Allocating Robots/Cobots to Production Systems for Productivity and Ergonomics Optimization

Collaboration between humans and robots has great promise in manufacturing systems. The utilization of cobots in a manufacturing system can improve both productivity and ergonomics. In this paper, we study the problem of how to allocate limited cobot/robots to manufacturing systems with multiple wor...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 21; no. 3; pp. 2841 - 2855
Main Authors: Huang, Congfang, Zhou, Shiyu, Li, Jingshan, Radwin, Robert G.
Format: Journal Article
Language:English
Published: IEEE 01.07.2024
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Collaboration between humans and robots has great promise in manufacturing systems. The utilization of cobots in a manufacturing system can improve both productivity and ergonomics. In this paper, we study the problem of how to allocate limited cobot/robots to manufacturing systems with multiple workstations so that an integrated performance measure, considering both productivity and ergonomics is optimized. Previous work on cobot/robot allocation in manufacturing systems focus on the decomposition of tasks for a single workstation into multiple work elements, and then split them between human and robots, rather than studying multi-machine systems. To bridge this gap, we consider the allocation of cobots/robots to a multi-stage manufacturing system. Specifically, we establish an integrated performance measure and formulate cobot/robot allocation into a constraint integer programming problem. With this formulation, we obtain the optimal allocation of one available cobot/robot in simulated production systems, based on the integrated performance measure of productivity and ergonomics. Furthermore, the allocation problems of production systems with multiple cobots/robots is considered and solved with a scalable algorithm. Note to Practitioners-Collaborative robots and independent robots are increasingly applied to manufacturing production systems. However, how to optimally allocate both types of robots considering both productivity and ergonomics influence has not been well studied. In this article, we established a practical optimization method to allocate cobots/robots to different workstations and split the work between cobot and human in one workstation when there are multiple workstations and a limited number of available cobots/robots in the manufacturing systems. Based on various real-world scenarios, we inferred useful insights for the robot/cobot allocation problem. To deal with the computational load when the number of workstations is large, a scalable optimization algorithm is also adopted. The case study results demonstrated the effectiveness of the proposed approach.
AbstractList Collaboration between humans and robots has great promise in manufacturing systems. The utilization of cobots in a manufacturing system can improve both productivity and ergonomics. In this paper, we study the problem of how to allocate limited cobot/robots to manufacturing systems with multiple workstations so that an integrated performance measure, considering both productivity and ergonomics is optimized. Previous work on cobot/robot allocation in manufacturing systems focus on the decomposition of tasks for a single workstation into multiple work elements, and then split them between human and robots, rather than studying multi-machine systems. To bridge this gap, we consider the allocation of cobots/robots to a multi-stage manufacturing system. Specifically, we establish an integrated performance measure and formulate cobot/robot allocation into a constraint integer programming problem. With this formulation, we obtain the optimal allocation of one available cobot/robot in simulated production systems, based on the integrated performance measure of productivity and ergonomics. Furthermore, the allocation problems of production systems with multiple cobots/robots is considered and solved with a scalable algorithm. Note to Practitioners-Collaborative robots and independent robots are increasingly applied to manufacturing production systems. However, how to optimally allocate both types of robots considering both productivity and ergonomics influence has not been well studied. In this article, we established a practical optimization method to allocate cobots/robots to different workstations and split the work between cobot and human in one workstation when there are multiple workstations and a limited number of available cobots/robots in the manufacturing systems. Based on various real-world scenarios, we inferred useful insights for the robot/cobot allocation problem. To deal with the computational load when the number of workstations is large, a scalable optimization algorithm is also adopted. The case study results demonstrated the effectiveness of the proposed approach.
Author Li, Jingshan
Zhou, Shiyu
Huang, Congfang
Radwin, Robert G.
Author_xml – sequence: 1
  givenname: Congfang
  orcidid: 0000-0003-0488-1573
  surname: Huang
  fullname: Huang, Congfang
  organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
– sequence: 2
  givenname: Shiyu
  orcidid: 0000-0002-5902-8812
  surname: Zhou
  fullname: Zhou, Shiyu
  email: shiyuzhou@wisc.edu
  organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
– sequence: 3
  givenname: Jingshan
  orcidid: 0000-0003-0148-1232
  surname: Li
  fullname: Li, Jingshan
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Robert G.
  orcidid: 0000-0002-7973-0641
  surname: Radwin
  fullname: Radwin, Robert G.
  organization: Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
BookMark eNp9kF1LwzAUhoNMcJv-AMGL_IFu-Wia9nKM-QGDiZtXXpTTJB2RthlJFOavd92GiBdevYfDeQ4vzwgNOtcZhG4pmVBKiulmtl5MGGF8wpkkjMgLNKRC5AmXOR_0cyoSUQhxhUYhvBPC0rwgQ_Q2axqnINpui19c5WKYzo-Bo8PP3ukPFa3r8HofomkDrp3_WX_auMfQabzwW9e51qqAV7toW_sFPXSNLmtogrk55xi93i8288dkuXp4ms-WiWJZFhNGiOICioqCTMFU1HAGnNcslZTpmnGhpOEmzytjTKo1AGhVgSSQpZnRhI-RPP1V3oXgTV0qG48NogfblJSUvaOyd1T2jsqzowNJ_5A7b1vw-3-ZuxNjD3V-3VNGMpHzb4QJd3c
CODEN ITASC7
CitedBy_id crossref_primary_10_1109_TASE_2024_3503412
crossref_primary_10_3390_machines13040310
crossref_primary_10_1016_j_compag_2025_110344
Cites_doi 10.1109/TASE.2018.2789820
10.3390/robotics11010009
10.1080/00140139.2016.1237678
10.3390/pr6080106
10.1080/0951192X.2015.1130251
10.1007/s40685-019-0101-y
10.1016/j.rcim.2021.102234
10.1016/j.ejor.2006.10.024
10.1109/MRA.2018.2815947
10.1016/j.ijpe.2015.06.017
10.1002/9780470172506
10.1177/00187208221077722
10.1109/TASE.2017.2702380
10.1016/j.procir.2014.10.079
10.1007/s00170-019-04670-6
10.1007/s00170-017-0300-7
10.1016/j.apergo.2012.11.008
10.1109/ACC.2013.6580409
10.1080/0951192X.2020.1736713
10.3390/pr3030701
10.1016/j.ifacol.2020.12.2865
10.1109/LRA.2021.3052427
10.1109/TIE.2016.2573270
10.1016/j.cirp.2011.03.015
10.1016/j.ergon.2017.05.009
10.1016/j.ifacol.2019.11.389
10.1109/TASE.2013.2274099
10.1016/j.cirp.2019.04.006
10.1007/s11740-022-01109-y
10.1016/j.procir.2015.08.014
10.1007/978-3-030-25425-4_4
10.1007/s10845-018-1411-1
10.3390/robotics8040100
10.1007/978-3-319-53934-8_14
10.1080/15428119591016863
10.2478/msr-2022-0011
10.1016/j.procir.2018.03.022
10.1007/s10845-022-01953-w
10.1080/00140139.2017.1346208
10.1109/TASE.2020.2983225
10.1080/00207543.2021.1989077
10.1016/j.procs.2021.12.118
10.1186/s42162-021-00150-y
10.4271/2016-01-0337
10.1093/occmed/kqi082
10.1109/LRA.2021.3076968
10.1016/j.procir.2020.08.006
10.1109/AQTR.2016.7501358
10.1109/ETFA.2016.7733526
10.1136/oem.2010.061770
10.1016/j.rcim.2019.02.002
10.1016/j.compchemeng.2014.04.013
10.3390/machines10080603
10.1109/TII.2020.2971530
10.1080/0951192X.2017.1307524
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2023.3270207
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 2855
ExternalDocumentID 10_1109_TASE_2023_3270207
10120658
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: 2026478
  funderid: 10.13039/100000001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-200c35a9b1a74aeb1e32a33f24712df235c7e3e88beee4ddaaadcba70a646ed03
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000988329700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Tue Nov 18 20:57:52 EST 2025
Sat Nov 29 04:12:49 EST 2025
Wed Aug 27 02:33:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-200c35a9b1a74aeb1e32a33f24712df235c7e3e88beee4ddaaadcba70a646ed03
ORCID 0000-0003-0148-1232
0000-0003-0488-1573
0000-0002-7973-0641
0000-0002-5902-8812
PageCount 15
ParticipantIDs ieee_primary_10120658
crossref_citationtrail_10_1109_TASE_2023_3270207
crossref_primary_10_1109_TASE_2023_3270207
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
(ref5) 2021
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Hedengren (ref28); 1417
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
References_xml – ident: ref14
  doi: 10.1109/TASE.2018.2789820
– ident: ref19
  doi: 10.3390/robotics11010009
– ident: ref27
  doi: 10.1080/00140139.2016.1237678
– ident: ref29
  doi: 10.3390/pr6080106
– ident: ref33
  doi: 10.1080/0951192X.2015.1130251
– ident: ref7
  doi: 10.1007/s40685-019-0101-y
– ident: ref21
  doi: 10.1016/j.rcim.2021.102234
– ident: ref48
  doi: 10.1016/j.ejor.2006.10.024
– ident: ref45
  doi: 10.1109/MRA.2018.2815947
– ident: ref15
  doi: 10.1016/j.ijpe.2015.06.017
– ident: ref1
  doi: 10.1002/9780470172506
– ident: ref4
  doi: 10.1177/00187208221077722
– ident: ref44
  doi: 10.1109/TASE.2017.2702380
– ident: ref39
  doi: 10.1016/j.procir.2014.10.079
– ident: ref9
  doi: 10.1007/s00170-019-04670-6
– volume: 1417
  start-page: 47
  volume-title: Proc. INFORMS Nat. Meeting
  ident: ref28
  article-title: APOPT: MINLP solver for differential and algebraic systems with benchmark testing
– ident: ref47
  doi: 10.1007/s00170-017-0300-7
– ident: ref11
  doi: 10.1016/j.apergo.2012.11.008
– ident: ref31
  doi: 10.1109/ACC.2013.6580409
– ident: ref8
  doi: 10.1080/0951192X.2020.1736713
– ident: ref30
  doi: 10.3390/pr3030701
– ident: ref54
  doi: 10.1016/j.ifacol.2020.12.2865
– ident: ref18
  doi: 10.1109/LRA.2021.3052427
– ident: ref42
  doi: 10.1109/TIE.2016.2573270
– ident: ref49
  doi: 10.1016/j.cirp.2011.03.015
– ident: ref25
  doi: 10.1016/j.ergon.2017.05.009
– ident: ref6
  doi: 10.1016/j.ifacol.2019.11.389
– ident: ref10
  doi: 10.1109/TASE.2013.2274099
– ident: ref16
  doi: 10.1016/j.cirp.2019.04.006
– ident: ref20
  doi: 10.1007/s11740-022-01109-y
– ident: ref35
  doi: 10.1016/j.procir.2015.08.014
– ident: ref3
  doi: 10.1007/978-3-030-25425-4_4
– ident: ref37
  doi: 10.1007/s10845-018-1411-1
– ident: ref34
  doi: 10.3390/robotics8040100
– ident: ref51
  doi: 10.1007/978-3-319-53934-8_14
– ident: ref24
  doi: 10.1080/15428119591016863
– ident: ref22
  doi: 10.2478/msr-2022-0011
– ident: ref53
  doi: 10.1016/j.procir.2018.03.022
– ident: ref46
  doi: 10.1007/s10845-022-01953-w
– ident: ref13
  doi: 10.1080/00140139.2017.1346208
– ident: ref43
  doi: 10.1109/TASE.2020.2983225
– ident: ref17
  doi: 10.1080/00207543.2021.1989077
– ident: ref23
  doi: 10.1016/j.procs.2021.12.118
– volume-title: Collaborative Robots Market Report
  year: 2021
  ident: ref5
– ident: ref55
  doi: 10.1186/s42162-021-00150-y
– ident: ref2
  doi: 10.4271/2016-01-0337
– ident: ref26
  doi: 10.1093/occmed/kqi082
– ident: ref40
  doi: 10.1109/LRA.2021.3076968
– ident: ref50
  doi: 10.1016/j.procir.2020.08.006
– ident: ref32
  doi: 10.1109/AQTR.2016.7501358
– ident: ref52
  doi: 10.1109/ETFA.2016.7733526
– ident: ref12
  doi: 10.1136/oem.2010.061770
– ident: ref36
  doi: 10.1016/j.rcim.2019.02.002
– ident: ref57
  doi: 10.1016/j.compchemeng.2014.04.013
– ident: ref41
  doi: 10.3390/machines10080603
– ident: ref56
  doi: 10.1109/TII.2020.2971530
– ident: ref38
  doi: 10.1080/0951192X.2017.1307524
SSID ssj0024890
Score 2.4093719
Snippet Collaboration between humans and robots has great promise in manufacturing systems. The utilization of cobots in a manufacturing system can improve both...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 2841
SubjectTerms Collaboration
Collaborative robot
ergonomic performance
Ergonomics
Optimization
Productivity
resource allocation
Resource management
Robots
strain index
throughput
Workstations
Title Allocating Robots/Cobots to Production Systems for Productivity and Ergonomics Optimization
URI https://ieeexplore.ieee.org/document/10120658
Volume 21
WOSCitedRecordID wos000988329700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA5ueNCDnxPnFzl4ErqlTdO0xzE2PM2hEwYeSpq8FWG2snX-fvOmde6i4KklJNDmafPm432eh5DbyHBuIhCekXa5GjIjPcW07_kx5BJ8kYWGObMJOZnE83kybcjqjgsDAC75DHp4687yTanXuFXWRy0qDJkt0pIyqslaP8J6sdtQwSmBJxIhmiNMnyX92eBp1EOf8B5H-hVax24FoS1XFRdUxof_fJwjctDMHumghvuY7EBxQva3NAVPyctggfEJs5npY5mV1ao_dBdalXRa67taLGgjVU7tpHVTjD4SVBWGjpavNV95RR_smPLekDU75Hk8mg3vvcZBwdM28Fb4C2guVJL5SobKDsvAA8V5HtiQFJg84EJL4BDHmX250BillNGZkkxFYQSG8TPSLsoCzgnlUS40z-LcDyAUUmVCJiC5UlLzwM9ll7DvLk11Iy-OLheL1C0zWJIiCimikDYodMndpslHra3xV-UOIrBVse78i1_KL8mebR7WmbVXpF0t13BNdvVn9bZa3rhP5wtRAsLn
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwHA06BfXg58T5mYMnoVvaJE17HGNj4pxDJww8lDRJRZitbJ1_v0ka5y4KnlpCWtr82rx8_N57AFyHEmMZKupJpqerBEnmcSR8z49UxpRPUyKRNZtgw2E0mcQjR1a3XBillE0-U01zavfyZSEWZqmsZbSoDGSugw1KSIAqutaPtF5kl1TMoMCjMaVuE9NHcWvcfuo2jVN4ExsCljGPXYGhFV8VCyu9vX8-0D7YdeNH2K4CfgDWVH4IdlZUBY_AS3tqEMrkM8PHIi3KeatjD7As4KhSeNXRgE6sHOph67LYOElAnkvYnb1WjOU5fNC9yruja9bBc6877vQ956HgCQ29pfkJBKY8Tn3OCNcds8IBxzgLNCgFMgswFUxhFUWpfjkiJedcipQzxEMSKonwMajlRa5OAMRhRgVOo8wPFKGMp5TFimHOmcCBn7EGQN9NmggnMG58LqaJnWigODFRSEwUEheFBrhZXvJRqWv8VbluIrBSsWr801_Kr8BWf3w_SAa3w7szsK1vRao823NQK2cLdQE2xWf5Np9d2s_oC543xi4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allocating+Robots%2FCobots+to+Production+Systems+for+Productivity+and+Ergonomics+Optimization&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Huang%2C+Congfang&rft.au=Zhou%2C+Shiyu&rft.au=Li%2C+Jingshan&rft.au=Radwin%2C+Robert+G.&rft.date=2024-07-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=21&rft.issue=3&rft.spage=2841&rft.epage=2855&rft_id=info:doi/10.1109%2FTASE.2023.3270207&rft.externalDocID=10120658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon