Fractional-Order Systems Optimal Control via Actor-Critic Reinforcement Learning and Its Validation for Chaotic MFET

Since the existence of fractional order dynamics, it is difficult to obtain an optimality equation to solve for fractional-order optimal control. In this paper, a fractional Hamilton-Jacobi-Bellman (HJB) equation based on error derivative is proposed, and a corresponding online learning algorithm is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 22; pp. 1173 - 1182
Main Authors: Li, Dongdong, Dong, Jiuxiang
Format: Journal Article
Language:English
Published: IEEE 2025
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Since the existence of fractional order dynamics, it is difficult to obtain an optimality equation to solve for fractional-order optimal control. In this paper, a fractional Hamilton-Jacobi-Bellman (HJB) equation based on error derivative is proposed, and a corresponding online learning algorithm is designed. The scheme can handle the optimal tracking problem for the <inline-formula> <tex-math notation="LaTeX">0< \alpha \leq 1 </tex-math></inline-formula> order nonlinear systems. Since the traditional quadratic cost function is unbounded at infinite time and the optimal control derived from the discounted cost function fails to stabilize the system asymptotically, a cost function based on the error derivative is proposed, which can avoid these problems, and the system is not restricted to be zero equilibrium. Then, the fractional HJB equation is derived by constructing an auxiliary signal without directly using the chain rule of differentiation. The optimality, stability and convergence of its solution are proved, and actor-critic neural networks (NNs) are established to perform the RL algorithm. Finally, the algorithm is applied to a chaotic magnetic-field electromechanical transducer (MFET) system to verify the effectiveness and advantages. Note to Practitioners-In engineering, fractional-order dynamics properties are used in many practical systems such as chaotic MFET systems, chaotic arch micro-electro-mechanical systems and fractional order resonant controllers, etc. For these fractional-order systems, traditional integer-order control methods cannot be applied. Moreover, optimal performance with minimal cost/resources can be achieved through optimal control. Therefore, a intelligent control method based on reinforcement learning is proposed in this paper to realize the optimal control for fractional-order systems. The proposed method is applicable to most fractional-order systems and can achieve stable control while optimizing the objective performance and reducing energy consumption. Finally, the proposed algorithm is successfully applied to the chaotic MFET systems.
AbstractList Since the existence of fractional order dynamics, it is difficult to obtain an optimality equation to solve for fractional-order optimal control. In this paper, a fractional Hamilton-Jacobi-Bellman (HJB) equation based on error derivative is proposed, and a corresponding online learning algorithm is designed. The scheme can handle the optimal tracking problem for the <inline-formula> <tex-math notation="LaTeX">0< \alpha \leq 1 </tex-math></inline-formula> order nonlinear systems. Since the traditional quadratic cost function is unbounded at infinite time and the optimal control derived from the discounted cost function fails to stabilize the system asymptotically, a cost function based on the error derivative is proposed, which can avoid these problems, and the system is not restricted to be zero equilibrium. Then, the fractional HJB equation is derived by constructing an auxiliary signal without directly using the chain rule of differentiation. The optimality, stability and convergence of its solution are proved, and actor-critic neural networks (NNs) are established to perform the RL algorithm. Finally, the algorithm is applied to a chaotic magnetic-field electromechanical transducer (MFET) system to verify the effectiveness and advantages. Note to Practitioners-In engineering, fractional-order dynamics properties are used in many practical systems such as chaotic MFET systems, chaotic arch micro-electro-mechanical systems and fractional order resonant controllers, etc. For these fractional-order systems, traditional integer-order control methods cannot be applied. Moreover, optimal performance with minimal cost/resources can be achieved through optimal control. Therefore, a intelligent control method based on reinforcement learning is proposed in this paper to realize the optimal control for fractional-order systems. The proposed method is applicable to most fractional-order systems and can achieve stable control while optimizing the objective performance and reducing energy consumption. Finally, the proposed algorithm is successfully applied to the chaotic MFET systems.
Author Li, Dongdong
Dong, Jiuxiang
Author_xml – sequence: 1
  givenname: Dongdong
  orcidid: 0000-0002-8814-146X
  surname: Li
  fullname: Li, Dongdong
  email: lidongdongyq@163.com
  organization: College of Information Science and Engineering, the State Key Laboratory of Synthetical Automation for Process Industries, and the Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Jiuxiang
  orcidid: 0000-0002-0318-3004
  surname: Dong
  fullname: Dong, Jiuxiang
  email: dongjiuxiang@ise.neu.edu.cn
  organization: College of Information Science and Engineering, the State Key Laboratory of Synthetical Automation for Process Industries, and the Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education, Northeastern University, Shenyang, China
BookMark eNp9kMtKAzEUhoNUsFYfQHCRF5ia61yWZWi1UCnY6nY4zWQ0Mk1KEoS-vRnbhbhwk4ST_zuc812jkXVWI3RHyZRSUj1sZ5v5lBEmppznlFF-gcZUyjLjRclHw1vITFZSXqHrED5JSpYVGaO48KCicRb6bO1b7fHmGKLeB7w-RLOHHtfORu96_GUAz1R0Pqu9iUbhF21s57zSe20jXmnw1th3DLbFyxjwG_SmhaE1Tilcf4AbqOfFfHuDLjvog7493xP0mqr1U7ZaPy7r2SpTLM9jxjpgSrBKthxylfYodCuHoxV5CaB41zJSiGoHZEcq3mlS5jKnHZOCs1ITPkHFqa_yLgSvu0aZ-DNS9GD6hpJmkNcM8ppBXnOWl0j6hzz4ZMMf_2XuT4zRWv_KC0FI-v4GE-J9qA
CODEN ITASC7
CitedBy_id crossref_primary_10_3390_fractalfract8050256
crossref_primary_10_1109_TCSII_2025_3589991
crossref_primary_10_1002_asjc_3751
crossref_primary_10_1002_asjc_3833
crossref_primary_10_1109_TASE_2024_3487878
crossref_primary_10_1109_TASE_2025_3548986
crossref_primary_10_1109_TASE_2025_3592290
crossref_primary_10_3390_math13132078
Cites_doi 10.1007/978-3-642-18101-6
10.1016/j.amc.2022.127759
10.1007/s11071-020-05518-5
10.1109/TNNLS.2021.3051030
10.1109/TFUZZ.2022.3227993
10.1016/S0022-0728(71)80115-8
10.1109/TCYB.2022.3208124
10.1109/TCYB.2021.3088994
10.1109/TASE.2013.2280974
10.1109/TNNLS.2018.2803726
10.1016/j.sysconle.2015.07.004
10.1109/TNNLS.2021.3123444
10.1109/TSMC.2019.2933359
10.1109/TASE.2020.2998773
10.1016/j.automatica.2014.05.011
10.1016/j.automatica.2014.10.103
10.1016/j.chaos.2005.11.020
10.1016/j.automatica.2016.05.003
10.1109/TCST.2011.2153203
10.1007/s00521-012-1249-y
10.1109/TSMC.2021.3130718
10.1016/j.automatica.2010.02.018
10.1109/TNNLS.2021.3130092
10.1109/TNNLS.2022.3146889
10.1016/j.ins.2023.119577
10.1109/TNNLS.2015.2441749
10.1109/TSMC.2023.3320653
10.1109/TSMC.2021.3120432
10.2514/3.20641
10.1007/s11071-020-05776-3
10.1109/8.489308
10.1016/j.amc.2006.08.163
10.1109/TASE.2020.2996160
10.1109/TCYB.2021.3123377
10.1109/TFUZZ.2023.3294928
10.1109/TSMC.2018.2861826
10.1109/TAC.1984.1103551
10.1142/3779
10.1016/j.automatica.2020.109011
10.1109/TCYB.2021.3056990
10.1016/j.automatica.2004.11.034
10.1016/j.mechrescom.2012.08.003
10.1109/TCYB.2020.2982168
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2024.3361213
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 1182
ExternalDocumentID 10_1109_TASE_2024_3361213
10440013
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62273079; 61420106016
  funderid: 10.13039/501100001809
– fundername: Research Fund of State Key Laboratory for Synthetical Automation of Process Industries in China
  grantid: 2013ZCX01
– fundername: 1912 project
– fundername: Fundamental Research Funds for the Central Universities in China
  grantid: N2004002; N2104005; N182608004
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-2fa2c4295d3a6c7837ed537edd468aac3fd20749ba0b093fe086561f254328e03
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001177108100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Tue Nov 18 20:57:52 EST 2025
Sat Nov 29 08:16:50 EST 2025
Wed Aug 27 01:50:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-2fa2c4295d3a6c7837ed537edd468aac3fd20749ba0b093fe086561f254328e03
ORCID 0000-0002-0318-3004
0000-0002-8814-146X
PageCount 10
ParticipantIDs ieee_primary_10440013
crossref_citationtrail_10_1109_TASE_2024_3361213
crossref_primary_10_1109_TASE_2024_3361213
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
Podlubny (ref9) 1999
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
Athans (ref43) 2013
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref10
  doi: 10.1007/978-3-642-18101-6
– ident: ref39
  doi: 10.1016/j.amc.2022.127759
– ident: ref40
  doi: 10.1007/s11071-020-05518-5
– ident: ref33
  doi: 10.1109/TNNLS.2021.3051030
– ident: ref22
  doi: 10.1109/TFUZZ.2022.3227993
– ident: ref6
  doi: 10.1016/S0022-0728(71)80115-8
– ident: ref19
  doi: 10.1109/TCYB.2022.3208124
– ident: ref13
  doi: 10.1109/TCYB.2021.3088994
– ident: ref31
  doi: 10.1109/TASE.2013.2280974
– ident: ref21
  doi: 10.1109/TNNLS.2018.2803726
– ident: ref8
  doi: 10.1016/j.sysconle.2015.07.004
– ident: ref30
  doi: 10.1109/TNNLS.2021.3123444
– ident: ref41
  doi: 10.1109/TSMC.2019.2933359
– ident: ref7
  doi: 10.1109/TASE.2020.2998773
– ident: ref27
  doi: 10.1016/j.automatica.2014.05.011
– ident: ref42
  doi: 10.1016/j.automatica.2014.10.103
– ident: ref1
  doi: 10.1016/j.chaos.2005.11.020
– ident: ref28
  doi: 10.1016/j.automatica.2016.05.003
– ident: ref37
  doi: 10.1109/TCST.2011.2153203
– ident: ref25
  doi: 10.1007/s00521-012-1249-y
– ident: ref18
  doi: 10.1109/TSMC.2021.3130718
– ident: ref26
  doi: 10.1016/j.automatica.2010.02.018
– ident: ref35
  doi: 10.1109/TNNLS.2021.3130092
– ident: ref17
  doi: 10.1109/TNNLS.2022.3146889
– ident: ref23
  doi: 10.1016/j.ins.2023.119577
– ident: ref34
  doi: 10.1109/TNNLS.2015.2441749
– ident: ref44
  doi: 10.1109/TSMC.2023.3320653
– ident: ref38
  doi: 10.1109/TSMC.2021.3120432
– ident: ref3
  doi: 10.2514/3.20641
– ident: ref12
  doi: 10.1007/s11071-020-05776-3
– ident: ref4
  doi: 10.1109/8.489308
– ident: ref11
  doi: 10.1016/j.amc.2006.08.163
– ident: ref29
  doi: 10.1109/TASE.2020.2996160
– ident: ref14
  doi: 10.1109/TCYB.2021.3123377
– ident: ref20
  doi: 10.1109/TFUZZ.2023.3294928
– ident: ref36
  doi: 10.1109/TSMC.2018.2861826
– ident: ref5
  doi: 10.1109/TAC.1984.1103551
– ident: ref2
  doi: 10.1142/3779
– volume-title: Fractional Differential Equations
  year: 1999
  ident: ref9
– ident: ref16
  doi: 10.1016/j.automatica.2020.109011
– ident: ref15
  doi: 10.1109/TCYB.2021.3056990
– ident: ref24
  doi: 10.1016/j.automatica.2004.11.034
– ident: ref45
  doi: 10.1016/j.mechrescom.2012.08.003
– ident: ref32
  doi: 10.1109/TCYB.2020.2982168
– volume-title: Optimal Control: An Introduction to the Theory
  year: 2013
  ident: ref43
SSID ssj0024890
Score 2.4878926
Snippet Since the existence of fractional order dynamics, it is difficult to obtain an optimality equation to solve for fractional-order optimal control. In this...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1173
SubjectTerms adaptive dynamic programming
Automation
Cost function
Costs
Fractional-order systems
Heuristic algorithms
neural networks
Nonlinear systems
Optimal control
reinforcement learning (RL)
Trajectory
Title Fractional-Order Systems Optimal Control via Actor-Critic Reinforcement Learning and Its Validation for Chaotic MFET
URI https://ieeexplore.ieee.org/document/10440013
Volume 22
WOSCitedRecordID wos001177108100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62eNCDz4r1RQ6ehNR0k33kWEqLgraitfS2ZPPQQm2l3fb3m5daDwpewrLMwLKT3flmJvMNAJeU2_4PTBDjSiIqtESZNEBOciykZLJQrlwwvEt7vWw0Yg-hWd31wiil3OEz1bCXrpYvZ2JpU2XmC6fUYpYKqKRp4pu1von1MpdQsZAAxSyOQwmzidn1oPXUMaFgRBuEWMYs8sMJrU1VcU6lu_vPx9kDOwE9wpY39z7YUNMDsL3GKXgIyu7c9yrwCepbXk0YSMlh3_wd3ox2259Oh6sxhy2bs0d-3gF8VI5GVbiMIQzMqy-QTyW8LRdwaCC7n8AEjRRsv_KZ1brvdgY18GzW9g0KoxWQMB65RJHmkTCuKJaEJyI1UaqSsV0kTTLOBdEyMuCCFRwXmBGtTORjkJa2rfNRpjA5AtXpbKqOARRaC0WSRBksRKVuFrGOU1E0M4lpkemoDvDnu85F4B234y8muYs_MMuteXJrnjyYpw6uvlTePenGX8I1a5o1QW-Vk1_un4KtyM7wdWmUM1At50t1DjbFqhwv5hduT30AXc_KQw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTdSDT4z47MGTSbFs22V7JAQikYdRJNw23T6UBMHAwu-37a6KB028NJvNTLLZ6e58M9P5BoBrKlz_ByaIC60QlUahSFkgpwSWSnGVaF8uGLSr3W40HPKHvFnd98Jorf3hM112l76Wr6Zy4VJl9gun1GGWdbDBKA1w1q71Ta0X-ZSKAwWIccbyImYF89t-7alhg8GAlglxnFnkhxtamavi3Upz758PtA92c_wIa5nBD8CanhyCnRVWwSOQNmdZt4IYo55j1oQ5LTns2f_Dm9WuZ-fT4XIkYM1l7VE28QA-ak-kKn3OEObcqy9QTBRspXM4sKA9m8EErRSsv4qp0-o0G_0ieLZr_Q7lwxWQtD45RYERgbTOiCkiQlm1capWzC2KhpEQkhgVWHjBE4ETzInRNvaxWMu45vkg0pgcg8JkOtEnAEpjpCZhqC0aospUEmZYVSaVSGGaRCYoAfz5rmOZM4-7ARjj2EcgmMfOPLEzT5ybpwRuvlTeM9qNv4SLzjQrgplVTn-5fwW27vqddtxude_PwHbgJvr6pMo5KKSzhb4Am3KZjuazS7-_PgAOGs2K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional-Order+Systems+Optimal+Control+via+Actor-Critic+Reinforcement+Learning+and+Its+Validation+for+Chaotic+MFET&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Li%2C+Dongdong&rft.au=Dong%2C+Jiuxiang&rft.date=2025&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=22&rft.spage=1173&rft.epage=1182&rft_id=info:doi/10.1109%2FTASE.2024.3361213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2024_3361213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon