A Modified Jellyfish Search Algorithm for Task Scheduling in Fog‐Cloud Systems

ABSTRACT Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face many challenges when serving the requests from IoT devices due to several factors such as latency, network congestion, data privacy, an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 37; číslo 9-11
Hlavní autoři: Jangu, Nupur, Raza, Zahid
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.05.2025
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face many challenges when serving the requests from IoT devices due to several factors such as latency, network congestion, data privacy, and security. Despite the popularity and numerous advantages of hybrid models, task scheduling is still an unsolvable multiobjective optimization problem. This research uses an improved bioinspired jellyfish search algorithm to solve the nonlinear np‐hard task scheduling optimization problem. The work proposes a multiobjective improved jellyfish search (MOIJS) framework using a multiobjective adaptation function to minimize the make‐span, cost, and power consumption that benefit customers and providers by considering the expenses associated with execution and power consumption. The performance of MOIJS is evaluated by comparing it with the discrete nondominated sorting genetic algorithm II using a MATLAB simulator. The experimental outcomes demonstrate the proposed work's efficacy in reducing the make‐span, cost, and energy in cloud‐fog environments in different batches of tasks.
AbstractList Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face many challenges when serving the requests from IoT devices due to several factors such as latency, network congestion, data privacy, and security. Despite the popularity and numerous advantages of hybrid models, task scheduling is still an unsolvable multiobjective optimization problem. This research uses an improved bioinspired jellyfish search algorithm to solve the nonlinear np‐hard task scheduling optimization problem. The work proposes a multiobjective improved jellyfish search (MOIJS) framework using a multiobjective adaptation function to minimize the make‐span, cost, and power consumption that benefit customers and providers by considering the expenses associated with execution and power consumption. The performance of MOIJS is evaluated by comparing it with the discrete nondominated sorting genetic algorithm II using a MATLAB simulator. The experimental outcomes demonstrate the proposed work's efficacy in reducing the make‐span, cost, and energy in cloud‐fog environments in different batches of tasks.
ABSTRACT Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face many challenges when serving the requests from IoT devices due to several factors such as latency, network congestion, data privacy, and security. Despite the popularity and numerous advantages of hybrid models, task scheduling is still an unsolvable multiobjective optimization problem. This research uses an improved bioinspired jellyfish search algorithm to solve the nonlinear np‐hard task scheduling optimization problem. The work proposes a multiobjective improved jellyfish search (MOIJS) framework using a multiobjective adaptation function to minimize the make‐span, cost, and power consumption that benefit customers and providers by considering the expenses associated with execution and power consumption. The performance of MOIJS is evaluated by comparing it with the discrete nondominated sorting genetic algorithm II using a MATLAB simulator. The experimental outcomes demonstrate the proposed work's efficacy in reducing the make‐span, cost, and energy in cloud‐fog environments in different batches of tasks.
Author Jangu, Nupur
Raza, Zahid
Author_xml – sequence: 1
  givenname: Nupur
  orcidid: 0000-0003-1959-258X
  surname: Jangu
  fullname: Jangu, Nupur
  organization: School of Computer and Systems Sciences, Jawaharlal Nehru University
– sequence: 2
  givenname: Zahid
  orcidid: 0000-0003-1906-6774
  surname: Raza
  fullname: Raza, Zahid
  email: zahidraza75@gmail.com
  organization: School of Computer and Systems Sciences, Jawaharlal Nehru University
BookMark eNp1kLtOAkEARScGEwEt_INpLRbmLVuSDYgGIwlYb2bnsTs67JAZiNnOT_Ab_RJRjJ3VvcW5tzgD0GtDawC4xmiEESJjtTOjW4Q4OwN9zCnJkKCs99eJuACDlF4QwhhR3AerKXwM2llnNHww3nfWpQaujYyqgVNfh-j2zRbaEOFGple4Vo3RB-_aGroWzkP9-f5R-HDQcN2lvdmmS3BupU_m6jeH4Hk-2xSLbPl0d19Ml5kiQrBMqIoQLLnQXKhcIWy5yJkSnDBOjUaMVsyqnCpjkWCTSSXMsTOmtZSVtYwOwc3pV8WQUjS23EW3lbErMSq_VZRHFeWPiiM7PrFvzpvuf7AsVrPT4gsYW2Kp
Cites_doi 10.1109/ACCESS.2019.2924958
10.1007/s10586‐023‐04071‐1
10.1109/RTEST49666.2020.9140118
10.1145/2342509.2342513
10.1109/ICCT.2017.8359780
10.3390/app9091730
10.1002/ett.4018
10.1016/j.suscom.2022.100834
10.1002/ett.3770
10.3390/s23052445
10.1007/978‐3‐319‐46173‐1˙2
10.1016/j.procs.2015.04.158
10.1016/j.scs.2020.102428
10.1007/s10586‐021‐03371‐8
10.1016/j.knosys.2021.107387
10.1007/s11277‐021‐08572‐3
10.1007/s11227‐021‐04018‐6
10.1016/j.amc.2020.125535
10.1016/j.eswa.2021.115042
10.1002/dac.4652
10.1109/TCC.2020.3032386
10.1007/978-3-319-98557-2_4
10.3390/su14042305
10.1371/journal.pone.0260232
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
DOI 10.1002/cpe.70054
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_70054
CPE70054
Genre researchArticle
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c2664-6cb221a56d56c9c01f5694c652453ed043b4fc93cef06488b6e3ce44ddaabff43
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001461028600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sat Nov 29 07:56:09 EST 2025
Wed Aug 20 07:25:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9-11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2664-6cb221a56d56c9c01f5694c652453ed043b4fc93cef06488b6e3ce44ddaabff43
ORCID 0000-0003-1959-258X
0000-0003-1906-6774
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70054
PageCount 14
ParticipantIDs crossref_primary_10_1002_cpe_70054
wiley_primary_10_1002_cpe_70054_CPE70054
PublicationCentury 2000
PublicationDate 15 May 2025
2025-05-15
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 15 May 2025
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Concurrency and computation
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 7
2019; 9
2012
2020; 63
2023; 37
2021; 389
2022; 25
2011; 8
2021; 180
2015; 48
2021; 16
2021; 34
2021; 11
2023; 23
2020; 31
2020
2023; 27
2019; 23
2022; 78
2022; 14
2017
2022; 10
2021; 231
2022; 11
2022; 127
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
K M. B. (e_1_2_10_26_1) 2022; 11
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_11_1
Kaveh A. (e_1_2_10_10_1) 2021; 11
e_1_2_10_27_1
e_1_2_10_25_1
References_xml – start-page: 975
  year: 2017
  end-page: 980
– volume: 10
  start-page: 2294
  issue: 4
  year: 2022
  end-page: 2308
  article-title: An Automated Task Scheduling Model Using Non‐Dominated Sorting Genetic Algorithm II for Fog‐Cloud Systems
  publication-title: IEEE Transactions on Cloud Computing
– volume: 231
  year: 2021
  article-title: A Comprehensive Analysis for Multi‐Objective Distributed Generations and Capacitor Banks Placement in Radial Distribution Networks Using Hybrid Neural Network Algorithm
  publication-title: Knowledge‐Based Systems
– volume: 31
  issue: 8
  year: 2020
  article-title: Distributed Resource Management in Dew Based Edge to Cloud Computing Ecosystem: A Hybrid Adaptive Evolutionary Approach
  publication-title: Transactions on Emerging Telecommunications Technologies
– volume: 389
  year: 2021
  article-title: A Novel Metaheuristic Optimizer Inspired by Behavior of Jellyfish in Ocean
  publication-title: Applied Mathematics and Computation
– volume: 27
  start-page: 1947
  issue: 2
  year: 2023
  end-page: 1964
  article-title: Hybrid Modified Particle Swarm Optimization With Genetic Algorithm (GA) Based Workflow Scheduling in Cloud‐Fog Environment for Multi‐Objective Optimization
  publication-title: Cluster Computing
– volume: 11
  start-page: 35
  issue: 3
  year: 2022
  end-page: 43
  article-title: Cloneable Jellyfish Search Optimizer Based Task Scheduling in Cloud Environments Bulut Sistemlerde Denizanası; Arama Optimizasyonu Tabanlı; Görev Çizelgeleme
  publication-title: Turkish Journal of Nature and Science
– volume: 31
  issue: 2
  year: 2020
  article-title: An Efficient Task Scheduling Approach Using Moth‐Flame Optimization Algorithm for Cyber‐Physical System Applications in Fog Computing
  publication-title: Transactions on Emerging Telecommunications Technologies
– volume: 63
  year: 2020
  article-title: A Genetic Algorithm for Energy Efficient Fog Layer Resource Management in Context‐Aware Smart Cities
  publication-title: Sustainable Cities and Society
– start-page: 13
  year: 2012
  end-page: 16
– volume: 23
  year: 2019
– volume: 48
  start-page: 107
  year: 2015
  end-page: 113
  article-title: Multi‐Objective Tasks Scheduling Algorithm for Cloud Computing Throughput Optimization
  publication-title: Procedia Computer Science
– volume: 9
  issue: 9
  year: 2019
  article-title: Evolutionary Algorithms to Optimize Task Scheduling Problem for the IoT Based Bag‐Of‐Tasks Application in Cloud–Fog Computing Environment
  publication-title: Applied Sciences
– volume: 34
  issue: 1
  year: 2021
  article-title: An Energy‐Aware Approach for Resource Managing in the Fog‐Based Internet of Things Using a Hybrid Algorithm
  publication-title: International Journal of Communication Systems
– volume: 78
  start-page: 4236
  issue: 3
  year: 2022
  end-page: 4260
  article-title: A bi‐Objective Task Scheduling Approach in Fog Computing Using Hybrid Fireworks Algorithm
  publication-title: Journal of Supercomputing
– volume: 127
  start-page: 1187
  issue: 2
  year: 2022
  end-page: 1205
  article-title: A Spectrum Defragmentation Algorithm Using Jellyfish Optimization Technique in Elastic Optical Network (EON)
  publication-title: Wireless Personal Communications
– volume: 7
  start-page: 115760
  year: 2019
  end-page: 115773
  article-title: A Novel Bio‐Inspired Hybrid Algorithm (NBIHA) for Efficient Resource Management in Fog Computing
  publication-title: IEEE Access
– volume: 11
  start-page: 329
  issue: 2
  year: 2021
  end-page: 356
  article-title: Quantum‐Based Jellyfish Search Optimizer for Structural Optimization
  publication-title: International Journal of Optimization in Civil Engineering
– volume: 37
  year: 2023
  article-title: IKH‐EFT: An Improved Method of Workflow Scheduling Using the Krill Herd Algorithm in the Fog‐Cloud Environment
  publication-title: Sustainable Computing Informatics & Systems
– volume: 25
  start-page: 141
  issue: 1
  year: 2022
  end-page: 165
  article-title: Multi‐Objective Task Scheduling in Cloud‐Fog Computing Using Goal Programming Approach
  publication-title: Cluster Computing
– volume: 23
  start-page: 1
  issue: 5
  year: 2023
  end-page: 20
  article-title: EEOA: Cost and Energy Efficient Task Scheduling in a Cloud‐Fog Framework
  publication-title: Sensors
– volume: 8
  start-page: 256
  issue: 3
  year: 2011
  end-page: 279
  article-title: Particle Swarm Optimization
  publication-title: Industrial Electronics Handbook ‐ Five Volume Set
– volume: 180
  year: 2021
  article-title: Bio‐Inspired Optimization of Weighted‐Feature Machine Learning for Strength Property Prediction of Fiber‐Reinforced Soil
  publication-title: Expert Systems with Applications
– volume: 14
  start-page: 1
  issue: 4
  year: 2022
  end-page: 33
  article-title: ESMA‐OPF: Enhanced Slime Mould Algorithm for Solving Optimal Power Flow Problem
  publication-title: Sustainability
– volume: 16
  issue: 11
  year: 2021
  article-title: Android Malware Classification Based on Random Vector Functional Link and Artificial Jellyfish Search Optimizer
  publication-title: PLoS One
– start-page: 1
  year: 2020
  end-page: 8
– ident: e_1_2_10_20_1
  doi: 10.1109/ACCESS.2019.2924958
– ident: e_1_2_10_24_1
  doi: 10.1007/s10586‐023‐04071‐1
– ident: e_1_2_10_22_1
  doi: 10.1109/RTEST49666.2020.9140118
– ident: e_1_2_10_2_1
  doi: 10.1145/2342509.2342513
– ident: e_1_2_10_17_1
  doi: 10.1109/ICCT.2017.8359780
– ident: e_1_2_10_19_1
  doi: 10.3390/app9091730
– volume: 11
  start-page: 35
  issue: 3
  year: 2022
  ident: e_1_2_10_26_1
  article-title: Cloneable Jellyfish Search Optimizer Based Task Scheduling in Cloud Environments Bulut Sistemlerde Denizanası; Arama Optimizasyonu Tabanlı; Görev Çizelgeleme
  publication-title: Turkish Journal of Nature and Science
– ident: e_1_2_10_4_1
  doi: 10.1002/ett.4018
– ident: e_1_2_10_25_1
  doi: 10.1016/j.suscom.2022.100834
– ident: e_1_2_10_18_1
  doi: 10.1002/ett.3770
– ident: e_1_2_10_23_1
  doi: 10.3390/s23052445
– ident: e_1_2_10_27_1
  doi: 10.1007/978‐3‐319‐46173‐1˙2
– ident: e_1_2_10_8_1
  doi: 10.1016/j.procs.2015.04.158
– ident: e_1_2_10_6_1
  doi: 10.1016/j.scs.2020.102428
– ident: e_1_2_10_5_1
  doi: 10.1007/s10586‐021‐03371‐8
– ident: e_1_2_10_11_1
  doi: 10.1016/j.knosys.2021.107387
– ident: e_1_2_10_15_1
  doi: 10.1007/s11277‐021‐08572‐3
– ident: e_1_2_10_3_1
  doi: 10.1007/s11227‐021‐04018‐6
– ident: e_1_2_10_9_1
  doi: 10.1016/j.amc.2020.125535
– ident: e_1_2_10_13_1
  doi: 10.1016/j.eswa.2021.115042
– ident: e_1_2_10_7_1
  doi: 10.1002/dac.4652
– volume: 11
  start-page: 329
  issue: 2
  year: 2021
  ident: e_1_2_10_10_1
  article-title: Quantum‐Based Jellyfish Search Optimizer for Structural Optimization
  publication-title: International Journal of Optimization in Civil Engineering
– ident: e_1_2_10_16_1
  doi: 10.1109/TCC.2020.3032386
– ident: e_1_2_10_21_1
  doi: 10.1007/978-3-319-98557-2_4
– ident: e_1_2_10_12_1
  doi: 10.3390/su14042305
– ident: e_1_2_10_14_1
  doi: 10.1371/journal.pone.0260232
SSID ssj0011031
Score 2.395186
Snippet ABSTRACT Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models...
Integration of fog and cloud has become increasingly important in the age of IoT, where everything is connected to the Internet. The cloud‐only models face...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms cloud computing
fog computing
genetic algorithm
jellyfish algorithm
task scheduling
Title A Modified Jellyfish Search Algorithm for Task Scheduling in Fog‐Cloud Systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70054
Volume 37
WOSCitedRecordID wos001461028600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeH2nrwYn1ifbGIBy-x6WY3yeKp1BaRWoq00FvYbHbbYExKH4I3P4Kf0U_i5tGqB0HwtofZsExmdv557G8ALonLhSUa-kmVSWEQ1ySGtkxxd0S5jrIaXGV3uuv0eu5oxPoluFmdhcn5EOsXbmlmZPt1muDcn9e_oKFiKq-dVHFsQAXruKVlqNw-dobd9UeEtINBjkvFhqmF-wosZOL6evKPcvRdnmb1pVP918p2YLuQlaiZx8EulGS8B9VVywZUZPA-9JvoIQlCpYUnupdR9KrC-QTl_xyjZjROZuFi8oy0kkUDPn_SEye6FqVH1lEYo04y_nh7b0XJMkAF6vwAhp32oHVnFE0VDKFrMTFs4WPc4NQOqC2YMBuK2owIm2JCLRmYxPKJEswSUmm14rq-LfWYkCDg3FeKWIdQjpNYHgGyfJsxpVyTBYwEjuLE0VenvtYgmGtZUoOLlW-9ac7O8HJKMva0j7zMRzW4ynz5u4XX6rezwfHfTU9gC6eNelPMKj2F8mK2lGewKV4W4Xx2XgTKJ5EUwUg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeH2gp6sT6xPhfx4CU2j81jwUupLVXTUqSF3kKy2W2DtSl9CN78CH5GP4m7eVQ9CIK3PcyGMJnJ_LLZ_Q_AJXZ8alBNfKkSRhXsqFgRllLuDnPH5obm8-RJu3an4wwGpFuAm_wsTKoPsVpwk5mRvK9lgssF6eqXaiidsmtbIscalLAIIxHfpdvHZt9d_UWQLQxSvVRdUQW558pCql5dTf5Rj77zaVJgmuX_3do2bGVgiWppJOxAgU12oZw3bUBZDu9Bt4bacRhxgZ7ono3Hrzyaj1C66xjVxsN4Fi1Gz0iwLOr58ycxcSSqkTy0jqIJasbDj7f3-jhehigTO9-HfrPRq7eUrK2CQkU1xopFA13XfNMKTYsSqmrctAimlqlj02Chio0Ac0oMyrjgFccJLCbGGIeh7wecY-MAipN4wg4BGYFFCOeOSkKCQ5v72BZXNwNBIbovwKQCF7lzvWmqnuGlOsm6J3zkJT6qwFXizN8tvHq3kQyO_m56DhutXtv13LvOwzFs6rJtrxRdNU-guJgt2Sms05dFNJ-dZVHzCTHfxTg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcftRXxYl2xroN48BLNMlkGvJS2waWWIi30FpJZ2mBtShfBmx_Bz-gncSZJqx4Ewdsc3oTwMi_vn2V-f4Bz7IXUooZ8UiWcatjTsSYjFe4OC88VlhGK9Eo33VbL6_VIuwDXi70wGR9i-cJNVUZ6v1YFzsdMXH1RQ-mYX7pKcqxACSsTmSKU6o9-t7n8iqAsDDJeqqnpUrkvyEK6ebWc_KMffdenaYPxy_87tU3YyIUlqmYrYQsKfLQN5YVpA8preAfaVfSQsFhI6Ynu-HD4KuLpAGV_HaPqsJ9M4tngGUktizrh9ElOHMhupDato3iE_KT_8fZeGyZzhnLY-S50_UandqPltgoald0Yaw6NTNMIbYfZDiVUN4TtEEwd28S2xZmOrQgLSizKhdQrnhc5XI4xZiwMIyGwtQfFUTLi-4CsyCFECE8njGDmihC78uh2JFWIGUphUoGzRXKDcUbPCDJOshnIHAVpjipwkSbz94ig1m6kg4O_h57CWrvuB83b1v0hrJvKtVcxV-0jKM4mc34Mq_RlFk8nJ_mi-QQS9sSz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Modified+Jellyfish+Search+Algorithm+for+Task+Scheduling+in+Fog%E2%80%90Cloud+Systems&rft.jtitle=Concurrency+and+computation&rft.au=Jangu%2C+Nupur&rft.au=Raza%2C+Zahid&rft.date=2025-05-15&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=9-11&rft_id=info:doi/10.1002%2Fcpe.70054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_70054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon