Conditional Generative Adversarial Network-Based Bilevel Evolutionary Multiobjective Optimization Algorithm

In bilevel multiobjective optimization problems (BLMOPs), the mapping from an upper-level vector to the corresponding lower-level optimal vectors is a complex set valued mapping. Existing methods require numerous surrogate models to fit such a set valued mapping by grouping the lower-level optimal v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 28; H. 5; S. 1205 - 1219
Hauptverfasser: Wang, Weizhong, Liu, Hai-Lin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.10.2024
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In bilevel multiobjective optimization problems (BLMOPs), the mapping from an upper-level vector to the corresponding lower-level optimal vectors is a complex set valued mapping. Existing methods require numerous surrogate models to fit such a set valued mapping by grouping the lower-level optimal vectors, and the effects are not satisfactory because the correlation among lower-level optimal vectors corresponding to the same upper-level vector is disregarded. In this article, introducing conditional generative adversarial network (cGAN), we use only one surrogate model to effectively fit such a set valued mapping, which extracts knowledge from lower-level optimal vectors corresponding to the same upper-level vector. Then, a BLMOP is transformed into a single-level constraint multiobjective optimization problem (CMOP). By adaptively allocating computational resources to optimize the CMOP, promising upper-level vectors are obtained. Furthermore, a lower-level search is executed for these promising upper-level vectors, thus obtaining high-quality solutions. Because of the excellent performance of cGAN and the lower-level search conducted only for promising upper-level vectors, the computational overhead is greatly reduced. The proposed algorithm has achieved the best results in comparison with five state-of-the-art algorithms on benchmark problems and a real-world problem, whose effectiveness has been demonstrated.
AbstractList In bilevel multiobjective optimization problems (BLMOPs), the mapping from an upper-level vector to the corresponding lower-level optimal vectors is a complex set valued mapping. Existing methods require numerous surrogate models to fit such a set valued mapping by grouping the lower-level optimal vectors, and the effects are not satisfactory because the correlation among lower-level optimal vectors corresponding to the same upper-level vector is disregarded. In this article, introducing conditional generative adversarial network (cGAN), we use only one surrogate model to effectively fit such a set valued mapping, which extracts knowledge from lower-level optimal vectors corresponding to the same upper-level vector. Then, a BLMOP is transformed into a single-level constraint multiobjective optimization problem (CMOP). By adaptively allocating computational resources to optimize the CMOP, promising upper-level vectors are obtained. Furthermore, a lower-level search is executed for these promising upper-level vectors, thus obtaining high-quality solutions. Because of the excellent performance of cGAN and the lower-level search conducted only for promising upper-level vectors, the computational overhead is greatly reduced. The proposed algorithm has achieved the best results in comparison with five state-of-the-art algorithms on benchmark problems and a real-world problem, whose effectiveness has been demonstrated.
Author Wang, Weizhong
Liu, Hai-Lin
Author_xml – sequence: 1
  givenname: Weizhong
  orcidid: 0009-0000-9891-6516
  surname: Wang
  fullname: Wang, Weizhong
  email: weizhong-wang@foxmail.com
  organization: School of Automation, Guangdong University of Technology, Guangzhou, China
– sequence: 2
  givenname: Hai-Lin
  orcidid: 0000-0003-2276-1938
  surname: Liu
  fullname: Liu, Hai-Lin
  email: hlliu@gdut.edu.cn
  organization: School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, China
BookMark eNp9kM1OwzAMgCMEEtvgAZA49AU64qQ_yXGrxkAa7DIQtypNPciWtVOaDcHT0247IA6cbNn-LPvrk_OqrpCQG6BDACrvFpPXbMgo40POZBLz5Iz0QEYQUsqS8zanQoZpKt4uSb9pVpRCFIPskXVWV6Xxpq6UDaZYoVPe7DEYlXt0jXKmLT-j_6zdOhyrBstgbCzu0QaTfW13B9B9BU8726bFCvWBnm-92Zhv1bWDkX2vnfEfmytysVS2wetTHJCX-8kiewhn8-ljNpqFmiWJD6HgslAxjVQkVJyyskCpmVCS8VJoSHgRKcp1nGrJQMBSpkwhhSTCGIVMNR-Q9LhXu7ppHC5zbfzhFu-UsTnQvHOWd87yzll-ctaS8IfcOrNpH_yXuT0yBhF_zYOIW__8Bz1SfJs
CODEN ITEVF5
CitedBy_id crossref_primary_10_1109_TCYB_2024_3492075
Cites_doi 10.1016/j.omega.2016.01.007
10.1287/opre.1090.0695
10.4236/ajor.2013.32026
10.1109/TCYB.2021.3061551
10.1109/CEC.2012.6256156
10.1287/inte.2013.0700
10.1109/TCYB.2022.3175533
10.1155/2012/102482
10.1109/4235.797969
10.1109/4235.996017
10.1002/atr.1211
10.1109/TEVC.2022.3154057
10.1145/2739480.2754732
10.1145/3520304.3529045
10.1016/j.knosys.2013.07.015
10.1016/j.wre.2015.06.002
10.1080/00207543.2021.1999523
10.1515/cait-2017-0030
10.1371/journal.pone.0128067
10.1007/s11590-015-0918-z
10.1080/09540091.2022.2077312
10.1109/TCYB.2020.2985081
10.1109/TEVC.2003.810761
10.1016/j.cor.2016.08.001
10.1162/evco_a_00015
10.1155/2016/9109824
10.1109/ACCESS.2020.3013568
10.1016/j.knosys.2007.01.003
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2023.3296536
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 1219
ExternalDocumentID 10_1109_TEVC_2023_3296536
10185941
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62172110
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2022A1515010130; 2023A1515011793
  funderid: 10.13039/501100003453
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-1b39ba504a48a572dbe9c28a923d8c163b4a03c57c92181f972ae0164e5e897c3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001328314100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 03:13:50 EST 2025
Tue Nov 18 22:27:55 EST 2025
Wed Aug 27 02:19:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-1b39ba504a48a572dbe9c28a923d8c163b4a03c57c92181f972ae0164e5e897c3
ORCID 0009-0000-9891-6516
0000-0003-2276-1938
PageCount 15
ParticipantIDs ieee_primary_10185941
crossref_primary_10_1109_TEVC_2023_3296536
crossref_citationtrail_10_1109_TEVC_2023_3296536
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
Franceschi (ref6); 80
ref31
ref30
ref11
ref33
Bostian (ref7) 2015; 11
ref10
ref2
ref1
ref16
ref19
Zhang (ref29) 2007; 20
ref23
ref26
ref22
Aggarwal (ref25) 2019
ref21
Miyato (ref24) 2018
Sinha (ref17) 2017; 77
ref28
ref27
Tao (ref18) 2012; 2012
ref9
Zhang (ref20) 2013; 53
ref4
ref3
ref5
Kingma (ref32) 2014
Whittaker (ref8) 2017; 66
References_xml – year: 2019
  ident: ref25
  article-title: Benchmarking regression methods: A comparison with CGAN
  publication-title: arXiv:1905.12868
– volume: 66
  start-page: 15
  year: 2017
  ident: ref8
  article-title: Spatial targeting of agri-environmental policy using bilevel evolutionary optimization
  publication-title: Omega
  doi: 10.1016/j.omega.2016.01.007
– ident: ref1
  doi: 10.1287/opre.1090.0695
– ident: ref13
  doi: 10.4236/ajor.2013.32026
– ident: ref23
  doi: 10.1109/TCYB.2021.3061551
– ident: ref12
  doi: 10.1109/CEC.2012.6256156
– ident: ref2
  doi: 10.1287/inte.2013.0700
– ident: ref22
  doi: 10.1109/TCYB.2022.3175533
– ident: ref19
  doi: 10.1155/2012/102482
– ident: ref28
  doi: 10.1109/4235.797969
– ident: ref31
  doi: 10.1109/4235.996017
– ident: ref3
  doi: 10.1002/atr.1211
– ident: ref11
  doi: 10.1109/TEVC.2022.3154057
– ident: ref5
  doi: 10.1145/2739480.2754732
– volume: 2012
  start-page: 359
  year: 2012
  ident: ref18
  article-title: An improved particle swarm optimization for solving bilevel multiobjective programming problem
  publication-title: J. Appl. Math.
– ident: ref30
  doi: 10.1145/3520304.3529045
– volume: 53
  start-page: 13
  year: 2013
  ident: ref20
  article-title: Solving high dimensional bilevel multiobjective programming problem using a hybrid particle swarm optimization algorithm with crossover operator
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.07.015
– volume: 11
  start-page: 1
  year: 2015
  ident: ref7
  article-title: Valuing water quality tradeoffs at different spatial scales: An integrated approach using bilevel optimization
  publication-title: Water Resourc. Econ.
  doi: 10.1016/j.wre.2015.06.002
– ident: ref21
  doi: 10.1080/00207543.2021.1999523
– ident: ref14
  doi: 10.1515/cait-2017-0030
– ident: ref4
  doi: 10.1371/journal.pone.0128067
– year: 2018
  ident: ref24
  article-title: cGANs with projection discriminator
  publication-title: arXiv:1802.05637
– ident: ref9
  doi: 10.1007/s11590-015-0918-z
– ident: ref27
  doi: 10.1080/09540091.2022.2077312
– ident: ref26
  doi: 10.1109/TCYB.2020.2985081
– ident: ref33
  doi: 10.1109/TEVC.2003.810761
– volume: 77
  start-page: 194
  year: 2017
  ident: ref17
  article-title: Approximated set-valued mapping approach for handling multiobjective bilevel problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.08.001
– ident: ref15
  doi: 10.1162/evco_a_00015
– ident: ref10
  doi: 10.1155/2016/9109824
– year: 2014
  ident: ref32
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– volume: 80
  start-page: 1568
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  ident: ref6
  article-title: Bilevel programming for hyperparameter optimization and meta-learning
– ident: ref16
  doi: 10.1109/ACCESS.2020.3013568
– volume: 20
  start-page: 495
  issue: 5
  year: 2007
  ident: ref29
  article-title: Decentralized multi-objective bilevel decision making with fuzzy demands
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2007.01.003
SSID ssj0014519
Score 2.464937
Snippet In bilevel multiobjective optimization problems (BLMOPs), the mapping from an upper-level vector to the corresponding lower-level optimal vectors is a complex...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1205
SubjectTerms Adaptation models
Bilevel optimization
Computational modeling
conditional generative adversarial network (cGAN)
Correlation
evolutionary algorithm
Generators
multiobjective
Optimization
Sociology
Task analysis
Title Conditional Generative Adversarial Network-Based Bilevel Evolutionary Multiobjective Optimization Algorithm
URI https://ieeexplore.ieee.org/document/10185941
Volume 28
WOSCitedRecordID wos001328314100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBQimivOSBCSmtk9iNPbZVK6bCUFC3yHYcKLQNSh8S_x6_WrqAxBZFthTlu9xdfPd9B8BdnhGGOI6CtgoNJQfJQOR5GCQRZ4SKSFCR22ETyXBIx2P25MnqlgujlLLNZ6ppLm0tPyvkyhyVtYy6FGGGpr6fJG1H1tqWDIxOiuumZzplpGNfwgwRa436L72mmRPejCPWJlaO-ScI7UxVsUFlUP3n45yAY589wo6D-xTsqXkNVDeTGaD_UGvgaEdm8Ax89ApTmLaHftDpTBsnB-0w5gU3JgiHrh086OqolsGu9hVrNYX9tbdMXn5By9UtxLtzkfBRO5uZZ3HCzvS1KCfLt1kdPA_6o95D4IcsBFLH5mUQipgJThDmmHKSRJlQTEaU68Qvo1JnawJzFEuSSGaygZxpFJXR5VJEUZbI-BxU5sVcXQCIQ6HzJ5knLCNYxzlKsciRzDCLeS5R2ABo89ZT6RXIzSCMaWr_RBBLDVCpASr1QDXA_XbLp5Pf-Gtx3YC0s9Dhc_nL_StwqLdj15p3DSrLcqVuwIFcLyeL8tZa1zeRJs50
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQIAEDzyLeeGBCSnESm9gjVEVFQGEoqFtkOw6v0qASKvHv8dkGuoDEFkVOFOW73F18932H0EFZMEEkTaJjEwMlh-hIlWUcZYkUjKtEcVW6YRNZt8v7fXETyOqOC2OMcc1npgmHrpZfVPodtsqOQF2KCaCpzzBKE-LpWt9FA1BK8f30wiaNvB-KmDERR732XasJk8KbaSKOmRNk_glDE3NVXFg5W_rnAy2jxZA_4hMP-AqaMsNVtPQ1mwGHT3UVLUwIDa6h51YFpWm37Ye90jS4OezGMb9JMELc9Q3h0amNawU-td5ibAa4PQ62KUcf2LF1K_XknSS-tu7mJfA48cngvho91g8vDXR71u61OlEYsxBpG53rKFapUJIRKimXLEsKZYROuLSpX8G1zdcUlSTVLNMC8oFSWBwNKHMZZrjIdLqOpofV0GwgTGNlMyhdZqIAgATnVJVEF1SkstQk3kTk663nOmiQwyiMQe7-RYjIAagcgMoDUJvo8PuSVy_A8dfiBoA0sdDjs_XL-X001-ldXeaX592LbTRvb0V9o94Omq5H72YXzepx_fg22nOW9gl2d9G7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+Generative+Adversarial+Network-Based+Bilevel+Evolutionary+Multiobjective+Optimization+Algorithm&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Wang%2C+Weizhong&rft.au=Liu%2C+Hai-Lin&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=28&rft.issue=5&rft.spage=1205&rft.epage=1219&rft_id=info:doi/10.1109%2FTEVC.2023.3296536&rft.externalDocID=10185941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon