A Modified Jellyfish Search Algorithm for Task Scheduling in Fog‐Cloud Systems
ABSTRACT Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face many challenges when serving the requests from IoT devices due to several factors such as latency, network congestion, data privacy, an...
Uloženo v:
| Vydáno v: | Concurrency and computation Ročník 37; číslo 9-11 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
15.05.2025
|
| Témata: | |
| ISSN: | 1532-0626, 1532-0634 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABSTRACT
Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face many challenges when serving the requests from IoT devices due to several factors such as latency, network congestion, data privacy, and security. Despite the popularity and numerous advantages of hybrid models, task scheduling is still an unsolvable multiobjective optimization problem. This research uses an improved bioinspired jellyfish search algorithm to solve the nonlinear np‐hard task scheduling optimization problem. The work proposes a multiobjective improved jellyfish search (MOIJS) framework using a multiobjective adaptation function to minimize the make‐span, cost, and power consumption that benefit customers and providers by considering the expenses associated with execution and power consumption. The performance of MOIJS is evaluated by comparing it with the discrete nondominated sorting genetic algorithm II using a MATLAB simulator. The experimental outcomes demonstrate the proposed work's efficacy in reducing the make‐span, cost, and energy in cloud‐fog environments in different batches of tasks. |
|---|---|
| AbstractList | Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face many challenges when serving the requests from IoT devices due to several factors such as latency, network congestion, data privacy, and security. Despite the popularity and numerous advantages of hybrid models, task scheduling is still an unsolvable multiobjective optimization problem. This research uses an improved bioinspired jellyfish search algorithm to solve the nonlinear np‐hard task scheduling optimization problem. The work proposes a multiobjective improved jellyfish search (MOIJS) framework using a multiobjective adaptation function to minimize the make‐span, cost, and power consumption that benefit customers and providers by considering the expenses associated with execution and power consumption. The performance of MOIJS is evaluated by comparing it with the discrete nondominated sorting genetic algorithm II using a MATLAB simulator. The experimental outcomes demonstrate the proposed work's efficacy in reducing the make‐span, cost, and energy in cloud‐fog environments in different batches of tasks. ABSTRACT Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face many challenges when serving the requests from IoT devices due to several factors such as latency, network congestion, data privacy, and security. Despite the popularity and numerous advantages of hybrid models, task scheduling is still an unsolvable multiobjective optimization problem. This research uses an improved bioinspired jellyfish search algorithm to solve the nonlinear np‐hard task scheduling optimization problem. The work proposes a multiobjective improved jellyfish search (MOIJS) framework using a multiobjective adaptation function to minimize the make‐span, cost, and power consumption that benefit customers and providers by considering the expenses associated with execution and power consumption. The performance of MOIJS is evaluated by comparing it with the discrete nondominated sorting genetic algorithm II using a MATLAB simulator. The experimental outcomes demonstrate the proposed work's efficacy in reducing the make‐span, cost, and energy in cloud‐fog environments in different batches of tasks. |
| Author | Jangu, Nupur Raza, Zahid |
| Author_xml | – sequence: 1 givenname: Nupur orcidid: 0000-0003-1959-258X surname: Jangu fullname: Jangu, Nupur organization: School of Computer and Systems Sciences, Jawaharlal Nehru University – sequence: 2 givenname: Zahid orcidid: 0000-0003-1906-6774 surname: Raza fullname: Raza, Zahid email: zahidraza75@gmail.com organization: School of Computer and Systems Sciences, Jawaharlal Nehru University |
| BookMark | eNp1kLtOAkEARScGEwEt_INpLRbmLVuSDYgGIwlYb2bnsTs67JAZiNnOT_Ab_RJRjJ3VvcW5tzgD0GtDawC4xmiEESJjtTOjW4Q4OwN9zCnJkKCs99eJuACDlF4QwhhR3AerKXwM2llnNHww3nfWpQaujYyqgVNfh-j2zRbaEOFGple4Vo3RB-_aGroWzkP9-f5R-HDQcN2lvdmmS3BupU_m6jeH4Hk-2xSLbPl0d19Ml5kiQrBMqIoQLLnQXKhcIWy5yJkSnDBOjUaMVsyqnCpjkWCTSSXMsTOmtZSVtYwOwc3pV8WQUjS23EW3lbErMSq_VZRHFeWPiiM7PrFvzpvuf7AsVrPT4gsYW2Kp |
| Cites_doi | 10.1109/ACCESS.2019.2924958 10.1007/s10586‐023‐04071‐1 10.1109/RTEST49666.2020.9140118 10.1145/2342509.2342513 10.1109/ICCT.2017.8359780 10.3390/app9091730 10.1002/ett.4018 10.1016/j.suscom.2022.100834 10.1002/ett.3770 10.3390/s23052445 10.1007/978‐3‐319‐46173‐1˙2 10.1016/j.procs.2015.04.158 10.1016/j.scs.2020.102428 10.1007/s10586‐021‐03371‐8 10.1016/j.knosys.2021.107387 10.1007/s11277‐021‐08572‐3 10.1007/s11227‐021‐04018‐6 10.1016/j.amc.2020.125535 10.1016/j.eswa.2021.115042 10.1002/dac.4652 10.1109/TCC.2020.3032386 10.1007/978-3-319-98557-2_4 10.3390/su14042305 10.1371/journal.pone.0260232 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/cpe.70054 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_70054 CPE70054 |
| Genre | researchArticle |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX CITATION O8X |
| ID | FETCH-LOGICAL-c2664-6cb221a56d56c9c01f5694c652453ed043b4fc93cef06488b6e3ce44ddaabff43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001461028600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Sat Nov 29 07:56:09 EST 2025 Wed Aug 20 07:25:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9-11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2664-6cb221a56d56c9c01f5694c652453ed043b4fc93cef06488b6e3ce44ddaabff43 |
| ORCID | 0000-0003-1959-258X 0000-0003-1906-6774 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70054 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1002_cpe_70054 wiley_primary_10_1002_cpe_70054_CPE70054 |
| PublicationCentury | 2000 |
| PublicationDate | 15 May 2025 2025-05-15 |
| PublicationDateYYYYMMDD | 2025-05-15 |
| PublicationDate_xml | – month: 05 year: 2025 text: 15 May 2025 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2019; 7 2019; 9 2012 2020; 63 2023; 37 2021; 389 2022; 25 2011; 8 2021; 180 2015; 48 2021; 16 2021; 34 2021; 11 2023; 23 2020; 31 2020 2023; 27 2019; 23 2022; 78 2022; 14 2017 2022; 10 2021; 231 2022; 11 2022; 127 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 K M. B. (e_1_2_10_26_1) 2022; 11 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_11_1 Kaveh A. (e_1_2_10_10_1) 2021; 11 e_1_2_10_27_1 e_1_2_10_25_1 |
| References_xml | – start-page: 975 year: 2017 end-page: 980 – volume: 10 start-page: 2294 issue: 4 year: 2022 end-page: 2308 article-title: An Automated Task Scheduling Model Using Non‐Dominated Sorting Genetic Algorithm II for Fog‐Cloud Systems publication-title: IEEE Transactions on Cloud Computing – volume: 231 year: 2021 article-title: A Comprehensive Analysis for Multi‐Objective Distributed Generations and Capacitor Banks Placement in Radial Distribution Networks Using Hybrid Neural Network Algorithm publication-title: Knowledge‐Based Systems – volume: 31 issue: 8 year: 2020 article-title: Distributed Resource Management in Dew Based Edge to Cloud Computing Ecosystem: A Hybrid Adaptive Evolutionary Approach publication-title: Transactions on Emerging Telecommunications Technologies – volume: 389 year: 2021 article-title: A Novel Metaheuristic Optimizer Inspired by Behavior of Jellyfish in Ocean publication-title: Applied Mathematics and Computation – volume: 27 start-page: 1947 issue: 2 year: 2023 end-page: 1964 article-title: Hybrid Modified Particle Swarm Optimization With Genetic Algorithm (GA) Based Workflow Scheduling in Cloud‐Fog Environment for Multi‐Objective Optimization publication-title: Cluster Computing – volume: 11 start-page: 35 issue: 3 year: 2022 end-page: 43 article-title: Cloneable Jellyfish Search Optimizer Based Task Scheduling in Cloud Environments Bulut Sistemlerde Denizanası; Arama Optimizasyonu Tabanlı; Görev Çizelgeleme publication-title: Turkish Journal of Nature and Science – volume: 31 issue: 2 year: 2020 article-title: An Efficient Task Scheduling Approach Using Moth‐Flame Optimization Algorithm for Cyber‐Physical System Applications in Fog Computing publication-title: Transactions on Emerging Telecommunications Technologies – volume: 63 year: 2020 article-title: A Genetic Algorithm for Energy Efficient Fog Layer Resource Management in Context‐Aware Smart Cities publication-title: Sustainable Cities and Society – start-page: 13 year: 2012 end-page: 16 – volume: 23 year: 2019 – volume: 48 start-page: 107 year: 2015 end-page: 113 article-title: Multi‐Objective Tasks Scheduling Algorithm for Cloud Computing Throughput Optimization publication-title: Procedia Computer Science – volume: 9 issue: 9 year: 2019 article-title: Evolutionary Algorithms to Optimize Task Scheduling Problem for the IoT Based Bag‐Of‐Tasks Application in Cloud–Fog Computing Environment publication-title: Applied Sciences – volume: 34 issue: 1 year: 2021 article-title: An Energy‐Aware Approach for Resource Managing in the Fog‐Based Internet of Things Using a Hybrid Algorithm publication-title: International Journal of Communication Systems – volume: 78 start-page: 4236 issue: 3 year: 2022 end-page: 4260 article-title: A bi‐Objective Task Scheduling Approach in Fog Computing Using Hybrid Fireworks Algorithm publication-title: Journal of Supercomputing – volume: 127 start-page: 1187 issue: 2 year: 2022 end-page: 1205 article-title: A Spectrum Defragmentation Algorithm Using Jellyfish Optimization Technique in Elastic Optical Network (EON) publication-title: Wireless Personal Communications – volume: 7 start-page: 115760 year: 2019 end-page: 115773 article-title: A Novel Bio‐Inspired Hybrid Algorithm (NBIHA) for Efficient Resource Management in Fog Computing publication-title: IEEE Access – volume: 11 start-page: 329 issue: 2 year: 2021 end-page: 356 article-title: Quantum‐Based Jellyfish Search Optimizer for Structural Optimization publication-title: International Journal of Optimization in Civil Engineering – volume: 37 year: 2023 article-title: IKH‐EFT: An Improved Method of Workflow Scheduling Using the Krill Herd Algorithm in the Fog‐Cloud Environment publication-title: Sustainable Computing Informatics & Systems – volume: 25 start-page: 141 issue: 1 year: 2022 end-page: 165 article-title: Multi‐Objective Task Scheduling in Cloud‐Fog Computing Using Goal Programming Approach publication-title: Cluster Computing – volume: 23 start-page: 1 issue: 5 year: 2023 end-page: 20 article-title: EEOA: Cost and Energy Efficient Task Scheduling in a Cloud‐Fog Framework publication-title: Sensors – volume: 8 start-page: 256 issue: 3 year: 2011 end-page: 279 article-title: Particle Swarm Optimization publication-title: Industrial Electronics Handbook ‐ Five Volume Set – volume: 180 year: 2021 article-title: Bio‐Inspired Optimization of Weighted‐Feature Machine Learning for Strength Property Prediction of Fiber‐Reinforced Soil publication-title: Expert Systems with Applications – volume: 14 start-page: 1 issue: 4 year: 2022 end-page: 33 article-title: ESMA‐OPF: Enhanced Slime Mould Algorithm for Solving Optimal Power Flow Problem publication-title: Sustainability – volume: 16 issue: 11 year: 2021 article-title: Android Malware Classification Based on Random Vector Functional Link and Artificial Jellyfish Search Optimizer publication-title: PLoS One – start-page: 1 year: 2020 end-page: 8 – ident: e_1_2_10_20_1 doi: 10.1109/ACCESS.2019.2924958 – ident: e_1_2_10_24_1 doi: 10.1007/s10586‐023‐04071‐1 – ident: e_1_2_10_22_1 doi: 10.1109/RTEST49666.2020.9140118 – ident: e_1_2_10_2_1 doi: 10.1145/2342509.2342513 – ident: e_1_2_10_17_1 doi: 10.1109/ICCT.2017.8359780 – ident: e_1_2_10_19_1 doi: 10.3390/app9091730 – volume: 11 start-page: 35 issue: 3 year: 2022 ident: e_1_2_10_26_1 article-title: Cloneable Jellyfish Search Optimizer Based Task Scheduling in Cloud Environments Bulut Sistemlerde Denizanası; Arama Optimizasyonu Tabanlı; Görev Çizelgeleme publication-title: Turkish Journal of Nature and Science – ident: e_1_2_10_4_1 doi: 10.1002/ett.4018 – ident: e_1_2_10_25_1 doi: 10.1016/j.suscom.2022.100834 – ident: e_1_2_10_18_1 doi: 10.1002/ett.3770 – ident: e_1_2_10_23_1 doi: 10.3390/s23052445 – ident: e_1_2_10_27_1 doi: 10.1007/978‐3‐319‐46173‐1˙2 – ident: e_1_2_10_8_1 doi: 10.1016/j.procs.2015.04.158 – ident: e_1_2_10_6_1 doi: 10.1016/j.scs.2020.102428 – ident: e_1_2_10_5_1 doi: 10.1007/s10586‐021‐03371‐8 – ident: e_1_2_10_11_1 doi: 10.1016/j.knosys.2021.107387 – ident: e_1_2_10_15_1 doi: 10.1007/s11277‐021‐08572‐3 – ident: e_1_2_10_3_1 doi: 10.1007/s11227‐021‐04018‐6 – ident: e_1_2_10_9_1 doi: 10.1016/j.amc.2020.125535 – ident: e_1_2_10_13_1 doi: 10.1016/j.eswa.2021.115042 – ident: e_1_2_10_7_1 doi: 10.1002/dac.4652 – volume: 11 start-page: 329 issue: 2 year: 2021 ident: e_1_2_10_10_1 article-title: Quantum‐Based Jellyfish Search Optimizer for Structural Optimization publication-title: International Journal of Optimization in Civil Engineering – ident: e_1_2_10_16_1 doi: 10.1109/TCC.2020.3032386 – ident: e_1_2_10_21_1 doi: 10.1007/978-3-319-98557-2_4 – ident: e_1_2_10_12_1 doi: 10.3390/su14042305 – ident: e_1_2_10_14_1 doi: 10.1371/journal.pone.0260232 |
| SSID | ssj0011031 |
| Score | 2.395186 |
| Snippet | ABSTRACT
Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models... Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| SubjectTerms | cloud computing fog computing genetic algorithm jellyfish algorithm task scheduling |
| Title | A Modified Jellyfish Search Algorithm for Task Scheduling in Fog‐Cloud Systems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70054 |
| Volume | 37 |
| WOSCitedRecordID | wos001461028600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeH2nrwYn1ifbGIBy-x6WY3yeKp1BaRWoq00FvYbHbbYExKH4I3P4Kf0U_i5tGqB0HwtofZsExmdv557G8ALonLhSUa-kmVSWEQ1ySGtkxxd0S5jrIaXGV3uuv0eu5oxPoluFmdhcn5EOsXbmlmZPt1muDcn9e_oKFiKq-dVHFsQAXruKVlqNw-dobd9UeEtINBjkvFhqmF-wosZOL6evKPcvRdnmb1pVP918p2YLuQlaiZx8EulGS8B9VVywZUZPA-9JvoIQlCpYUnupdR9KrC-QTl_xyjZjROZuFi8oy0kkUDPn_SEye6FqVH1lEYo04y_nh7b0XJMkAF6vwAhp32oHVnFE0VDKFrMTFs4WPc4NQOqC2YMBuK2owIm2JCLRmYxPKJEswSUmm14rq-LfWYkCDg3FeKWIdQjpNYHgGyfJsxpVyTBYwEjuLE0VenvtYgmGtZUoOLlW-9ac7O8HJKMva0j7zMRzW4ynz5u4XX6rezwfHfTU9gC6eNelPMKj2F8mK2lGewKV4W4Xx2XgTKJ5EUwUg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeH2gp6sT6xPhfx4CU2j81jwUupLVXTUqSF3kKy2W2DtSl9CN78CH5GP4m7eVQ9CIK3PcyGMJnJ_LLZ_Q_AJXZ8alBNfKkSRhXsqFgRllLuDnPH5obm8-RJu3an4wwGpFuAm_wsTKoPsVpwk5mRvK9lgssF6eqXaiidsmtbIscalLAIIxHfpdvHZt9d_UWQLQxSvVRdUQW558pCql5dTf5Rj77zaVJgmuX_3do2bGVgiWppJOxAgU12oZw3bUBZDu9Bt4bacRhxgZ7ono3Hrzyaj1C66xjVxsN4Fi1Gz0iwLOr58ycxcSSqkTy0jqIJasbDj7f3-jhehigTO9-HfrPRq7eUrK2CQkU1xopFA13XfNMKTYsSqmrctAimlqlj02Chio0Ac0oMyrjgFccJLCbGGIeh7wecY-MAipN4wg4BGYFFCOeOSkKCQ5v72BZXNwNBIbovwKQCF7lzvWmqnuGlOsm6J3zkJT6qwFXizN8tvHq3kQyO_m56DhutXtv13LvOwzFs6rJtrxRdNU-guJgt2Sms05dFNJ-dZVHzCTHfxTg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcftRXxYl2xroN48BLNMlkGvJS2waWWIi30FpJZ2mBtShfBmx_Bz-gncSZJqx4Ewdsc3oTwMi_vn2V-f4Bz7IXUooZ8UiWcatjTsSYjFe4OC88VlhGK9Eo33VbL6_VIuwDXi70wGR9i-cJNVUZ6v1YFzsdMXH1RQ-mYX7pKcqxACSsTmSKU6o9-t7n8iqAsDDJeqqnpUrkvyEK6ebWc_KMffdenaYPxy_87tU3YyIUlqmYrYQsKfLQN5YVpA8preAfaVfSQsFhI6Ynu-HD4KuLpAGV_HaPqsJ9M4tngGUktizrh9ElOHMhupDato3iE_KT_8fZeGyZzhnLY-S50_UandqPltgoald0Yaw6NTNMIbYfZDiVUN4TtEEwd28S2xZmOrQgLSizKhdQrnhc5XI4xZiwMIyGwtQfFUTLi-4CsyCFECE8njGDmihC78uh2JFWIGUphUoGzRXKDcUbPCDJOshnIHAVpjipwkSbz94ig1m6kg4O_h57CWrvuB83b1v0hrJvKtVcxV-0jKM4mc34Mq_RlFk8nJ_mi-QQS9sSz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Modified+Jellyfish+Search+Algorithm+for+Task+Scheduling+in+Fog%E2%80%90Cloud+Systems&rft.jtitle=Concurrency+and+computation&rft.au=Jangu%2C+Nupur&rft.au=Raza%2C+Zahid&rft.date=2025-05-15&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=9-11&rft_id=info:doi/10.1002%2Fcpe.70054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_70054 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |