An Iterated Greedy Algorithm With Reinforcement Learning for Distributed Hybrid Flowshop Problems With Job Merging

The distributed hybrid flowshop scheduling problems (DHFSPs) widely exist in various industrial production processes, and thus have received widespread attention. However, the existing research mainly focuses on interfactory and intermachine collaboration, but ignores collaborative processing betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 29; H. 3; S. 589 - 600
Hauptverfasser: Tao, Xin-Rui, Pan, Quan-Ke, Gao, Liang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2025
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The distributed hybrid flowshop scheduling problems (DHFSPs) widely exist in various industrial production processes, and thus have received widespread attention. However, the existing research mainly focuses on interfactory and intermachine collaboration, but ignores collaborative processing between jobs. Therefore, this article considers rescheduling DHFSP with job merging and reworking (DHFRPJM) and establishes a mixed-integer linear programming model. The objective is to minimize the makespan. Based on problem-specific knowledge, a decoding heuristic and initialization strategy considering job merging are designed. An acceleration strategy based on critical path is adopted to save the computational effort of the iterated greedy algorithm. A local search strategy based on a deep reinforcement learning algorithm further improves the performance of the algorithm. Experimental results based on actual production data show that the proposed algorithm outperforms other algorithms in closely related literature.
AbstractList The distributed hybrid flowshop scheduling problems (DHFSPs) widely exist in various industrial production processes, and thus have received widespread attention. However, the existing research mainly focuses on interfactory and intermachine collaboration, but ignores collaborative processing between jobs. Therefore, this article considers rescheduling DHFSP with job merging and reworking (DHFRPJM) and establishes a mixed-integer linear programming model. The objective is to minimize the makespan. Based on problem-specific knowledge, a decoding heuristic and initialization strategy considering job merging are designed. An acceleration strategy based on critical path is adopted to save the computational effort of the iterated greedy algorithm. A local search strategy based on a deep reinforcement learning algorithm further improves the performance of the algorithm. Experimental results based on actual production data show that the proposed algorithm outperforms other algorithms in closely related literature.
Author Gao, Liang
Pan, Quan-Ke
Tao, Xin-Rui
Author_xml – sequence: 1
  givenname: Xin-Rui
  orcidid: 0000-0003-3181-5993
  surname: Tao
  fullname: Tao, Xin-Rui
  email: taoxinrui@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
– sequence: 2
  givenname: Quan-Ke
  orcidid: 0000-0002-5022-7946
  surname: Pan
  fullname: Pan, Quan-Ke
  email: panquanke@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-1485-0722
  surname: Gao
  fullname: Gao, Liang
  email: gaoliang@mail.hust.edu.cn
  organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
BookMark eNp9kE1Lw0AQhhepYFv9AYKH_QOp-5Xd5FhqbSsVRerHLWySSbuS7JbNivTfm9AexIOXmWGY54V5RmhgnQWErimZUErS2838bTZhhIkJF4InSpyhIU0FjQhhctDNJEkjpZKPCzRq209CqIhpOkR-avEqgNcBSrzwAOUBT-ut8ybsGvzeVfwCxlbOF9CADXgN2ltjt7hb4TvTBm_yrx5eHnJvSnxfu-925_b42bu8hqY9hjy4HD-C33bkJTqvdN3C1amP0ev9fDNbRuunxWo2XUcFkzJEigjNqY6JJKriTCSVKOIyT4QuCFc5pKAZSUDJksUyj1XJUpEmFIQkglSU8TFSx9zCu7b1UGWFCToYZ4PXps4oyXp1Wa8u69VlJ3UdSf-Qe28a7Q__MjdHxgDAr3vJVfcO_wHm5Hzr
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125466
crossref_primary_10_1016_j_swevo_2025_102054
crossref_primary_10_1016_j_eswa_2024_126116
crossref_primary_10_1080_0305215X_2025_2503950
crossref_primary_10_23919_CSMS_2024_0040
crossref_primary_10_1016_j_cor_2024_106919
crossref_primary_10_3934_jimo_2025121
crossref_primary_10_1016_j_jmsy_2025_01_016
crossref_primary_10_3934_jimo_2025150
crossref_primary_10_1016_j_asoc_2024_112614
crossref_primary_10_1016_j_engappai_2024_109851
crossref_primary_10_1016_j_swevo_2025_101849
crossref_primary_10_1016_j_ins_2025_122023
crossref_primary_10_1109_TCYB_2025_3594063
crossref_primary_10_1007_s40747_025_01907_8
crossref_primary_10_1016_j_eswa_2025_129598
crossref_primary_10_1016_j_swevo_2024_101753
crossref_primary_10_1016_j_cor_2025_107244
crossref_primary_10_1016_j_eswa_2025_129512
crossref_primary_10_1016_j_compeleceng_2024_109780
crossref_primary_10_1016_j_swevo_2024_101771
crossref_primary_10_1016_j_swevo_2025_101884
Cites_doi 10.1016/j.omega.2023.102997
10.1109/TCYB.2023.3336656
10.1109/TSMC.2023.3256484
10.1016/j.rcim.2024.102747
10.1080/0305215X.2023.2198768
10.1016/j.cie.2023.109802
10.1109/TCYB.2018.2817240
10.1016/j.rcim.2023.102605
10.1016/j.eswa.2023.120893
10.1016/j.eswa.2020.113545
10.1016/j.cie.2020.106630
10.1016/j.cie.2022.108200
10.1109/TEVC.2021.3106168
10.1016/j.engappai.2023.107818
10.1109/tcyb.2022.3151855
10.23919/CSMS.2022.0002
10.1109/tase.2023.3300922
10.1016/j.knosys.2023.110252
10.1109/TII.2022.3220860
10.1109/TETCI.2023.3271331
10.1016/j.eswa.2023.119805
10.1109/TCYB.2017.2771213
10.1016/j.asoc.2024.111254
10.1109/TASE.2021.3104716
10.1016/j.eswa.2021.115903
10.1109/TSMC.2024.3358383
10.1109/tase.2023.3327792
10.1016/j.cie.2023.109650
10.1016/j.cie.2022.108146
10.1016/j.eswa.2022.119151
10.1016/j.knosys.2023.110309
10.1109/TEVC.2022.3150771
10.1016/j.cie.2021.107489
10.1109/TETCI.2020.3022372
10.1016/j.eswa.2023.121570
10.1016/j.ejor.2023.03.038
10.1016/j.cor.2020.105031
10.1016/j.ejor.2009.09.024
10.1109/TSMC.2023.3272311
10.1109/TII.2021.3128405
10.1016/j.cie.2020.106863
10.1016/j.jmsy.2021.09.018
10.1016/j.eswa.2024.123278
10.1109/tase.2023.3326301
10.1080/00207543.2022.2031331
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2024.3443874
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 600
ExternalDocumentID 10_1109_TEVC_2024_3443874
10637266
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62273221; 61973203
  funderid: 10.13039/501100001809
– fundername: Program of Shanghai Academic Research Leader; Program of Shanghai Academic/Technology Research Leader
  grantid: 21XD1401000
  funderid: 10.13039/501100012247
– fundername: Shanghai Key Laboratory of Power Station Automation Technology
  funderid: 10.13039/100017350
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-704a31a50607f3248f4c5db84ac037be9ea208e76d256b57d294981e46040f123
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499693300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 07:48:56 EST 2025
Tue Nov 18 22:22:13 EST 2025
Wed Aug 27 01:47:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-704a31a50607f3248f4c5db84ac037be9ea208e76d256b57d294981e46040f123
ORCID 0000-0002-1485-0722
0000-0003-3181-5993
0000-0002-5022-7946
PageCount 12
ParticipantIDs crossref_primary_10_1109_TEVC_2024_3443874
ieee_primary_10637266
crossref_citationtrail_10_1109_TEVC_2024_3443874
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref43
  doi: 10.1016/j.omega.2023.102997
– ident: ref31
  doi: 10.1109/TCYB.2023.3336656
– ident: ref3
  doi: 10.1109/TSMC.2023.3256484
– ident: ref41
  doi: 10.1016/j.rcim.2024.102747
– ident: ref5
  doi: 10.1080/0305215X.2023.2198768
– ident: ref44
  doi: 10.1016/j.cie.2023.109802
– ident: ref25
  doi: 10.1109/TCYB.2018.2817240
– ident: ref35
  doi: 10.1016/j.rcim.2023.102605
– ident: ref15
  doi: 10.1016/j.eswa.2023.120893
– ident: ref27
  doi: 10.1016/j.eswa.2020.113545
– ident: ref26
  doi: 10.1016/j.cie.2020.106630
– ident: ref45
  doi: 10.1016/j.cie.2022.108200
– ident: ref30
  doi: 10.1109/TEVC.2021.3106168
– ident: ref2
  doi: 10.1016/j.engappai.2023.107818
– ident: ref17
  doi: 10.1109/tcyb.2022.3151855
– ident: ref37
  doi: 10.23919/CSMS.2022.0002
– ident: ref11
  doi: 10.1109/tase.2023.3300922
– ident: ref12
  doi: 10.1016/j.knosys.2023.110252
– ident: ref13
  doi: 10.1109/TII.2022.3220860
– ident: ref34
  doi: 10.1109/TETCI.2023.3271331
– ident: ref6
  doi: 10.1016/j.eswa.2023.119805
– ident: ref23
  doi: 10.1109/TCYB.2017.2771213
– ident: ref10
  doi: 10.1016/j.asoc.2024.111254
– ident: ref24
  doi: 10.1109/TASE.2021.3104716
– ident: ref39
  doi: 10.1016/j.eswa.2021.115903
– ident: ref32
  doi: 10.1109/TSMC.2024.3358383
– ident: ref33
  doi: 10.1109/tase.2023.3327792
– ident: ref18
  doi: 10.1016/j.cie.2023.109650
– ident: ref14
  doi: 10.1016/j.cie.2022.108146
– ident: ref9
  doi: 10.1016/j.eswa.2022.119151
– ident: ref38
  doi: 10.1016/j.knosys.2023.110309
– ident: ref7
  doi: 10.1109/TEVC.2022.3150771
– ident: ref22
  doi: 10.1016/j.cie.2021.107489
– ident: ref4
  doi: 10.1109/TETCI.2020.3022372
– ident: ref28
  doi: 10.1016/j.eswa.2023.121570
– ident: ref42
  doi: 10.1016/j.ejor.2023.03.038
– ident: ref19
  doi: 10.1016/j.cor.2020.105031
– ident: ref1
  doi: 10.1016/j.ejor.2009.09.024
– ident: ref8
  doi: 10.1109/TSMC.2023.3272311
– ident: ref16
  doi: 10.1109/TII.2021.3128405
– ident: ref21
  doi: 10.1016/j.cie.2020.106863
– ident: ref20
  doi: 10.1016/j.jmsy.2021.09.018
– ident: ref40
  doi: 10.1016/j.eswa.2024.123278
– ident: ref36
  doi: 10.1109/tase.2023.3326301
– ident: ref29
  doi: 10.1080/00207543.2022.2031331
SSID ssj0014519
Score 2.600222
Snippet The distributed hybrid flowshop scheduling problems (DHFSPs) widely exist in various industrial production processes, and thus have received widespread...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 589
SubjectTerms Collaboration
Distributed hybrid flowshop
Greedy algorithms
Heuristic algorithms
iterated greedy algorithm
job merging
Merging
Optimization
Prediction algorithms
Production facilities
reinforcement learning (RL)
rescheduling
Title An Iterated Greedy Algorithm With Reinforcement Learning for Distributed Hybrid Flowshop Problems With Job Merging
URI https://ieeexplore.ieee.org/document/10637266
Volume 29
WOSCitedRecordID wos001499693300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UeNCDKGLEr_TgyWS4j25tjwQhaJQQg8pt6brHR4IbGaDhv7ftBsGDJl6WpWmXbb917_X1vd8PoZtImQFGwbF8bygsEgvNAUnBohHYwpEugZxn9ol2u2ww4L2iWN3UwgCAST6Duj41e_lxKpc6VKZmeOBRZVF20S6lNC_W2mwZaJ6UPJueK5eRDYotTMfmd_3WW1MtBV1S9wjxGCU_jNCWqooxKu3yP2_nCB0W3iNu5HAfox1IKqi8VmbAxUStoIMtmsETlDUS_GDYkyHGOtEmXuHGdJRmk8X4A7-rI34Bw6AqTbAQF6SrI6ya8L2m1tWqWGpwZ6ULvHB7mn7Nx-kM93I5mnl-kcc0ws-QadmjKnptt_rNjlVoLVhSPcHCojYRniM03SAdKieLDYn044gRIW1PAcdBuDYDGsTKR4p8GruccOYACdRfYKjM3ykqJWkCZwgTSoUPhJMgUmtNRiKXBoL70gVHRMp7rCF7_fJDWRCRaz2MaWgWJDYPNV6hxiss8Kqh282QWc7C8VfnqsZqq2MO0_kv7Rdo39Wivia0colKi2wJV2hPfi4m8-zafGTfeqrOVg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4tXSSWw_IW7AsfOCEF8pjE9rFiW7VLqRAq0FvkOFNaqdtUaQHx79d2AiqHXWkvUWTZUZIvzozHM98HcJIZMyA4BV4cjZSHubIckJw8npGvAh0iVTyzPd7vi-FQXtfF6q4Whohc8hmd2VO3l58X-tGGyswMTyJuLMoafIwRw6Aq13rbNLBMKVU-vTROoxjWm5iBL88HrbsLsxgM8SxCjATHd2ZoRVfFmZX21n_e0DZ8rv1H1qwA34EPNNuFrVdtBlZP1V3YXCEa3IOyOWNdx59MObOpNvkLa04finKyHP9m9-bIbshxqGoXLmQ17eoDM03spyXXtbpYZnDnxZZ4sfa0eF6Mizm7rgRpFtVFfhUZu6LSCh_tw227NbjoeLXagqfNEyw97qOKAmUJB_nIuFlihDrOM4FK-5GBTpIKfUE8yY2XlMU8DyVKERAm5j8wMgbwABqzYkaHwJBzFRNKTDKz2hSYhTxRMtYhBSoz_uMR-K8vP9U1FblVxJimbkniy9TilVq80hqvIzh9GzKveDj-1XnfYrXSsYLpy1_aj2GjM7jqpb1u__IrfAqtxK8LtHyDxrJ8pO-wrp-Wk0X5w31wfwBgkNGd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Iterated+Greedy+Algorithm+With+Reinforcement+Learning+for+Distributed+Hybrid+Flowshop+Problems+With+Job+Merging&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Tao%2C+Xin-Rui&rft.au=Pan%2C+Quan-Ke&rft.au=Gao%2C+Liang&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=29&rft.issue=3&rft.spage=589&rft.epage=600&rft_id=info:doi/10.1109%2FTEVC.2024.3443874&rft.externalDocID=10637266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon