributed greedy approach seems to have disadvantages due to the limited local knowledge, it performs as good as the centralized solver approach across most metrics. Both outperform the centralized greedy approach, which suffers from synchronization and greedy selection effects. The centralized solver approach however assumes global knowledge and requires a complex MIP solver to compute vehicle-to-platoon assignments. Overall, the distributed greedy approach achieves close to optimal results but requires the least assumptions and complexity. Therefore, we consider the distributed greedy approach the best approach among all presented approaches.
AbstractList Platooning is a promising cooperative driving application for future intelligent transportation systems. In order to assign vehicles to platoons, some algorithm for platoon formation is required. Such vehicle-to-platoon assignments have to be computed on-demand, e.g., when vehicles join or leave the freeways. In order to get best results from platooning, individual properties of involved vehicles have to be considered during the assignment computation. In this paper, we explore the computation of vehicle-to-platoon assignments as an optimization problem based on similarity between vehicles. We define the similarity and, vice versa, the deviation among vehicles based on the desired driving speed of vehicles and their position on the road. We create three approaches to solve this assignment problem: centralized solver, centralized greedy, and distributed greedy, using a Mixed Integer Programming (MIP) solver and greedy heuristics, respectively. Conceptually, the approaches differ in both knowledge about vehicles as well as methodology. We perform a large-scale simulation study using PlaFoSim to compare all approaches. While the distributed greedy approach seems to have disadvantages due to the limited local knowledge, it performs as good as the centralized solver approach across most metrics. Both outperform the centralized greedy approach, which suffers from synchronization and greedy selection effects. The centralized solver approach however assumes global knowledge and requires a complex MIP solver to compute vehicle-to-platoon assignments. Overall, the distributed greedy approach achieves close to optimal results but requires the least assumptions and complexity. Therefore, we consider the distributed greedy approach the best approach among all presented approaches.
Author Heinovski, Julian
Dressler, Falko
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0000-0003-3169-8109
  surname: Heinovski
  fullname: Heinovski, Julian
  email: heinovski@ccs-labs.org
  organization: School of Electrical Engineering and Computer Science, TU Berlin, Berlin, Germany
– sequence: 2
  givenname: Falko
  orcidid: 0000-0002-1989-1750
  surname: Dressler
  fullname: Dressler, Falko
  email: dressler@ccs-labs.org
  organization: School of Electrical Engineering and Computer Science, TU Berlin, Berlin, Germany
BookMark eNp9kM1OwzAQhC1UJNrCAyBx8Auk2ElsxydUtRQqVQKJ8nOLHGdNjdIY2e4Bnp6k7QFx4LSr0Xyr2RmhQetaQOiSkgmlRF6vl-unSUrSfJLlKeeUnaAhZaxICKF80O9pnkjCyBkahfDRqTmjdIjeXjfgAUeH56BtDTd4Bm30qrHfUOMX8GEX8NyG6G21i3tpY3UDeBqCfW-3nRkb5_Fjo6JzLV44v1XRuvYcnRrVBLg4zjF6XtyuZ_fJ6uFuOZuuEt3FjIkQujbUZEIRzohglKtKFloQUIJlwGTFKkNqYXJTFZynwAxhNU-LgmollczGSBzuau9C8GBKbeM-QfeFbUpKyr6gsi-o7AsqjwV1JP1Dfnq7Vf7rX-bqwFgA-OXnRIqcZz8k7nSK
CODEN ITISFG
CitedBy_id crossref_primary_10_1016_j_swevo_2025_101878
crossref_primary_10_1016_j_ifacol_2025_07_103
crossref_primary_10_1109_OJITS_2025_3580464
Cites_doi 10.1109/25.69979
10.1109/ITSC45102.2020.9294419
10.1016/j.trc.2004.09.001
10.1109/RTAS.2005.15
10.1109/VNC52810.2021.9644678
10.3182/20130904-4-JP-2042.00071
10.1109/87.852914
10.1109/ITSC.2008.4732580
10.1109/TITS.2021.3115908
10.1109/GCIoT.2018.8620134
10.3141/2547-07
10.1109/5.871301
10.1016/j.tre.2019.05.005
10.1109/GLOBECOM48099.2022.10001055
10.1109/ITSC48978.2021.9565122
10.1109/WONS.2014.6814733
10.3141/2667-02
10.1109/JPROC.2018.2863026
10.1016/j.trc.2015.08.019
10.1109/TITS.2021.3071442
10.1007/978-3-030-04070-3_15
10.1109/ICCNC.2019.8685651
10.1109/TITS.2020.2994537
10.1016/j.trb.2017.10.016
10.1504/IJVICS.2013.055766
10.1109/TITS.2015.2492243
10.1007/978-1-4614-1433-9
10.1007/978-3-030-84474-5_10
10.1109/ACC.2015.7171911
10.1109/ITSC.2013.6728395
10.1111/mice.12899
10.1109/TITS.2017.2700021
10.1109/TITS.2006.884615
10.1016/j.ijheatfluidflow.2017.05.008
10.1109/VNC.2018.8628396
10.1016/j.eng.2023.01.012
10.1109/TITS.2014.2320133
10.1016/j.ifacol.2020.12.2338
10.1109/PERCOMW.2017.7917611
10.1007/978-3-030-99584-3_34
10.1109/TITS.2022.3204700
10.1109/COMST.2015.2410831
10.1007/978-3-031-18872-5_19
10.1002/itl2.139
10.1109/ITSC.2015.75
10.1016/j.comcom.2022.06.034
10.1016/j.trc.2021.103442
10.1109/AIM.2013.6584249
10.1109/TMC.2022.3154643
10.1109/ICTC.2016.7763478
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2024.3426615
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 17334
ExternalDocumentID 10_1109_TITS_2024_3426615
10609746
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-77cdf1f37a06507516ab98c70ea753e59b5bf0d7f4fb8662e5f05d62881ca9a93
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001279033300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1524-9050
IngestDate Tue Nov 18 22:35:36 EST 2025
Sat Nov 29 06:35:08 EST 2025
Wed Aug 27 03:06:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-77cdf1f37a06507516ab98c70ea753e59b5bf0d7f4fb8662e5f05d62881ca9a93
ORCID 0000-0002-1989-1750
0000-0003-3169-8109
PageCount 18
ParticipantIDs crossref_citationtrail_10_1109_TITS_2024_3426615
ieee_primary_10609746
crossref_primary_10_1109_TITS_2024_3426615
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref56
ref15
Jootel (ref9) 2012
ref14
ref53
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Dao (ref41) 2008
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref44
ref49
ref7
ref3
ref6
ref5
ref40
ref35
ref34
ref37
Krauß (ref52) 1998
ref36
ref31
ref30
Bergenhem (ref4)
ref33
ref32
ref2
ref1
ref39
Hobert (ref43) 2012
ref38
Robinson (ref8)
ref24
ref23
ref26
Maiti (ref12)
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref3
  doi: 10.1109/25.69979
– ident: ref38
  doi: 10.1109/ITSC45102.2020.9294419
– ident: ref15
  doi: 10.1016/j.trc.2004.09.001
– ident: ref40
  doi: 10.1109/RTAS.2005.15
– ident: ref51
  doi: 10.1109/VNC52810.2021.9644678
– ident: ref19
  doi: 10.3182/20130904-4-JP-2042.00071
– ident: ref47
  doi: 10.1109/87.852914
– ident: ref32
  doi: 10.1109/ITSC.2008.4732580
– ident: ref16
  doi: 10.1109/TITS.2021.3115908
– ident: ref37
  doi: 10.1109/GCIoT.2018.8620134
– ident: ref20
  doi: 10.3141/2547-07
– ident: ref7
  doi: 10.1109/5.871301
– ident: ref33
  doi: 10.1016/j.tre.2019.05.005
– year: 2012
  ident: ref9
  article-title: SAfe road trains for the environment
– ident: ref49
  doi: 10.1109/GLOBECOM48099.2022.10001055
– start-page: 1
  volume-title: Proc. 19th World Congr. Intell. Transp. Syst. (ITS)
  ident: ref4
  article-title: Overview of platooning systems
– ident: ref54
  doi: 10.1109/ITSC48978.2021.9565122
– ident: ref11
  doi: 10.1109/WONS.2014.6814733
– ident: ref26
  doi: 10.3141/2667-02
– ident: ref1
  doi: 10.1109/JPROC.2018.2863026
– ident: ref22
  doi: 10.1016/j.trc.2015.08.019
– ident: ref31
  doi: 10.1109/TITS.2021.3071442
– ident: ref25
  doi: 10.1007/978-3-030-04070-3_15
– ident: ref48
  doi: 10.1109/ICCNC.2019.8685651
– ident: ref13
  doi: 10.1109/TITS.2020.2994537
– ident: ref14
  doi: 10.1016/j.trb.2017.10.016
– ident: ref42
  doi: 10.1504/IJVICS.2013.055766
– ident: ref28
  doi: 10.1109/TITS.2015.2492243
– ident: ref53
  doi: 10.1007/978-1-4614-1433-9
– ident: ref56
  doi: 10.1007/978-3-030-84474-5_10
– start-page: 1
  volume-title: Proc. 15th Int. Conf. GeoComputation (GeoComputation)
  ident: ref12
  article-title: Analysis of an ad-hoc platoon formation and dissolution strategy on a multi-lane highway
– ident: ref23
  doi: 10.1109/ACC.2015.7171911
– ident: ref35
  doi: 10.1109/ITSC.2013.6728395
– ident: ref27
  doi: 10.1111/mice.12899
– ident: ref29
  doi: 10.1109/TITS.2017.2700021
– ident: ref6
  doi: 10.1109/TITS.2006.884615
– ident: ref57
  doi: 10.1016/j.ijheatfluidflow.2017.05.008
– start-page: 1
  volume-title: Proc. 17th World Congr. Intell. Transp. Syst. (ITS)
  ident: ref8
  article-title: Operating platoons on public motorways: An introduction to the SARTRE platooning programme
– ident: ref17
  doi: 10.1109/VNC.2018.8628396
– ident: ref18
  doi: 10.1016/j.eng.2023.01.012
– ident: ref36
  doi: 10.1109/TITS.2014.2320133
– year: 2008
  ident: ref41
  article-title: A decentralized approach to dynamic collaborative driving coordination
– ident: ref34
  doi: 10.1016/j.ifacol.2020.12.2338
– ident: ref30
  doi: 10.1109/PERCOMW.2017.7917611
– ident: ref46
  doi: 10.1007/978-3-030-99584-3_34
– ident: ref39
  doi: 10.1109/TITS.2022.3204700
– ident: ref5
  doi: 10.1109/COMST.2015.2410831
– ident: ref44
  doi: 10.1007/978-3-031-18872-5_19
– ident: ref55
  doi: 10.1002/itl2.139
– ident: ref24
  doi: 10.1109/ITSC.2015.75
– ident: ref2
  doi: 10.1016/j.comcom.2022.06.034
– ident: ref21
  doi: 10.1016/j.trc.2021.103442
– year: 2012
  ident: ref43
  article-title: A study on platoon formations and reliable communication in vehicle platoons
– ident: ref10
  doi: 10.1109/AIM.2013.6584249
– ident: ref50
  doi: 10.1109/TMC.2022.3154643
– ident: ref45
  doi: 10.1109/ICTC.2016.7763478
– year: 1998
  ident: ref52
  article-title: Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics
SSID ssj0014511
Score 2.4646926
Snippet Platooning is a promising cooperative driving application for future intelligent transportation systems. In order to assign vehicles to platoons, some...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 17317
SubjectTerms Fuels
Intelligent transportation systems
Optimization
platoon formation
Roads
Traffic control
Vehicle-to-everything
vehicle-to-platoon assignment
Vehicles
Title Where to Decide? Centralized Versus Distributed Vehicle Assignment for Platoon Formation
URI https://ieeexplore.ieee.org/document/10609746
Volume 25
WOSCitedRecordID wos001279033300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjBz4nzixw8CZ3J2iTNScQ5FGQMnLBbSdMXLYxWts6Df71J2o15UPBWQlLa99Lm975-D6ErnllMm4VRwCMOQcSEChSLreEaGsVdWpUGT-L6LIbDeDKRo6ZY3dfCAIBPPoOuu_Sx_KzUC-cqs184Jxb_8k20KYSoi7VWIQNHtOXJUXtRIAlbhjApkTfjp_GLNQV7UTf0BxL7cQitdVXxh8pg75-Ps492G_SI72p1H6ANKA7Rzhqn4BGa2N_rDHBV4j7oPINb3Dhw8y_IsHOPLea47-hyXacrP_TuboatovI3nxuALZDFo6k1x8sCD5bVjW30OngY3z8GTfuEQNuXrCxu1pmhJhTKwTDBKFepjLUgoKyNAkymLDUkEyYyacx5D5ghLHPth6lWUsnwGLWKsoAThGVKVapomlqw5RCA5EJYcVJDI8NCDR1ElvJMdMMt7lpcTBNvYxCZOBUkTgVJo4IOul4t-aiJNf6a3HbiX5tYS_70l_EztO2W1zWD56hVzRZwgbb0Z5XPZ5d-33wD_2y_Iw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86BfXg58T5mYMnobNZk7Q5iTjHhnMMnLBbSdMXHYxOts6Df71J2o15UPBWQhLa99rm975-D6FrnhpMmwbU45SDR1koPckiY7gGWnKbVqXAkbh2w14vGg5FvyxWd7UwAOCSz6BuL10sP52ouXWVmS-c-wb_8nW0wShtkKJcaxk0sFRbjh61QT3hs0UQk_jidtAZvBhjsEHrgTuS2I9jaKWvijtWWnv_vKF9tFviR3xfKPwArUF2iHZWWAWP0ND8YKeA8wlughqlcIdLF-7oC1JsHWTzGW5awlzb68oNvdvNsFHV6M1lB2ADZXF_bAzySYZbi_rGKnptPQ4e2l7ZQMFT5iFzg5xVqokOQmmBWMgIl4mIVOiDNFYKMJGwRPtpqKlOIs4bwLTPUtuAmCgppAiOUSWbZHCCsEiITCRJEgO3LAYQPAyNOIkmVLNAQQ35C3nGqmQXt00uxrGzMnwRWxXEVgVxqYIaulku-SioNf6aXLXiX5lYSP70l_ErtNUePHfjbqf3dIa27VZFBeE5quTTOVygTfWZj2bTS_cOfQMds8Jq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Where+to+Decide%3F+Centralized+Versus+Distributed+Vehicle+Assignment+for+Platoon+Formation&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Heinovski%2C+Julian&rft.au=Dressler%2C+Falko&rft.date=2024-11-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=25&rft.issue=11&rft.spage=17317&rft.epage=17334&rft_id=info:doi/10.1109%2FTITS.2024.3426615&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2024_3426615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon