Allocating Robots/Cobots to Production Systems for Productivity and Ergonomics Optimization
Collaboration between humans and robots has great promise in manufacturing systems. The utilization of cobots in a manufacturing system can improve both productivity and ergonomics. In this paper, we study the problem of how to allocate limited cobot/robots to manufacturing systems with multiple wor...
Saved in:
| Published in: | IEEE transactions on automation science and engineering Vol. 21; no. 3; pp. 2841 - 2855 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.07.2024
|
| Subjects: | |
| ISSN: | 1545-5955, 1558-3783 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Collaboration between humans and robots has great promise in manufacturing systems. The utilization of cobots in a manufacturing system can improve both productivity and ergonomics. In this paper, we study the problem of how to allocate limited cobot/robots to manufacturing systems with multiple workstations so that an integrated performance measure, considering both productivity and ergonomics is optimized. Previous work on cobot/robot allocation in manufacturing systems focus on the decomposition of tasks for a single workstation into multiple work elements, and then split them between human and robots, rather than studying multi-machine systems. To bridge this gap, we consider the allocation of cobots/robots to a multi-stage manufacturing system. Specifically, we establish an integrated performance measure and formulate cobot/robot allocation into a constraint integer programming problem. With this formulation, we obtain the optimal allocation of one available cobot/robot in simulated production systems, based on the integrated performance measure of productivity and ergonomics. Furthermore, the allocation problems of production systems with multiple cobots/robots is considered and solved with a scalable algorithm. Note to Practitioners-Collaborative robots and independent robots are increasingly applied to manufacturing production systems. However, how to optimally allocate both types of robots considering both productivity and ergonomics influence has not been well studied. In this article, we established a practical optimization method to allocate cobots/robots to different workstations and split the work between cobot and human in one workstation when there are multiple workstations and a limited number of available cobots/robots in the manufacturing systems. Based on various real-world scenarios, we inferred useful insights for the robot/cobot allocation problem. To deal with the computational load when the number of workstations is large, a scalable optimization algorithm is also adopted. The case study results demonstrated the effectiveness of the proposed approach. |
|---|---|
| AbstractList | Collaboration between humans and robots has great promise in manufacturing systems. The utilization of cobots in a manufacturing system can improve both productivity and ergonomics. In this paper, we study the problem of how to allocate limited cobot/robots to manufacturing systems with multiple workstations so that an integrated performance measure, considering both productivity and ergonomics is optimized. Previous work on cobot/robot allocation in manufacturing systems focus on the decomposition of tasks for a single workstation into multiple work elements, and then split them between human and robots, rather than studying multi-machine systems. To bridge this gap, we consider the allocation of cobots/robots to a multi-stage manufacturing system. Specifically, we establish an integrated performance measure and formulate cobot/robot allocation into a constraint integer programming problem. With this formulation, we obtain the optimal allocation of one available cobot/robot in simulated production systems, based on the integrated performance measure of productivity and ergonomics. Furthermore, the allocation problems of production systems with multiple cobots/robots is considered and solved with a scalable algorithm. Note to Practitioners-Collaborative robots and independent robots are increasingly applied to manufacturing production systems. However, how to optimally allocate both types of robots considering both productivity and ergonomics influence has not been well studied. In this article, we established a practical optimization method to allocate cobots/robots to different workstations and split the work between cobot and human in one workstation when there are multiple workstations and a limited number of available cobots/robots in the manufacturing systems. Based on various real-world scenarios, we inferred useful insights for the robot/cobot allocation problem. To deal with the computational load when the number of workstations is large, a scalable optimization algorithm is also adopted. The case study results demonstrated the effectiveness of the proposed approach. |
| Author | Li, Jingshan Zhou, Shiyu Huang, Congfang Radwin, Robert G. |
| Author_xml | – sequence: 1 givenname: Congfang orcidid: 0000-0003-0488-1573 surname: Huang fullname: Huang, Congfang organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA – sequence: 2 givenname: Shiyu orcidid: 0000-0002-5902-8812 surname: Zhou fullname: Zhou, Shiyu email: shiyuzhou@wisc.edu organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA – sequence: 3 givenname: Jingshan orcidid: 0000-0003-0148-1232 surname: Li fullname: Li, Jingshan organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Robert G. orcidid: 0000-0002-7973-0641 surname: Radwin fullname: Radwin, Robert G. organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA |
| BookMark | eNp9kF1LwzAUhoNMcJv-AMGL_IFu-Wia9nKM-QGDiZtXXpTTJB2RthlJFOavd92GiBdevYfDeQ4vzwgNOtcZhG4pmVBKiulmtl5MGGF8wpkkjMgLNKRC5AmXOR_0cyoSUQhxhUYhvBPC0rwgQ_Q2axqnINpui19c5WKYzo-Bo8PP3ukPFa3r8HofomkDrp3_WX_auMfQabzwW9e51qqAV7toW_sFPXSNLmtogrk55xi93i8288dkuXp4ms-WiWJZFhNGiOICioqCTMFU1HAGnNcslZTpmnGhpOEmzytjTKo1AGhVgSSQpZnRhI-RPP1V3oXgTV0qG48NogfblJSUvaOyd1T2jsqzowNJ_5A7b1vw-3-ZuxNjD3V-3VNGMpHzb4QJd3c |
| CODEN | ITASC7 |
| CitedBy_id | crossref_primary_10_1109_TASE_2024_3503412 crossref_primary_10_3390_machines13040310 crossref_primary_10_1016_j_compag_2025_110344 |
| Cites_doi | 10.1109/TASE.2018.2789820 10.3390/robotics11010009 10.1080/00140139.2016.1237678 10.3390/pr6080106 10.1080/0951192X.2015.1130251 10.1007/s40685-019-0101-y 10.1016/j.rcim.2021.102234 10.1016/j.ejor.2006.10.024 10.1109/MRA.2018.2815947 10.1016/j.ijpe.2015.06.017 10.1002/9780470172506 10.1177/00187208221077722 10.1109/TASE.2017.2702380 10.1016/j.procir.2014.10.079 10.1007/s00170-019-04670-6 10.1007/s00170-017-0300-7 10.1016/j.apergo.2012.11.008 10.1109/ACC.2013.6580409 10.1080/0951192X.2020.1736713 10.3390/pr3030701 10.1016/j.ifacol.2020.12.2865 10.1109/LRA.2021.3052427 10.1109/TIE.2016.2573270 10.1016/j.cirp.2011.03.015 10.1016/j.ergon.2017.05.009 10.1016/j.ifacol.2019.11.389 10.1109/TASE.2013.2274099 10.1016/j.cirp.2019.04.006 10.1007/s11740-022-01109-y 10.1016/j.procir.2015.08.014 10.1007/978-3-030-25425-4_4 10.1007/s10845-018-1411-1 10.3390/robotics8040100 10.1007/978-3-319-53934-8_14 10.1080/15428119591016863 10.2478/msr-2022-0011 10.1016/j.procir.2018.03.022 10.1007/s10845-022-01953-w 10.1080/00140139.2017.1346208 10.1109/TASE.2020.2983225 10.1080/00207543.2021.1989077 10.1016/j.procs.2021.12.118 10.1186/s42162-021-00150-y 10.4271/2016-01-0337 10.1093/occmed/kqi082 10.1109/LRA.2021.3076968 10.1016/j.procir.2020.08.006 10.1109/AQTR.2016.7501358 10.1109/ETFA.2016.7733526 10.1136/oem.2010.061770 10.1016/j.rcim.2019.02.002 10.1016/j.compchemeng.2014.04.013 10.3390/machines10080603 10.1109/TII.2020.2971530 10.1080/0951192X.2017.1307524 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TASE.2023.3270207 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3783 |
| EndPage | 2855 |
| ExternalDocumentID | 10_1109_TASE_2023_3270207 10120658 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: 2026478 funderid: 10.13039/100000001 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c266t-200c35a9b1a74aeb1e32a33f24712df235c7e3e88beee4ddaaadcba70a646ed03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988329700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5955 |
| IngestDate | Tue Nov 18 20:57:52 EST 2025 Sat Nov 29 04:12:49 EST 2025 Wed Aug 27 02:33:41 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c266t-200c35a9b1a74aeb1e32a33f24712df235c7e3e88beee4ddaaadcba70a646ed03 |
| ORCID | 0000-0003-0148-1232 0000-0003-0488-1573 0000-0002-7973-0641 0000-0002-5902-8812 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_10120658 crossref_citationtrail_10_1109_TASE_2023_3270207 crossref_primary_10_1109_TASE_2023_3270207 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on automation science and engineering |
| PublicationTitleAbbrev | TASE |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 (ref5) 2021 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Hedengren (ref28); 1417 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 |
| References_xml | – ident: ref14 doi: 10.1109/TASE.2018.2789820 – ident: ref19 doi: 10.3390/robotics11010009 – ident: ref27 doi: 10.1080/00140139.2016.1237678 – ident: ref29 doi: 10.3390/pr6080106 – ident: ref33 doi: 10.1080/0951192X.2015.1130251 – ident: ref7 doi: 10.1007/s40685-019-0101-y – ident: ref21 doi: 10.1016/j.rcim.2021.102234 – ident: ref48 doi: 10.1016/j.ejor.2006.10.024 – ident: ref45 doi: 10.1109/MRA.2018.2815947 – ident: ref15 doi: 10.1016/j.ijpe.2015.06.017 – ident: ref1 doi: 10.1002/9780470172506 – ident: ref4 doi: 10.1177/00187208221077722 – ident: ref44 doi: 10.1109/TASE.2017.2702380 – ident: ref39 doi: 10.1016/j.procir.2014.10.079 – ident: ref9 doi: 10.1007/s00170-019-04670-6 – volume: 1417 start-page: 47 volume-title: Proc. INFORMS Nat. Meeting ident: ref28 article-title: APOPT: MINLP solver for differential and algebraic systems with benchmark testing – ident: ref47 doi: 10.1007/s00170-017-0300-7 – ident: ref11 doi: 10.1016/j.apergo.2012.11.008 – ident: ref31 doi: 10.1109/ACC.2013.6580409 – ident: ref8 doi: 10.1080/0951192X.2020.1736713 – ident: ref30 doi: 10.3390/pr3030701 – ident: ref54 doi: 10.1016/j.ifacol.2020.12.2865 – ident: ref18 doi: 10.1109/LRA.2021.3052427 – ident: ref42 doi: 10.1109/TIE.2016.2573270 – ident: ref49 doi: 10.1016/j.cirp.2011.03.015 – ident: ref25 doi: 10.1016/j.ergon.2017.05.009 – ident: ref6 doi: 10.1016/j.ifacol.2019.11.389 – ident: ref10 doi: 10.1109/TASE.2013.2274099 – ident: ref16 doi: 10.1016/j.cirp.2019.04.006 – ident: ref20 doi: 10.1007/s11740-022-01109-y – ident: ref35 doi: 10.1016/j.procir.2015.08.014 – ident: ref3 doi: 10.1007/978-3-030-25425-4_4 – ident: ref37 doi: 10.1007/s10845-018-1411-1 – ident: ref34 doi: 10.3390/robotics8040100 – ident: ref51 doi: 10.1007/978-3-319-53934-8_14 – ident: ref24 doi: 10.1080/15428119591016863 – ident: ref22 doi: 10.2478/msr-2022-0011 – ident: ref53 doi: 10.1016/j.procir.2018.03.022 – ident: ref46 doi: 10.1007/s10845-022-01953-w – ident: ref13 doi: 10.1080/00140139.2017.1346208 – ident: ref43 doi: 10.1109/TASE.2020.2983225 – ident: ref17 doi: 10.1080/00207543.2021.1989077 – ident: ref23 doi: 10.1016/j.procs.2021.12.118 – volume-title: Collaborative Robots Market Report year: 2021 ident: ref5 – ident: ref55 doi: 10.1186/s42162-021-00150-y – ident: ref2 doi: 10.4271/2016-01-0337 – ident: ref26 doi: 10.1093/occmed/kqi082 – ident: ref40 doi: 10.1109/LRA.2021.3076968 – ident: ref50 doi: 10.1016/j.procir.2020.08.006 – ident: ref32 doi: 10.1109/AQTR.2016.7501358 – ident: ref52 doi: 10.1109/ETFA.2016.7733526 – ident: ref12 doi: 10.1136/oem.2010.061770 – ident: ref36 doi: 10.1016/j.rcim.2019.02.002 – ident: ref57 doi: 10.1016/j.compchemeng.2014.04.013 – ident: ref41 doi: 10.3390/machines10080603 – ident: ref56 doi: 10.1109/TII.2020.2971530 – ident: ref38 doi: 10.1080/0951192X.2017.1307524 |
| SSID | ssj0024890 |
| Score | 2.4092872 |
| Snippet | Collaboration between humans and robots has great promise in manufacturing systems. The utilization of cobots in a manufacturing system can improve both... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2841 |
| SubjectTerms | Collaboration Collaborative robot ergonomic performance Ergonomics Optimization Productivity resource allocation Resource management Robots strain index throughput Workstations |
| Title | Allocating Robots/Cobots to Production Systems for Productivity and Ergonomics Optimization |
| URI | https://ieeexplore.ieee.org/document/10120658 |
| Volume | 21 |
| WOSCitedRecordID | wos000988329700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3783 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024890 issn: 1545-5955 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ueNCDnxPnFzl4ErplTdKkxzE2PM2hEwYeSr4qwmxl6_z7TdI4e1Hw1BISaPNL33tN3vv9ALilWqeJZHnEqYwjQqi1g5LIKIljpTUROTPIi02w6ZQvFuksFKv7WhhjjE8-Mz1368_ydak2bqus77ionMtsgRZjSV2s9UOsx_2GigsJIppSGo4wByjtz4dP457TCe9hV37lpGMbTqihquKdyuTwn49zBA5C9AiHNdzHYMcUJ2C_wSl4Cl6GS-efXDYzfCxlWa37I3-BVQlnNb-rxQIGqnJog9Zts9ORgKLQcLx6reuV1_DB2pT3UKzZAc-T8Xx0HwUFhUhZx1u5T0BhKlI5EIwIa5YNjgXGeWxdUqzzGFPFDDacS_tyRGshhFZSMCQSkhiN8BloF2VhzgHEA4m54JSjVBAqsUBCy0RygYlF1JguQN9TmqlAL-5ULpaZ_81AaeZQyBwKWUChC-62Qz5qbo2_OnccAo2O9eRf_NJ-CfbscFJn1l6BdrXamGuwqz6rt_Xqxi-dLy1gw3Y |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46BfXB68R5zYNPQrcslzZ9HGNj4pxDJwx8KEmTijBb2Tp_v0laZ18UfGoJaWnzteecJOd8HwDXTKnQl0HicSaxRykzdlBS6fkYx0pRkQQaObGJYDTi02k4LovVXS2M1toln-mmPXV7-SqLl3aprGW5qKzLXAcbjFKMinKtH2o97pZUbFDgsZCxchOzjcLWpPPUa1ql8CaxBVhWPLbihiq6Ks6t9Pf--UD7YLeMH2GnAPwArOn0EOxUWAWPwEtnZj2UzWeGj5nM8kWr6w4wz-C4YHg1aMCSrByasHXVbJUkoEgV7M1fi4rlBXwwVuW9LNesg-d-b9IdeKWGghcb15vbnyAmTISyLQIqjGHWBAtCEmycElYJJiwONNGcS_NyVCkhhIqlCJDwqa8VIseglmapPgGQtCXhgjOOQkGZJAIJJX3JBaEGU60bAH0PaRSXBONW52IWuYkGCiOLQmRRiEoUGuBmdclHwa7xV-e6RaDSsRj801_ar8DWYHI_jIa3o7szsG1uRYs823NQy-dLfQE248_8bTG_dJ_RF4HPxr0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allocating+Robots%2FCobots+to+Production+Systems+for+Productivity+and+Ergonomics+Optimization&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Huang%2C+Congfang&rft.au=Zhou%2C+Shiyu&rft.au=Li%2C+Jingshan&rft.au=Radwin%2C+Robert+G.&rft.date=2024-07-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=21&rft.issue=3&rft.spage=2841&rft.epage=2855&rft_id=info:doi/10.1109%2FTASE.2023.3270207&rft.externalDocID=10120658 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon |