An Iterated Greedy Algorithm With Reinforcement Learning for Distributed Hybrid Flowshop Problems With Job Merging
The distributed hybrid flowshop scheduling problems (DHFSPs) widely exist in various industrial production processes, and thus have received widespread attention. However, the existing research mainly focuses on interfactory and intermachine collaboration, but ignores collaborative processing betwee...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 29; H. 3; S. 589 - 600 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2025
|
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The distributed hybrid flowshop scheduling problems (DHFSPs) widely exist in various industrial production processes, and thus have received widespread attention. However, the existing research mainly focuses on interfactory and intermachine collaboration, but ignores collaborative processing between jobs. Therefore, this article considers rescheduling DHFSP with job merging and reworking (DHFRPJM) and establishes a mixed-integer linear programming model. The objective is to minimize the makespan. Based on problem-specific knowledge, a decoding heuristic and initialization strategy considering job merging are designed. An acceleration strategy based on critical path is adopted to save the computational effort of the iterated greedy algorithm. A local search strategy based on a deep reinforcement learning algorithm further improves the performance of the algorithm. Experimental results based on actual production data show that the proposed algorithm outperforms other algorithms in closely related literature. |
|---|---|
| AbstractList | The distributed hybrid flowshop scheduling problems (DHFSPs) widely exist in various industrial production processes, and thus have received widespread attention. However, the existing research mainly focuses on interfactory and intermachine collaboration, but ignores collaborative processing between jobs. Therefore, this article considers rescheduling DHFSP with job merging and reworking (DHFRPJM) and establishes a mixed-integer linear programming model. The objective is to minimize the makespan. Based on problem-specific knowledge, a decoding heuristic and initialization strategy considering job merging are designed. An acceleration strategy based on critical path is adopted to save the computational effort of the iterated greedy algorithm. A local search strategy based on a deep reinforcement learning algorithm further improves the performance of the algorithm. Experimental results based on actual production data show that the proposed algorithm outperforms other algorithms in closely related literature. |
| Author | Gao, Liang Pan, Quan-Ke Tao, Xin-Rui |
| Author_xml | – sequence: 1 givenname: Xin-Rui orcidid: 0000-0003-3181-5993 surname: Tao fullname: Tao, Xin-Rui email: taoxinrui@shu.edu.cn organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China – sequence: 2 givenname: Quan-Ke orcidid: 0000-0002-5022-7946 surname: Pan fullname: Pan, Quan-Ke email: panquanke@shu.edu.cn organization: School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China – sequence: 3 givenname: Liang orcidid: 0000-0002-1485-0722 surname: Gao fullname: Gao, Liang email: gaoliang@mail.hust.edu.cn organization: State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China |
| BookMark | eNp9kE1Lw0AQhhepYFv9AYKH_QOp-5Xd5FhqbSsVRerHLWySSbuS7JbNivTfm9AexIOXmWGY54V5RmhgnQWErimZUErS2838bTZhhIkJF4InSpyhIU0FjQhhctDNJEkjpZKPCzRq209CqIhpOkR-avEqgNcBSrzwAOUBT-ut8ybsGvzeVfwCxlbOF9CADXgN2ltjt7hb4TvTBm_yrx5eHnJvSnxfu-925_b42bu8hqY9hjy4HD-C33bkJTqvdN3C1amP0ev9fDNbRuunxWo2XUcFkzJEigjNqY6JJKriTCSVKOIyT4QuCFc5pKAZSUDJksUyj1XJUpEmFIQkglSU8TFSx9zCu7b1UGWFCToYZ4PXps4oyXp1Wa8u69VlJ3UdSf-Qe28a7Q__MjdHxgDAr3vJVfcO_wHm5Hzr |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125466 crossref_primary_10_1016_j_swevo_2025_102054 crossref_primary_10_1016_j_eswa_2024_126116 crossref_primary_10_1080_0305215X_2025_2503950 crossref_primary_10_23919_CSMS_2024_0040 crossref_primary_10_1016_j_cor_2024_106919 crossref_primary_10_3934_jimo_2025121 crossref_primary_10_1016_j_jmsy_2025_01_016 crossref_primary_10_3934_jimo_2025150 crossref_primary_10_1016_j_asoc_2024_112614 crossref_primary_10_1016_j_engappai_2024_109851 crossref_primary_10_1016_j_swevo_2025_101849 crossref_primary_10_1016_j_ins_2025_122023 crossref_primary_10_1109_TCYB_2025_3594063 crossref_primary_10_1007_s40747_025_01907_8 crossref_primary_10_1016_j_eswa_2025_129598 crossref_primary_10_1016_j_swevo_2024_101753 crossref_primary_10_1016_j_cor_2025_107244 crossref_primary_10_1016_j_eswa_2025_129512 crossref_primary_10_1016_j_compeleceng_2024_109780 crossref_primary_10_1016_j_swevo_2024_101771 crossref_primary_10_1016_j_swevo_2025_101884 |
| Cites_doi | 10.1016/j.omega.2023.102997 10.1109/TCYB.2023.3336656 10.1109/TSMC.2023.3256484 10.1016/j.rcim.2024.102747 10.1080/0305215X.2023.2198768 10.1016/j.cie.2023.109802 10.1109/TCYB.2018.2817240 10.1016/j.rcim.2023.102605 10.1016/j.eswa.2023.120893 10.1016/j.eswa.2020.113545 10.1016/j.cie.2020.106630 10.1016/j.cie.2022.108200 10.1109/TEVC.2021.3106168 10.1016/j.engappai.2023.107818 10.1109/tcyb.2022.3151855 10.23919/CSMS.2022.0002 10.1109/tase.2023.3300922 10.1016/j.knosys.2023.110252 10.1109/TII.2022.3220860 10.1109/TETCI.2023.3271331 10.1016/j.eswa.2023.119805 10.1109/TCYB.2017.2771213 10.1016/j.asoc.2024.111254 10.1109/TASE.2021.3104716 10.1016/j.eswa.2021.115903 10.1109/TSMC.2024.3358383 10.1109/tase.2023.3327792 10.1016/j.cie.2023.109650 10.1016/j.cie.2022.108146 10.1016/j.eswa.2022.119151 10.1016/j.knosys.2023.110309 10.1109/TEVC.2022.3150771 10.1016/j.cie.2021.107489 10.1109/TETCI.2020.3022372 10.1016/j.eswa.2023.121570 10.1016/j.ejor.2023.03.038 10.1016/j.cor.2020.105031 10.1016/j.ejor.2009.09.024 10.1109/TSMC.2023.3272311 10.1109/TII.2021.3128405 10.1016/j.cie.2020.106863 10.1016/j.jmsy.2021.09.018 10.1016/j.eswa.2024.123278 10.1109/tase.2023.3326301 10.1080/00207543.2022.2031331 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2024.3443874 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 600 |
| ExternalDocumentID | 10_1109_TEVC_2024_3443874 10637266 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62273221; 61973203 funderid: 10.13039/501100001809 – fundername: Program of Shanghai Academic Research Leader; Program of Shanghai Academic/Technology Research Leader grantid: 21XD1401000 funderid: 10.13039/501100012247 – fundername: Shanghai Key Laboratory of Power Station Automation Technology funderid: 10.13039/100017350 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c266t-704a31a50607f3248f4c5db84ac037be9ea208e76d256b57d294981e46040f123 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499693300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sat Nov 29 07:48:56 EST 2025 Tue Nov 18 22:22:13 EST 2025 Wed Aug 27 01:47:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-704a31a50607f3248f4c5db84ac037be9ea208e76d256b57d294981e46040f123 |
| ORCID | 0000-0002-1485-0722 0000-0003-3181-5993 0000-0002-5022-7946 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TEVC_2024_3443874 ieee_primary_10637266 crossref_citationtrail_10_1109_TEVC_2024_3443874 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref43 doi: 10.1016/j.omega.2023.102997 – ident: ref31 doi: 10.1109/TCYB.2023.3336656 – ident: ref3 doi: 10.1109/TSMC.2023.3256484 – ident: ref41 doi: 10.1016/j.rcim.2024.102747 – ident: ref5 doi: 10.1080/0305215X.2023.2198768 – ident: ref44 doi: 10.1016/j.cie.2023.109802 – ident: ref25 doi: 10.1109/TCYB.2018.2817240 – ident: ref35 doi: 10.1016/j.rcim.2023.102605 – ident: ref15 doi: 10.1016/j.eswa.2023.120893 – ident: ref27 doi: 10.1016/j.eswa.2020.113545 – ident: ref26 doi: 10.1016/j.cie.2020.106630 – ident: ref45 doi: 10.1016/j.cie.2022.108200 – ident: ref30 doi: 10.1109/TEVC.2021.3106168 – ident: ref2 doi: 10.1016/j.engappai.2023.107818 – ident: ref17 doi: 10.1109/tcyb.2022.3151855 – ident: ref37 doi: 10.23919/CSMS.2022.0002 – ident: ref11 doi: 10.1109/tase.2023.3300922 – ident: ref12 doi: 10.1016/j.knosys.2023.110252 – ident: ref13 doi: 10.1109/TII.2022.3220860 – ident: ref34 doi: 10.1109/TETCI.2023.3271331 – ident: ref6 doi: 10.1016/j.eswa.2023.119805 – ident: ref23 doi: 10.1109/TCYB.2017.2771213 – ident: ref10 doi: 10.1016/j.asoc.2024.111254 – ident: ref24 doi: 10.1109/TASE.2021.3104716 – ident: ref39 doi: 10.1016/j.eswa.2021.115903 – ident: ref32 doi: 10.1109/TSMC.2024.3358383 – ident: ref33 doi: 10.1109/tase.2023.3327792 – ident: ref18 doi: 10.1016/j.cie.2023.109650 – ident: ref14 doi: 10.1016/j.cie.2022.108146 – ident: ref9 doi: 10.1016/j.eswa.2022.119151 – ident: ref38 doi: 10.1016/j.knosys.2023.110309 – ident: ref7 doi: 10.1109/TEVC.2022.3150771 – ident: ref22 doi: 10.1016/j.cie.2021.107489 – ident: ref4 doi: 10.1109/TETCI.2020.3022372 – ident: ref28 doi: 10.1016/j.eswa.2023.121570 – ident: ref42 doi: 10.1016/j.ejor.2023.03.038 – ident: ref19 doi: 10.1016/j.cor.2020.105031 – ident: ref1 doi: 10.1016/j.ejor.2009.09.024 – ident: ref8 doi: 10.1109/TSMC.2023.3272311 – ident: ref16 doi: 10.1109/TII.2021.3128405 – ident: ref21 doi: 10.1016/j.cie.2020.106863 – ident: ref20 doi: 10.1016/j.jmsy.2021.09.018 – ident: ref40 doi: 10.1016/j.eswa.2024.123278 – ident: ref36 doi: 10.1109/tase.2023.3326301 – ident: ref29 doi: 10.1080/00207543.2022.2031331 |
| SSID | ssj0014519 |
| Score | 2.600222 |
| Snippet | The distributed hybrid flowshop scheduling problems (DHFSPs) widely exist in various industrial production processes, and thus have received widespread... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 589 |
| SubjectTerms | Collaboration Distributed hybrid flowshop Greedy algorithms Heuristic algorithms iterated greedy algorithm job merging Merging Optimization Prediction algorithms Production facilities reinforcement learning (RL) rescheduling |
| Title | An Iterated Greedy Algorithm With Reinforcement Learning for Distributed Hybrid Flowshop Problems With Job Merging |
| URI | https://ieeexplore.ieee.org/document/10637266 |
| Volume | 29 |
| WOSCitedRecordID | wos001499693300020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG-UeNCDKGLEr_TgyWS4j25tjwQhaJQQg8pt6brHR4IbGaDhv7ftBsGDJl6WpWmXbb917_X1vd8PoZtImQFGwbF8bygsEgvNAUnBohHYwpEugZxn9ol2u2ww4L2iWN3UwgCAST6Duj41e_lxKpc6VKZmeOBRZVF20S6lNC_W2mwZaJ6UPJueK5eRDYotTMfmd_3WW1MtBV1S9wjxGCU_jNCWqooxKu3yP2_nCB0W3iNu5HAfox1IKqi8VmbAxUStoIMtmsETlDUS_GDYkyHGOtEmXuHGdJRmk8X4A7-rI34Bw6AqTbAQF6SrI6ya8L2m1tWqWGpwZ6ULvHB7mn7Nx-kM93I5mnl-kcc0ws-QadmjKnptt_rNjlVoLVhSPcHCojYRniM03SAdKieLDYn044gRIW1PAcdBuDYDGsTKR4p8GruccOYACdRfYKjM3ykqJWkCZwgTSoUPhJMgUmtNRiKXBoL70gVHRMp7rCF7_fJDWRCRaz2MaWgWJDYPNV6hxiss8Kqh282QWc7C8VfnqsZqq2MO0_kv7Rdo39Wivia0colKi2wJV2hPfi4m8-zafGTfeqrOVg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB4tXSSWw_IW7AsfOCEF8pjE9rFiW7VLqRAq0FvkOFNaqdtUaQHx79d2AiqHXWkvUWTZUZIvzozHM98HcJIZMyA4BV4cjZSHubIckJw8npGvAh0iVTyzPd7vi-FQXtfF6q4Whohc8hmd2VO3l58X-tGGyswMTyJuLMoafIwRw6Aq13rbNLBMKVU-vTROoxjWm5iBL88HrbsLsxgM8SxCjATHd2ZoRVfFmZX21n_e0DZ8rv1H1qwA34EPNNuFrVdtBlZP1V3YXCEa3IOyOWNdx59MObOpNvkLa04finKyHP9m9-bIbshxqGoXLmQ17eoDM03spyXXtbpYZnDnxZZ4sfa0eF6Mizm7rgRpFtVFfhUZu6LSCh_tw227NbjoeLXagqfNEyw97qOKAmUJB_nIuFlihDrOM4FK-5GBTpIKfUE8yY2XlMU8DyVKERAm5j8wMgbwABqzYkaHwJBzFRNKTDKz2hSYhTxRMtYhBSoz_uMR-K8vP9U1FblVxJimbkniy9TilVq80hqvIzh9GzKveDj-1XnfYrXSsYLpy1_aj2GjM7jqpb1u__IrfAqtxK8LtHyDxrJ8pO-wrp-Wk0X5w31wfwBgkNGd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Iterated+Greedy+Algorithm+With+Reinforcement+Learning+for+Distributed+Hybrid+Flowshop+Problems+With+Job+Merging&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Tao%2C+Xin-Rui&rft.au=Pan%2C+Quan-Ke&rft.au=Gao%2C+Liang&rft.date=2025-06-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=29&rft.issue=3&rft.spage=589&rft.epage=600&rft_id=info:doi/10.1109%2FTEVC.2024.3443874&rft.externalDocID=10637266 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |