Evolutionary Dynamic Constrained Multiobjective Optimization: Test Suite and Algorithm

Dynamic constrained multiobjective optimization problems (DCMOPs) abound in real-world applications and gain increasing attention in the evolutionary computation community. To evaluate the capability of an algorithm in solving dynamic constrained multiobjective optimization problems (DCMOPs), artifi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 28; číslo 5; s. 1381 - 1395
Hlavní autori: Chen, Guoyu, Guo, Yinan, Wang, Yong, Liang, Jing, Gong, Dunwei, Yang, Shengxiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2024
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Dynamic constrained multiobjective optimization problems (DCMOPs) abound in real-world applications and gain increasing attention in the evolutionary computation community. To evaluate the capability of an algorithm in solving dynamic constrained multiobjective optimization problems (DCMOPs), artificial test problems play a fundamental role. Nevertheless, some characteristics of real-world scenarios are not fully considered in the previous test suites, such as time-varying size, location, and shape of feasible regions, the controllable change severity, as well as small feasible regions. Therefore, we develop the generators of objective functions and constraints to facilitate the systematic design of DCMOPs, and then a novel test suite consisting of nine benchmarks, termed as DCP, is put forward. To solve these problems, a dynamic constrained multiobjective evolutionary algorithm (DCMOEA) with a two-stage diversity compensation strategy (TDCEA) is proposed. Some initial individuals are randomly generated to replace historical ones in the first stage, improving the global diversity. In the second stage, the increment between center points of Pareto sets in the past two environments is calculated and employed to adaptively disturb solutions, forming an initial population with good diversity for the new environment. Intensive experiments show that the proposed test problems enable a good understanding of strengths and weaknesses of algorithms, and TDCEA outperforms other state-of-the-art comparative ones, achieving promising performance in tackling DCMOPs.
AbstractList Dynamic constrained multiobjective optimization problems (DCMOPs) abound in real-world applications and gain increasing attention in the evolutionary computation community. To evaluate the capability of an algorithm in solving dynamic constrained multiobjective optimization problems (DCMOPs), artificial test problems play a fundamental role. Nevertheless, some characteristics of real-world scenarios are not fully considered in the previous test suites, such as time-varying size, location, and shape of feasible regions, the controllable change severity, as well as small feasible regions. Therefore, we develop the generators of objective functions and constraints to facilitate the systematic design of DCMOPs, and then a novel test suite consisting of nine benchmarks, termed as DCP, is put forward. To solve these problems, a dynamic constrained multiobjective evolutionary algorithm (DCMOEA) with a two-stage diversity compensation strategy (TDCEA) is proposed. Some initial individuals are randomly generated to replace historical ones in the first stage, improving the global diversity. In the second stage, the increment between center points of Pareto sets in the past two environments is calculated and employed to adaptively disturb solutions, forming an initial population with good diversity for the new environment. Intensive experiments show that the proposed test problems enable a good understanding of strengths and weaknesses of algorithms, and TDCEA outperforms other state-of-the-art comparative ones, achieving promising performance in tackling DCMOPs.
Author Liang, Jing
Yang, Shengxiang
Guo, Yinan
Chen, Guoyu
Gong, Dunwei
Wang, Yong
Author_xml – sequence: 1
  givenname: Guoyu
  orcidid: 0000-0002-9228-6370
  surname: Chen
  fullname: Chen, Guoyu
  email: chenguoyumail@163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 2
  givenname: Yinan
  orcidid: 0000-0002-4276-5410
  surname: Guo
  fullname: Guo, Yinan
  email: nanfly@126.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 3
  givenname: Yong
  orcidid: 0000-0001-7670-3958
  surname: Wang
  fullname: Wang, Yong
  email: ywang@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 4
  givenname: Jing
  orcidid: 0000-0003-0811-0223
  surname: Liang
  fullname: Liang, Jing
  email: liangjing@zzu.edu.cn
  organization: School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
– sequence: 5
  givenname: Dunwei
  orcidid: 0000-0003-2838-4301
  surname: Gong
  fullname: Gong, Dunwei
  email: dwgong@vip.163.com
  organization: School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao, China
– sequence: 6
  givenname: Shengxiang
  orcidid: 0000-0001-7222-4917
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: Institute of Artificial Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, U.K
BookMark eNp9kMtKw0AUhgepYFt9AMHFvEDqXNKZjLsS6wUqXViLuzBXnZJMSjIt1Kc3sV2IC1fnwPm_w883AoNQBwvANUYTjJG4Xc3X-YQgQieUYsoycQaGWKQ4QYiwQbejTCScZ-8XYNS2G4RwOsViCNbzfV3uoq-DbA7w_hBk5TXM69DGRvpgDXzZld1ZbayOfm_hcht95b9kj9zBlW0jfN35aKEMBs7Kj7rx8bO6BOdOlq29Os0xeHuYr_KnZLF8fM5ni0QTxmKCHWJEmFRRqanixAjFp1xLLRlzmaWEGGakNg4rlNnM8alDKVVMpw5xpxwdA378q5u6bRvrCu3jT7e-fllgVPR6il5P0espTno6Ev8ht42vOgn_MjdHxltrf-VJyihG9BsD9HWo
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102067
crossref_primary_10_1109_TETCI_2024_3515013
crossref_primary_10_3390_math12142285
crossref_primary_10_1016_j_swevo_2023_101461
crossref_primary_10_1016_j_eswa_2025_127792
crossref_primary_10_1016_j_eswa_2025_129325
crossref_primary_10_1016_j_eswa_2025_129304
Cites_doi 10.1109/TEVC.2021.3060012
10.1109/CEC.2009.4983012
10.1007/978-3-319-42978-6_2
10.1109/TMAG.2004.825006
10.1109/CEC.2017.7969433
10.1007/s00500-010-0674-z
10.1016/j.ins.2021.07.078
10.1109/TCYB.2021.3069814
10.1109/TCYB.2020.2989465
10.1016/j.asoc.2013.10.008
10.1631/jzus.C0910072
10.1109/TEVC.2007.902851
10.1109/TEVC.2004.831456
10.1109/CEC.2006.1688283
10.1109/TEVC.2009.2033582
10.1109/TEVC.2019.2951217
10.1007/978-3-642-21524-7_9
10.1016/j.swevo.2019.03.015
10.1109/4235.996017
10.1016/j.ins.2019.01.066
10.1109/TEVC.2007.913121
10.1007/s00158-008-0269-9
10.1007/978-3-319-31153-1_20
10.1109/TCYB.2019.2909806
10.1109/TCYB.2015.2490738
10.1016/j.ins.2013.03.002
10.3390/app8091673
10.1109/TEVC.2018.2855411
10.1109/TCYB.2015.2493239
10.1109/TEVC.2019.2958075
10.1109/TCYB.2020.3021138
10.1109/TCYB.2021.3112675
10.1109/TEVC.2019.2896967
10.1016/j.swevo.2011.02.002
10.1007/3-540-44719-9_20
10.1016/j.ins.2020.07.009
10.1109/TEVC.2016.2574621
10.1109/TCYB.2015.2510698
10.1109/TEM.2017.2766443
10.1016/j.asoc.2012.02.025
10.1109/4235.873238
10.1016/j.swevo.2021.100930
10.1109/TCYB.2017.2647742
10.1109/CEC.2010.5586396
10.1162/EVCO_a_00097
10.1145/2739480.2754708
10.3182/20120215-3-AT-3016.00066
10.1007/s00500-015-1820-4
10.1007/978-3-642-00619-7_7
10.1109/tevc.2023.3241762
10.1109/TEVC.2005.846356
10.1109/TEVC.2020.3004012
10.1109/tevc.2022.3222844
10.1109/TSMC.2022.3221466
10.1109/TEVC.2020.3004027
10.1016/j.ins.2022.05.050
10.1109/TEVC.2019.2925722
10.1109/TEVC.2008.2009032
10.1109/TSMC.2018.2858843
10.1109/TCYB.2020.3017017
10.1109/JSYST.2021.3061670
10.1109/TEVC.2011.2180533
10.1109/CEC.2006.1688406
10.1109/TCYB.2013.2245892
10.1109/HIS.2006.264943
10.1145/3524495
10.1109/TCYB.2014.2345478
10.1007/1-84628-137-7_6
10.1016/j.swevo.2017.10.005
10.1016/j.oceaneng.2017.12.049
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2023.3313689
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 1395
ExternalDocumentID 10_1109_TEVC_2023_3313689
10246310
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61973305; 61573361
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2022YFB4703701
– fundername: Foundation of Key Laboratory of System Control and Information Processing, Ministry of Education, China
  grantid: Scip202203
– fundername: Higher Education Discipline Innovation Project; 111 Project
  grantid: B21014
  funderid: 10.13039/501100013314
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-1f0629d4b3ac3b72d9b757caca66f8e322d6dacdf1b08e8f75f043b6c4f07fbf3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001328314100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 03:13:50 EST 2025
Tue Nov 18 22:18:26 EST 2025
Wed Aug 27 02:20:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-1f0629d4b3ac3b72d9b757caca66f8e322d6dacdf1b08e8f75f043b6c4f07fbf3
ORCID 0000-0003-0811-0223
0000-0001-7670-3958
0000-0002-4276-5410
0000-0002-9228-6370
0000-0003-2838-4301
0000-0001-7222-4917
PageCount 15
ParticipantIDs ieee_primary_10246310
crossref_citationtrail_10_1109_TEVC_2023_3313689
crossref_primary_10_1109_TEVC_2023_3313689
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref70
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref5
  doi: 10.1109/TEVC.2021.3060012
– ident: ref17
  doi: 10.1109/CEC.2009.4983012
– ident: ref4
  doi: 10.1007/978-3-319-42978-6_2
– ident: ref43
  doi: 10.1109/TMAG.2004.825006
– ident: ref54
  doi: 10.1109/CEC.2017.7969433
– ident: ref21
  doi: 10.1007/s00500-010-0674-z
– ident: ref64
  doi: 10.1016/j.ins.2021.07.078
– ident: ref37
  doi: 10.1109/TCYB.2021.3069814
– ident: ref32
  doi: 10.1109/TCYB.2020.2989465
– ident: ref35
  doi: 10.1016/j.asoc.2013.10.008
– ident: ref38
  doi: 10.1631/jzus.C0910072
– ident: ref48
  doi: 10.1109/TEVC.2007.902851
– ident: ref15
  doi: 10.1109/TEVC.2004.831456
– ident: ref40
  doi: 10.1109/CEC.2006.1688283
– ident: ref49
  doi: 10.1109/TEVC.2009.2033582
– ident: ref8
  doi: 10.1109/TEVC.2019.2951217
– ident: ref56
  doi: 10.1007/978-3-642-21524-7_9
– ident: ref6
  doi: 10.1016/j.swevo.2019.03.015
– ident: ref39
  doi: 10.1109/4235.996017
– ident: ref29
  doi: 10.1016/j.ins.2019.01.066
– ident: ref57
  doi: 10.1109/TEVC.2007.913121
– ident: ref53
  doi: 10.1007/s00158-008-0269-9
– ident: ref27
  doi: 10.1007/978-3-319-31153-1_20
– ident: ref33
  doi: 10.1109/TCYB.2019.2909806
– ident: ref31
  doi: 10.1109/TCYB.2015.2490738
– ident: ref47
  doi: 10.1016/j.ins.2013.03.002
– ident: ref26
  doi: 10.3390/app8091673
– ident: ref63
  doi: 10.1109/TEVC.2018.2855411
– ident: ref42
  doi: 10.1109/TCYB.2015.2493239
– ident: ref12
  doi: 10.1109/TEVC.2019.2958075
– ident: ref65
  doi: 10.1109/TCYB.2020.3021138
– ident: ref1
  doi: 10.1109/TCYB.2021.3112675
– ident: ref55
  doi: 10.1109/TEVC.2019.2896967
– ident: ref69
  doi: 10.1016/j.swevo.2011.02.002
– ident: ref14
  doi: 10.1007/3-540-44719-9_20
– ident: ref24
  doi: 10.1016/j.ins.2020.07.009
– ident: ref25
  doi: 10.1109/TEVC.2016.2574621
– ident: ref52
  doi: 10.1109/TCYB.2015.2510698
– ident: ref58
  doi: 10.1109/TEM.2017.2766443
– ident: ref60
  doi: 10.1016/j.asoc.2012.02.025
– ident: ref41
  doi: 10.1109/4235.873238
– ident: ref68
  doi: 10.1016/j.swevo.2021.100930
– ident: ref22
  doi: 10.1109/TCYB.2017.2647742
– ident: ref50
  doi: 10.1109/CEC.2010.5586396
– ident: ref2
  doi: 10.1162/EVCO_a_00097
– ident: ref18
  doi: 10.1145/2739480.2754708
– ident: ref61
  doi: 10.3182/20120215-3-AT-3016.00066
– ident: ref28
  doi: 10.1007/s00500-015-1820-4
– ident: ref44
  doi: 10.1007/978-3-642-00619-7_7
– ident: ref23
  doi: 10.1109/tevc.2023.3241762
– ident: ref10
  doi: 10.1109/TEVC.2005.846356
– ident: ref62
  doi: 10.1109/TEVC.2020.3004012
– ident: ref66
  doi: 10.1109/tevc.2022.3222844
– ident: ref70
  doi: 10.1109/TSMC.2022.3221466
– ident: ref7
  doi: 10.1109/TEVC.2020.3004027
– ident: ref16
  doi: 10.1016/j.ins.2022.05.050
– ident: ref34
  doi: 10.1109/TEVC.2019.2925722
– ident: ref36
  doi: 10.1109/TEVC.2008.2009032
– ident: ref45
  doi: 10.1109/TSMC.2018.2858843
– ident: ref9
  doi: 10.1109/TCYB.2020.3017017
– ident: ref11
  doi: 10.1109/JSYST.2021.3061670
– ident: ref19
  doi: 10.1109/TEVC.2011.2180533
– ident: ref67
  doi: 10.1109/CEC.2006.1688406
– ident: ref30
  doi: 10.1109/TCYB.2013.2245892
– ident: ref3
  doi: 10.1109/HIS.2006.264943
– ident: ref13
  doi: 10.1145/3524495
– ident: ref46
  doi: 10.1109/TCYB.2014.2345478
– ident: ref51
  doi: 10.1007/1-84628-137-7_6
– ident: ref20
  doi: 10.1016/j.swevo.2017.10.005
– ident: ref59
  doi: 10.1016/j.oceaneng.2017.12.049
SSID ssj0014519
Score 2.5309007
Snippet Dynamic constrained multiobjective optimization problems (DCMOPs) abound in real-world applications and gain increasing attention in the evolutionary...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1381
SubjectTerms Benchmark testing
Diversity
Diversity reception
dynamic constrained multiobjective optimization
evolutionary algorithm
Heuristic algorithms
Linear programming
Optimization
Sociology
Statistics
test suite
Title Evolutionary Dynamic Constrained Multiobjective Optimization: Test Suite and Algorithm
URI https://ieeexplore.ieee.org/document/10246310
Volume 28
WOSCitedRecordID wos001328314100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60eKgHq1WxvtiDJyF1k91ms95KbfFUBWvpLST78EGbSGgL_nv31ZKLgrew7EKSb2dnkpn5PgBupER6nGcByXkSEKlCbXPcSIYJqjLRQzzkVmyCjsfJbMaefbO67YWRUtriM9k1lzaXL0q-Mr_KtIVHJMamoWqX0tg1a21TBoYnxVXTMx0yJjOfwgwRu5sMp4Ou0QnvYhzi2Ei615xQTVXFOpVR65-3cwgOfPQI-w7uI7AjizZobZQZoDfUNtiv0Qy2QdNElI6Q-RhMh2u_27LqGz44QXpodDutWoQU0PbklvmnOwrhkz5UFr5b8x5OtBeBLysdqMKsELA_fyurj-X74gS8joaTwWPgxRUCrn3yMggVijUgJMcZxzmNBMtpjxrY4lglUtu5iEXGhQpzlMhE0Z5CBOcxJwpRlSt8ChpFWcgzAAXDLGGcRCRRhEiW6SDHcDlhFkaIR1EHoM3bTrlnHjePNE_tFwhiqQEoNQClHqAOuN0u-XK0G39NPjHg1CY6XM5_Gb8ATb2cuJK8S9BYVit5Bfb4WkNRXdtd9QO_k8up
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6kCtaD1VqxPvfgSUjdZLdJ1luplYq1CtbSW0j24YM-pLQF_727m23pRcFbWDYhybezM8nMNx_ApZRYj_PUoxmPPSqVr22OG8kwEalU1DH3uRWbiLrdeDBgz46sbrkwUkpbfCZr5tDm8sWEz82vMm3hAQ2JIVRtGuksR9daJQ1Mp5S8np7poDEeuCSmj9l1r9Vv1oxSeI0Qn4RG1H3NDa3pqli3clf65w3twa6LH1EjB3wfNuS4DKWlNgNyplqGnbVGg2Uompgyb8l8AP3Wwq23dPqNbnNJemSUO61ehBTIsnIn2We-GaInva2MHF_zBvW0H0Evcx2qonQsUGP4Npl-zN5HFXi9a_Wabc_JK3hce-WZ5yscakhoRlJOsigQLIvqkQEuDFUstaWLUKRcKD_DsYxVVFeYkizkVOFIZYocQmE8GcsjQIIRFjNOAxorSiVLdZhjujkR5geYB0EV8PJtJ9z1HjePNEzsNwhmiQEoMQAlDqAqXK1O-cobb_w1uWLAWZuY43L8y_gFbLd7j52kc999OIGivhTNC_ROoTCbzuUZbPGFhmV6blfYD4cJzvI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Dynamic+Constrained+Multiobjective+Optimization%3A+Test+Suite+and+Algorithm&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Chen%2C+Guoyu&rft.au=Guo%2C+Yinan&rft.au=Wang%2C+Yong&rft.au=Liang%2C+Jing&rft.date=2024-10-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=28&rft.issue=5&rft.spage=1381&rft.epage=1395&rft_id=info:doi/10.1109%2FTEVC.2023.3313689&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2023_3313689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon