Deep Learning Framework for Classification of Emoji Based Sentiments

Recent patterns of human sentiments are highly influenced by emoji based sentiments (EBS). Social media users are widely using emoji based sentiments (EBS) in between text messages, tweets and posts. Although tiny pictures of emoji contains sufficient information to be considered for construction of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers, materials & continua Ročník 72; číslo 2; s. 3145 - 3158
Hlavní autori: Parveen Shaikh, Nighat, Hussain Mahar, Mumtaz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Henderson Tech Science Press 2022
Predmet:
ISSN:1546-2226, 1546-2218, 1546-2226
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent patterns of human sentiments are highly influenced by emoji based sentiments (EBS). Social media users are widely using emoji based sentiments (EBS) in between text messages, tweets and posts. Although tiny pictures of emoji contains sufficient information to be considered for construction of classification model; but due to the wide range of dissimilar, heterogynous and complex patterns of emoji with similar meanings (SM) have become one of the significant research areas of machine vision. This paper proposes an approach to provide meticulous assistance to social media application (SMA) users to classify the EBS sentiments. Proposed methodology consists upon three layers where first layer deals with data cleaning and feature selection techniques to detect dissimilar emoji patterns (DEP) with similar meanings (SM). In first sub step we input set of emoji, in second sub step every emoji has to qualify user defined threshold, in third sub step algorithm detects every emoji by considering as objects and in fourth step emoji images are cropped, after data cleaning these tiny images are saved as emoji images. In second step we build classification model by using convolutional neural networks (CNN) to explore hidden knowledge of emoji datasets. In third step we present results visualization by using confusion matrix and other estimations. This paper contributes (1) data cleaning method to detect EBS; (2) highest classification accuracy for emoji classification measured as 97.63%.
AbstractList Recent patterns of human sentiments are highly influenced by emoji based sentiments (EBS). Social media users are widely using emoji based sentiments (EBS) in between text messages, tweets and posts. Although tiny pictures of emoji contains sufficient information to be considered for construction of classification model; but due to the wide range of dissimilar, heterogynous and complex patterns of emoji with similar meanings (SM) have become one of the significant research areas of machine vision. This paper proposes an approach to provide meticulous assistance to social media application (SMA) users to classify the EBS sentiments. Proposed methodology consists upon three layers where first layer deals with data cleaning and feature selection techniques to detect dissimilar emoji patterns (DEP) with similar meanings (SM). In first sub step we input set of emoji, in second sub step every emoji has to qualify user defined threshold, in third sub step algorithm detects every emoji by considering as objects and in fourth step emoji images are cropped, after data cleaning these tiny images are saved as emoji images. In second step we build classification model by using convolutional neural networks (CNN) to explore hidden knowledge of emoji datasets. In third step we present results visualization by using confusion matrix and other estimations. This paper contributes (1) data cleaning method to detect EBS; (2) highest classification accuracy for emoji classification measured as 97.63%.
Author Hussain Mahar, Mumtaz
Parveen Shaikh, Nighat
Author_xml – sequence: 1
  givenname: Nighat
  surname: Parveen Shaikh
  fullname: Parveen Shaikh, Nighat
– sequence: 2
  givenname: Mumtaz
  surname: Hussain Mahar
  fullname: Hussain Mahar, Mumtaz
BookMark eNpNkE1PAyEQhompiW317pHE81YYKNs9aj_UZBMP6pkAC4bahQrbGP990XrwMjOHJ-87eSZoFGKwCF1TMmMgCL81vZkBAZgR4AvOztCYzrmoAECM_t0XaJLzlhAmWEPGaLWydo9bq1Lw4R1vkurtV0wf2MWElzuVs3feqMHHgKPD6z5uPb5X2Xb4xYbB92XkS3Tu1C7bq789RW-b9evysWqfH56Wd21lQIihYtTQjirNS_OCNQI0rctbdUeAKscYt7WruZu7RjvtqAbdON3ZAje1IeDYFN2ccvcpfh5sHuQ2HlIolRIEF4RSKlihyIkyKeacrJP75HuVviUl8teVLK7kjyt5csWOdiBdjw
Cites_doi 10.1145/3389035
10.22581/muet1982.2102.04
10.1016/j.cities.2021.103273
10.1145/3370750
10.1080/19331681.2019.1686676
10.1007/978-981-10-8896-4_16
10.3758/s13428-017-0878-6
10.5614/itbj.ict.res.appl.2019.13.3.2
10.13031/aea.12205
10.35940/ijrte.B3092.078219
10.1080/22041451.2016.1155332
10.1007/s11042-020-09512-2
10.35463/j.apr.2021.02.03
10.3390/mca23010011
10.1016/j.eswa.2018.08.013
10.1016/j.tele.2015.06.003
10.1109/ACCESS.2019.2927169
10.3844/jcssp.2020.150.157
10.18653/v1/W16-6208
10.18201/ijisae.2018448456
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2022.024843
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 3158
ExternalDocumentID 10_32604_cmc_2022_024843
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
COVID
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c266t-31c1d1ab439083962b175467d021af334e7f74f5f9bfbf1b2b9fbde90897c02f3
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779572300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Mon Jun 30 07:22:23 EDT 2025
Sat Nov 29 03:13:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-31c1d1ab439083962b175467d021af334e7f74f5f9bfbf1b2b9fbde90897c02f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2646011163?pq-origsite=%requestingapplication%
PQID 2646011163
PQPubID 2048737
PageCount 14
ParticipantIDs proquest_journals_2646011163
crossref_primary_10_32604_cmc_2022_024843
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Highfield (ref3) 2016; 2
Altun (ref28) 2018; 6
Kinger (ref8) 2021
Illendula (ref23) 2018
Kırcı (ref26) 2021; 17
Kutsuzawa (ref24) 2021; 12
Tang (ref15) 2016; 33
Sodhar (ref4) 2021; 40
Wang (ref31) 2018; 34
Valizadeh (ref7) 2021
Liu (ref34) 2018
ref20
Hasan (ref2) 2018; 23
Khan (ref5) 2020; 79
ref21
Mohta (ref14) 2020
Srivastava (ref18) 2021
Bataineh (ref27) 2019; 13
Rampersad (ref6) 2020; 17
Singh (ref22) 2019; 1
Lou (ref16) 2020; 19
Li (ref19) 2017
Panigrahi (ref30) 2019; 115
Janavi (ref11) 2021; 13
Tang (ref10) 2018
Rodrigues (ref12) 2018; 50
Lin (ref29) 2020
Boy (ref25) 2021
Feng (ref13) 2021; 3
Raj (ref17) 2020; 16
Lei (ref32) 2019; 7
Keiser (ref9) 2021; 51
Yao (ref1) 2021; 116
Greeshma (ref33) 2019; 8
References_xml – volume: 19
  start-page: 1
  year: 2020
  ident: ref16
  article-title: Emoji-based sentiment analysis asing attention networks
  publication-title: ACM Transactions on Asian and low-Resource Language Information Processing (TALLIP)
  doi: 10.1145/3389035
– volume: 40
  start-page: 298
  year: 2021
  ident: ref4
  article-title: Romanized sindhi rules for text communication
  publication-title: Mehran University Research Journal of Engineering & Technology
  doi: 10.22581/muet1982.2102.04
– start-page: 514
  year: 2018
  ident: ref23
  article-title: Which emoji talks best for my picture?
– volume: 1
  start-page: 2096
  year: 2019
  ident: ref22
  article-title: Incorporating emoji descriptions improves tweet classification
– volume: 116
  start-page: 103
  year: 2021
  ident: ref1
  article-title: Comparing tweet sentiments in megacities using machine learning techniques: In the midst of COVID-19
  publication-title: Cities
  doi: 10.1016/j.cities.2021.103273
– volume: 3
  start-page: 1
  year: 2021
  ident: ref13
  article-title: New emoji requests from twitter users: When, where, Why, and what We can do about them
  publication-title: ACM Transactions on Social Computing
  doi: 10.1145/3370750
– volume: 17
  start-page: 1
  year: 2020
  ident: ref6
  article-title: Fake news: Acceptance by demographics and culture on social media
  publication-title: Journal of Information Technology & Politics
  doi: 10.1080/19331681.2019.1686676
– start-page: 514
  year: 2020
  ident: ref14
  article-title: Pre-processing and emoji classification of WhatsApp chats for sentiment analysis
– start-page: 103
  year: 2021
  ident: ref25
  article-title: Emoji-based transfer learning for sentiment tasks
– start-page: 191
  year: 2018
  ident: ref10
  publication-title: New Media for Educational Change
  doi: 10.1007/978-981-10-8896-4_16
– volume: 50
  start-page: 392
  year: 2018
  ident: ref12
  article-title: Lisbon emoji and emoticon database (LEED): Norms for emoji and emoticons in seven evaluative dimensions
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-017-0878-6
– volume: 13
  start-page: 1
  year: 2021
  ident: ref11
  article-title: Effect of social media adoption and media needs on online purchase behavior: The moderator roles of media type, gender, Age
  publication-title: Journal of Information Technology Management
– volume: 13
  start-page: 192
  year: 2019
  ident: ref27
  article-title: A robust algorithm for emoji detection in smartphone screenshot images
  publication-title: Journal of ICT Research and Applications
  doi: 10.5614/itbj.ict.res.appl.2019.13.3.2
– volume: 34
  start-page: 277
  year: 2018
  ident: ref31
  article-title: Segmentation of crop disease images with an improved K-means clustering algorithm
  publication-title: Applied Engineering in Agriculture
  doi: 10.13031/aea.12205
– volume: 8
  start-page: 3713
  year: 2019
  ident: ref33
  article-title: Hyperparameter optimization and regularization on fashion-MNIST classification
  publication-title: International Journal of Recent Technology and Engineering (IJRTE)
  doi: 10.35940/ijrte.B3092.078219
– volume: 2
  start-page: 47
  year: 2016
  ident: ref3
  article-title: Instagrammatics and digital methods: Studying visual social media, from selfies and gifs to memes and emoji
  publication-title: Communication Research and Practice
  doi: 10.1080/22041451.2016.1155332
– volume: 79
  start-page: 32749
  year: 2020
  ident: ref5
  article-title: Classification of multi-lingual tweets, into multi-class model using naïve Bayes and semi-supervised learning
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-09512-2
– volume: 17
  start-page: 23
  year: 2021
  ident: ref26
  article-title: Ponto-caspian and Mediterranean faunal and floral records of upper pleistocene-holocene sediments from the izmit gulf (Marmara Sea, Turkey)
  publication-title: Acta Palaeontol. Rom
  doi: 10.35463/j.apr.2021.02.03
– volume: 23
  start-page: 1
  year: 2018
  ident: ref2
  article-title: Machine learning-based sentiment analysis for twitter accounts
  publication-title: Mathematical and Computational Applications
  doi: 10.3390/mca23010011
– volume: 115
  start-page: 486
  year: 2019
  ident: ref30
  article-title: Ultrasound image segmentation using a novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.013
– volume: 51
  start-page: 950
  year: 2021
  ident: ref9
  article-title: Validating UTF-8 in less than one instruction per byte
  publication-title: Software: Practice and Experience
– volume: 33
  start-page: 102
  year: 2016
  ident: ref15
  article-title: Personality traits, interpersonal relationships, online social support, and facebook addiction
  publication-title: Telematics and Informatics
  doi: 10.1016/j.tele.2015.06.003
– volume: 7
  start-page: 124087
  year: 2019
  ident: ref32
  article-title: A dilated CNN model for image classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927169
– start-page: 119
  year: 2018
  ident: ref34
  article-title: An improved faster R-CNN for object detection
– ident: ref21
– start-page: 1182
  year: 2021
  ident: ref18
  article-title: Emotion recognition based emoji retrieval using deep learning
– volume: 16
  start-page: 150
  year: 2020
  ident: ref17
  article-title: Future emoji entry prediction using neural networks
  publication-title: Journal of Computer Science
  doi: 10.3844/jcssp.2020.150.157
– start-page: 4398
  year: 2021
  ident: ref7
  article-title: Identifying medical self-disclosure in online communities
– start-page: 913
  year: 2020
  ident: ref29
  article-title: Index-free approach with theoretical guarantee for efficient random walk with restart query
– ident: ref20
  doi: 10.18653/v1/W16-6208
– start-page: 48
  year: 2017
  ident: ref19
  article-title: Joint emoji classification and embedding learning
– volume: 12
  start-page: 2
  year: 2021
  ident: ref24
  article-title: Emoji emotional states: Classification on the valence and arousal axes
  publication-title: Research Squire
– volume: 6
  start-page: 294
  year: 2018
  ident: ref28
  article-title: Face verification system in mobile devices by using cognitive services
  publication-title: International Journal of Intelligent Systems and Applications in Engineering
  doi: 10.18201/ijisae.2018448456
– start-page: 209
  year: 2021
  ident: ref8
  article-title: Explainable AI for deep learning based disease detection
SSID ssj0036390
Score 2.233113
Snippet Recent patterns of human sentiments are highly influenced by emoji based sentiments (EBS). Social media users are widely using emoji based sentiments (EBS) in...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 3145
SubjectTerms Algorithms
Artificial neural networks
Classification
Cleaning
Deep learning
Digital media
Emotional icons
Image classification
Machine learning
Machine vision
Object recognition
Short message service
Social networks
Title Deep Learning Framework for Classification of Emoji Based Sentiments
URI https://www.proquest.com/docview/2646011163
Volume 72
WOSCitedRecordID wos000779572300018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5By8BCeYpCQR5YGEKT2EmaCVHaCiSoIh5SmSLHD1SkJqUt_H7OiSPUhYUpQxQrutd39p3vA7gIAh56Ah3J0zF1mBLM6flKOWHEqRQep0HFWvIQjce9ySRO7IHb0rZV1jGxDNSyEOaMvIvAHRpe9JBezz8dwxplqquWQmMTmmZSGdp5sz8cJ091LKaIv-WVyICFjo9oVhUqMWVxWVfMzAhD378yY70YXQem9bhcgs2o9d_f3IUdm2aSm8ou9mBD5fvQqikciPXoAxgMlJoTO2T1nYzqVi2CuSwpCTNNK1GpPVJoMpwVH1PSR-ST5Nn0GZUX5A7hdTR8ub1zLLGCIxCPVxh3hSc9nmEyghlYHPoZJhEYMSUCPteUMhXpiOlAx5nOtJf5WawzqUyJMBKur-kRNPIiV8dAXMklKlu5rtT4BcfdE5NUxzwyBclAtOGylmo6r-ZnpLjvKDWQogZSo4G00kAbOrVMU-tJy_RXoCd_vz6FbbNWdTzSgcZq8aXOYEt8r6bLxbk1DHwm94_J2w9xTMHg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB5qFfTiW3xU3YMePMQmu5ukOYiobbHYloIK9RSTfUiFNtVWxT_lb3Q2D8SLtx48hywk3-T7ZjOz8wEcuW7kOQI_JEcHzOJKcKtGlbI8P2JSOBFzM9eStt_t1vr9oFeCr-IsjGmrLDgxJWqZCPOPvIrC7RlfdI-dj18s4xplqquFhUYWFjfq8wO3bJOzVh3xPaa02bi7urZyVwFLoBhNkXSEI50oRiXG9CPwaIwKinQhUe0izRhXvva5dnUQ61g7MY0DHUtl6mO-sKlmuO4czHMT7GWY77U6vYeC-xnqfXoEExe0KKpnVhjFFMnmVTE0IxMpPTVjxDj7LYS_dSAVt-bKf3stq7Ccp9HkIov7NSip0TqsFBYVJGesDajXlRqTfIjsE2kWrWgEc3WSGoKaVqk0OkmiSWOYPA_IJSq7JLemjyo9ALgJ9zN5li0oj5KR2gZiy0hiMCvblhrviHB3yCXTQeSbgqsrduCkQDEcZ_NBQtxXpYiHiHhoEA8zxHegUmAY5kwxCX8A3P378iEsXt912mG71b3ZgyWzbvYrqALl6eub2ocF8T4dTF4P8qAk8DhrwL8BZdodGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Framework+for+Classification+of+Emoji+Based+Sentiments&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Parveen+Shaikh%2C+Nighat&rft.au=Hussain+Mahar%2C+Mumtaz&rft.date=2022&rft.issn=1546-2226&rft.volume=72&rft.issue=2&rft.spage=3145&rft.epage=3158&rft_id=info:doi/10.32604%2Fcmc.2022.024843&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_024843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon