Cloud Workload Forecasting via Latency‐Aware Time Series Clustering‐Based Scheduling Technique
ABSTRACT Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for changing workloads over time. A critical challenge in such systems is the task scheduling problem, which aims to identify the optimal...
Uložené v:
| Vydané v: | Concurrency and computation Ročník 37; číslo 15-17 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken, USA
John Wiley & Sons, Inc
25.07.2025
|
| Predmet: | |
| ISSN: | 1532-0626, 1532-0634 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | ABSTRACT
Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for changing workloads over time. A critical challenge in such systems is the task scheduling problem, which aims to identify the optimal allocation of resources to maximize performance and minimize response times. To overcome these drawbacks, a novel latency‐aware time series‐based scheduling (LATS) algorithm has been proposed in this paper for predicting future server loads. The proposed method involves collecting workloads, preprocessing and clustering them, predicting time series, and post‐processing the data. The workload data will be divided according to a historical time window during the preprocessing phase. Next, the time series data will be clustered based on the latency classes using the dynamic fuzzy c‐means algorithm. The time series prediction phase utilizes the Gated Recurrent Unit (GRU), and post‐processing is performed to retrieve the original data. An evaluation of the accuracy of future workload predictions was conducted based on actual requests to web servers, and the silhouette score was utilized as the metric for assessing cluster performance. The proposed model has been compared with previous approaches involving Crystal LP, SWDF, and GA‐PSO approaches in terms of prediction accuracy by 31.9%, 18.74%, and 12.16%, respectively. |
|---|---|
| AbstractList | Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for changing workloads over time. A critical challenge in such systems is the task scheduling problem, which aims to identify the optimal allocation of resources to maximize performance and minimize response times. To overcome these drawbacks, a novel latency‐aware time series‐based scheduling (LATS) algorithm has been proposed in this paper for predicting future server loads. The proposed method involves collecting workloads, preprocessing and clustering them, predicting time series, and post‐processing the data. The workload data will be divided according to a historical time window during the preprocessing phase. Next, the time series data will be clustered based on the latency classes using the dynamic fuzzy c‐means algorithm. The time series prediction phase utilizes the Gated Recurrent Unit (GRU), and post‐processing is performed to retrieve the original data. An evaluation of the accuracy of future workload predictions was conducted based on actual requests to web servers, and the silhouette score was utilized as the metric for assessing cluster performance. The proposed model has been compared with previous approaches involving Crystal LP, SWDF, and GA‐PSO approaches in terms of prediction accuracy by 31.9%, 18.74%, and 12.16%, respectively. ABSTRACT Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for changing workloads over time. A critical challenge in such systems is the task scheduling problem, which aims to identify the optimal allocation of resources to maximize performance and minimize response times. To overcome these drawbacks, a novel latency‐aware time series‐based scheduling (LATS) algorithm has been proposed in this paper for predicting future server loads. The proposed method involves collecting workloads, preprocessing and clustering them, predicting time series, and post‐processing the data. The workload data will be divided according to a historical time window during the preprocessing phase. Next, the time series data will be clustered based on the latency classes using the dynamic fuzzy c‐means algorithm. The time series prediction phase utilizes the Gated Recurrent Unit (GRU), and post‐processing is performed to retrieve the original data. An evaluation of the accuracy of future workload predictions was conducted based on actual requests to web servers, and the silhouette score was utilized as the metric for assessing cluster performance. The proposed model has been compared with previous approaches involving Crystal LP, SWDF, and GA‐PSO approaches in terms of prediction accuracy by 31.9%, 18.74%, and 12.16%, respectively. |
| Author | Sathiya, R. R. Sridhar, P. |
| Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0002-5076-1428 surname: Sridhar fullname: Sridhar, P. organization: PSG Institute of Technology and Applied Research, Neelambur, Coimbatore, Tamil Nadu – sequence: 2 givenname: R. R. orcidid: 0009-0005-9420-6089 surname: Sathiya fullname: Sathiya, R. R. email: rr_sathiya@cb.amrita.edu organization: Amrita School of Computing, Coimbatore, Amrita Vishwa Vidyapeetham |
| BookMark | eNp1kM1OwkAUhScGEwFd-AazdVGYO9PfJTagJiSagHHZzExvYbS0ONNC2PkIPqNPYhHjztU9yf3OWXwD0qvqCgm5BjYCxvhYb3EUMQjgjPQhENxjofB7f5mHF2Tg3CtjAExAn6i0rNucvtT2raxlTme1RS1dY6oV3RlJ57LBSh--Pj4ne2mRLs0G6QKtQUfTsnVNF6tV976VDnO60GvM2_LYXqJeV-a9xUtyXsjS4dXvHZLn2XSZ3nvzx7uHdDL3NA9D8CQoJhUC5ErGIWJcBCpAnxcYRBAJzeIEdC6En8QF50wlPlcyivxQxlwgxGJIbk672tbOWSyyrTUbaQ8ZsOwoJ-vkZD9yOnZ8YvemxMP_YJY-TU-NbyaZanQ |
| Cites_doi | 10.1007/s11227-021-03723-6 10.1016/j.future.2022.05.016 10.1007/s11277-020-07773-6 10.1007/s10723-022-09607-0 10.1016/j.compeleceng.2015.07.021 10.1109/Confluence51648.2021.9377032 10.1016/j.aej.2022.05.017 10.1016/j.ins.2020.07.012 10.1007/s11227-021-04234-0 10.3390/app12042160 10.59277/RRST-EE.2024.1.14 10.1109/TCC.2022.3160228 10.1109/ICCWorkshops50388.2021.9473607 10.1016/j.neucom.2020.11.011 10.1109/TSC.2022.3156619 10.1002/ett.4652 10.1007/s00521-021-06665-5 10.1109/TC.2019.2956505 10.1109/CSCWD54268.2022.9776279 10.1007/s00607-022-01129-7 10.3390/app12073523 10.1145/3447548.3467357 10.1109/ACCESS.2021.3113714 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/cpe.70151 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_cpe_70151 CPE70151 |
| Genre | researchArticle |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX CITATION LH4 O8X |
| ID | FETCH-LOGICAL-c2661-a1b0abe11dba86ee8f5b5e42fe57173c0891cd33498f220b942ba7746a823e183 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001519774100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Sat Nov 29 07:50:53 EST 2025 Mon Jun 30 09:44:24 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15-17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2661-a1b0abe11dba86ee8f5b5e42fe57173c0891cd33498f220b942ba7746a823e183 |
| Notes | The authors received no specific funding for this work. Funding |
| ORCID | 0000-0002-5076-1428 0009-0005-9420-6089 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70151 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1002_cpe_70151 wiley_primary_10_1002_cpe_70151_CPE70151 |
| PublicationCentury | 2000 |
| PublicationDate | 25 July 2025 2025-07-25 |
| PublicationDateYYYYMMDD | 2025-07-25 |
| PublicationDate_xml | – month: 07 year: 2025 text: 25 July 2025 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2021; 9 2015; 47 2021; 26 2021; 77 2023 2022 2021 2022; 61 2021; 543 2021; 116 2021; 424 2019; 69 2022; 34 2022; 12 2022; 78 2024; 2 2023; 1 2022; 20 2022; 11 2024; 69 2022; 16 2022; 105 2022; 135 Ruan L. (e_1_2_11_22_1) 2021; 26 Prabhu M. (e_1_2_11_4_1) 2023; 1 Madavarapu J. B. (e_1_2_11_21_1) 2023; 1 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_14_1 Saranya G. (e_1_2_11_7_1) 2024; 2 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_33_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 Senthil Singh C. (e_1_2_11_13_1) 2024; 2 e_1_2_11_26_1 e_1_2_11_2_1 Jesi M. (e_1_2_11_11_1) 2024; 69 Aarthy A. R. (e_1_2_11_19_1) 2024; 2 Jenice Prabhu A. (e_1_2_11_3_1) 2023 e_1_2_11_20_1 Asha M. B. (e_1_2_11_17_1) 2024; 2 e_1_2_11_25_1 e_1_2_11_24_1 Champla D. (e_1_2_11_9_1) 2023; 1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_18_1 e_1_2_11_15_1 Rose R. A. M. (e_1_2_11_16_1) 2024; 2 |
| References_xml | – start-page: 495 year: 2023 end-page: 502 – start-page: 106 year: 2021 end-page: 116 – volume: 2 start-page: 98 issue: 4 year: 2024 end-page: 104 article-title: Dynamic Load Balancing in Cloud Computing Using Hybrid Kookaburra‐Pelican Optimization Algorithms publication-title: International Journal of Data Science and Artificial Intelligence – volume: 2 start-page: 155 issue: 5 year: 2024 end-page: 160 article-title: Mass Robot: Predictive Maintenance Using Stacked CNN BI‐LSTM for Cleaning Robots publication-title: International Journal of Data Science and Artificial Intelligence – volume: 69 start-page: 79 issue: 1 year: 2024 end-page: 84 article-title: Load Balancing in Cloud Computing via Mayfly Optimization Algorithm publication-title: Revue Roumaine des Sciences Techniques—Série Électrotechnique et Énergétique – volume: 77 start-page: 11052 issue: 10 year: 2021 end-page: 11082 article-title: E2LG: A Multiscale Ensemble of LSTM/GAN Deep Learning Architecture for Multistep‐Ahead Cloud Workload Prediction publication-title: Journal of Supercomputing – volume: 61 start-page: 11565 issue: 12 year: 2022 end-page: 11577 article-title: Multimodal Cloud Resources Utilization Forecasting Using a Bidirectional Gated Recurrent Unit Predictor Based on a Power Efficient Stacked Denoising Autoencoders publication-title: Alexandria Engineering Journal – volume: 20 start-page: 1 issue: 2 year: 2022 end-page: 29 article-title: Workload Time Series Cumulative Prediction Mechanism for Cloud Resources Using Neural Machine Translation Technique publication-title: Journal of Grid Computing – start-page: 267 year: 2021 end-page: 272 – start-page: 1 year: 2021 end-page: 6 – volume: 543 start-page: 345 year: 2021 end-page: 366 article-title: Self‐Directed Learning‐Based Workload Forecasting Model for Cloud Resource Management publication-title: Information Sciences – volume: 34 start-page: 10211 issue: 13 year: 2022 end-page: 10228 article-title: A Deep Learning‐Based Resource Usage Prediction Model for Resource Provisioning in an Autonomic Cloud Computing Environment publication-title: Neural Computing and Applications – volume: 2 start-page: 68 issue: 3 year: 2024 end-page: 73 article-title: Deep Learning Based Lstm‐Gan Approach for Intrusion Detection in Cloud Environment publication-title: International Journal of Data Science and Artificial Intelligence – volume: 12 start-page: 2160 issue: 4 year: 2022 article-title: A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning Techniques publication-title: Applied Sciences – volume: 2 start-page: 14 issue: 1 year: 2024 end-page: 19 article-title: DNA Encryption‐Based Secure Access Control and Data Sharing in an Enabled Cloud Environment publication-title: International Journal of System Design and Computing – start-page: 59 year: 2022 end-page: 64 – volume: 2 start-page: 81 issue: 3 year: 2024 end-page: 87 article-title: Iot‐Centric Data Protection Using Deep Learning Technique for Preserving Security and Privacy in Cloud publication-title: International Journal of Data Science and Artificial Intelligence – volume: 1 start-page: 63 issue: 2 year: 2023 end-page: 68 article-title: CAB‐IDS: IoT‐Based Intrusion Detection Using Bacteria Foraging Optimized BiGRU‐CNN Network publication-title: International Journal of Computer and Engineering Optimization – volume: 47 start-page: 186 year: 2015 end-page: 203 article-title: Resource Management in Cloud Computing: Taxonomy, Prospects, and Challenges publication-title: Computers and Electrical Engineering – volume: 69 start-page: 563 issue: 4 year: 2019 end-page: 576 article-title: Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory publication-title: IEEE Transactions on Computers – volume: 12 start-page: 3523 issue: 7 year: 2022 article-title: An Efficient Multivariate Autoscaling Framework Using Bi‐LSTM for Cloud Computing publication-title: Applied Sciences – volume: 11 start-page: 1719 year: 2022 end-page: 1732 article-title: Cloud Workload Turning Points Prediction via Cloud Feature‐Enhanced Deep Learning publication-title: IEEE Transactions on Cloud Computing – year: 2022 – volume: 34 year: 2022 article-title: COSCO2: AI‐Augmented Evolutionary Algorithm‐Based Workload Prediction Framework for Sustainable Cloud Data Centers publication-title: Transactions on Emerging Telecommunications Technologies – volume: 9 start-page: 131476 year: 2021 end-page: 131495 article-title: BHyPreC: A Novel Bi‐LSTM Based Hybrid Recurrent Neural Network Model to Predict the CPU Workload of Cloud Virtual Machine publication-title: IEEE Access – volume: 424 start-page: 35 year: 2021 end-page: 48 article-title: Integrated Deep Learning Method for Workload and Resource Prediction in Cloud Systems publication-title: Neurocomputing – volume: 1 start-page: 1 issue: 2 year: 2023 end-page: 9 article-title: C‐Avpso: Dynamic Load Balancing Using African Vulture Particle Swarm Optimization publication-title: International Journal of Data Science and Artificial Intelligence – volume: 105 start-page: 353 issue: 2 year: 2022 end-page: 374 article-title: Time Series‐Based Workload Prediction Using the Statistical Hybrid Model for the Cloud Environment publication-title: Computing – volume: 1 start-page: 10 issue: 1 year: 2023 end-page: 14 article-title: Deep Learning Based Authentication Secure Data Storing in Cloud Computing publication-title: International Journal of Computer and Engineering Optimization – volume: 135 start-page: 438 year: 2022 end-page: 449 article-title: WBATimeNet: A Deep Neural Network Approach for VM Live Migration in the Cloud publication-title: Future Generation Computer Systems – volume: 78 start-page: 1 issue: 8 year: 2022 end-page: 30 article-title: A Hybrid CNN‐LSTM Model for Predicting Server Load in Cloud Computing publication-title: Journal of Supercomputing – volume: 116 start-page: 1949 issue: 3 year: 2021 end-page: 1969 article-title: Performance Assessment of Time Series Forecasting Models for Cloud Datacenter Networks' Workload Prediction publication-title: Wireless Personal Communications – volume: 16 start-page: 1184 year: 2022 end-page: 1197 article-title: FAST: A Forecasting Model With Adaptive Sliding Window and Time Locality Integration for Dynamic Cloud Workloads publication-title: IEEE Transactions on Services Computing – volume: 26 start-page: 1 issue: 1 year: 2021 end-page: 11 article-title: Workload Time Series Prediction in Storage Systems: A Deep Learning‐Based Approach publication-title: Cluster Computing – ident: e_1_2_11_5_1 – ident: e_1_2_11_20_1 doi: 10.1007/s11227-021-03723-6 – volume: 2 start-page: 14 issue: 1 year: 2024 ident: e_1_2_11_19_1 article-title: DNA Encryption‐Based Secure Access Control and Data Sharing in an Enabled Cloud Environment publication-title: International Journal of System Design and Computing – volume: 1 start-page: 10 issue: 1 year: 2023 ident: e_1_2_11_4_1 article-title: Deep Learning Based Authentication Secure Data Storing in Cloud Computing publication-title: International Journal of Computer and Engineering Optimization – ident: e_1_2_11_29_1 doi: 10.1016/j.future.2022.05.016 – ident: e_1_2_11_15_1 doi: 10.1007/s11277-020-07773-6 – ident: e_1_2_11_25_1 doi: 10.1007/s10723-022-09607-0 – volume: 2 start-page: 81 issue: 3 year: 2024 ident: e_1_2_11_13_1 article-title: Iot‐Centric Data Protection Using Deep Learning Technique for Preserving Security and Privacy in Cloud publication-title: International Journal of Data Science and Artificial Intelligence – start-page: 495 volume-title: International Conference on Frontiers of Intelligent Computing: Theory and Applications year: 2023 ident: e_1_2_11_3_1 – ident: e_1_2_11_8_1 doi: 10.1016/j.compeleceng.2015.07.021 – volume: 1 start-page: 63 issue: 2 year: 2023 ident: e_1_2_11_21_1 article-title: CAB‐IDS: IoT‐Based Intrusion Detection Using Bacteria Foraging Optimized BiGRU‐CNN Network publication-title: International Journal of Computer and Engineering Optimization – ident: e_1_2_11_2_1 doi: 10.1109/Confluence51648.2021.9377032 – ident: e_1_2_11_30_1 doi: 10.1016/j.aej.2022.05.017 – ident: e_1_2_11_23_1 doi: 10.1016/j.ins.2020.07.012 – ident: e_1_2_11_33_1 doi: 10.1007/s11227-021-04234-0 – ident: e_1_2_11_35_1 doi: 10.3390/app12042160 – volume: 69 start-page: 79 issue: 1 year: 2024 ident: e_1_2_11_11_1 article-title: Load Balancing in Cloud Computing via Mayfly Optimization Algorithm publication-title: Revue Roumaine des Sciences Techniques—Série Électrotechnique et Énergétique doi: 10.59277/RRST-EE.2024.1.14 – ident: e_1_2_11_26_1 doi: 10.1109/TCC.2022.3160228 – ident: e_1_2_11_12_1 doi: 10.1109/ICCWorkshops50388.2021.9473607 – ident: e_1_2_11_24_1 doi: 10.1016/j.neucom.2020.11.011 – ident: e_1_2_11_27_1 doi: 10.1109/TSC.2022.3156619 – volume: 1 start-page: 1 issue: 2 year: 2023 ident: e_1_2_11_9_1 article-title: C‐Avpso: Dynamic Load Balancing Using African Vulture Particle Swarm Optimization publication-title: International Journal of Data Science and Artificial Intelligence – volume: 26 start-page: 1 issue: 1 year: 2021 ident: e_1_2_11_22_1 article-title: Workload Time Series Prediction in Storage Systems: A Deep Learning‐Based Approach publication-title: Cluster Computing – ident: e_1_2_11_28_1 doi: 10.1002/ett.4652 – volume: 2 start-page: 155 issue: 5 year: 2024 ident: e_1_2_11_17_1 article-title: Mass Robot: Predictive Maintenance Using Stacked CNN BI‐LSTM for Cleaning Robots publication-title: International Journal of Data Science and Artificial Intelligence – ident: e_1_2_11_6_1 doi: 10.1007/s00521-021-06665-5 – ident: e_1_2_11_10_1 doi: 10.1109/TC.2019.2956505 – volume: 2 start-page: 68 issue: 3 year: 2024 ident: e_1_2_11_16_1 article-title: Deep Learning Based Lstm‐Gan Approach for Intrusion Detection in Cloud Environment publication-title: International Journal of Data Science and Artificial Intelligence – ident: e_1_2_11_31_1 doi: 10.1109/CSCWD54268.2022.9776279 – volume: 2 start-page: 98 issue: 4 year: 2024 ident: e_1_2_11_7_1 article-title: Dynamic Load Balancing in Cloud Computing Using Hybrid Kookaburra‐Pelican Optimization Algorithms publication-title: International Journal of Data Science and Artificial Intelligence – ident: e_1_2_11_34_1 doi: 10.1007/s00607-022-01129-7 – ident: e_1_2_11_32_1 doi: 10.3390/app12073523 – ident: e_1_2_11_14_1 doi: 10.1145/3447548.3467357 – ident: e_1_2_11_18_1 doi: 10.1109/ACCESS.2021.3113714 |
| SSID | ssj0011031 |
| Score | 2.4013124 |
| Snippet | ABSTRACT
Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively... Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for... |
| SourceID | crossref wiley |
| SourceType | Index Database Publisher |
| SubjectTerms | dynamic fuzzy c‐means algorithm gated recurrent unit server workload prediction |
| Title | Cloud Workload Forecasting via Latency‐Aware Time Series Clustering‐Based Scheduling Technique |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70151 |
| Volume | 37 |
| WOSCitedRecordID | wos001519774100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5K68GL9Yn1xSIevKzdbJJmg6caWzyUUqSF3sK-gkJpS9NWvPkT_I3-EnfyqHoQBG-BTEKYzOw3mc18H0JXUjqOYq4hnis94rWMS6QtBIjRYRBaTDGypTKxiaDf5-NxOKig23IWJueH2DTcIDOy9RoSXMi0-UUaqubmJrBgZj99aszGrV9FtfvH7qi32UQABYOcLpURagv3kliIsubm4h9w9L08zfClW__Xk-2inaKsxO08DvZQxUz3Ub2UbMBFBh8gGU1mK42hRT6ZCY1BmVOJFP59xutngXsCaujXj7f39otYGAwTIhg6aCbF0WQFrArW1J6-s-in7X2fLFTBRDselmSwh2jU7QyjB1LILBAF6EyEI6mQxnG0FLxlDE986RuPJcaHLXpFeego7bpeyBPGqAw9JoWtGluC25dsl4QjVJ3OpuYYYa6UoUyCShX3tAPEO0HCwoAmiY2IRDfQZenteJ6zacQ5bzKLrdfizGsNdJ1593eLOBp0soOTv5ueom0G0r0UiCnOUHW5WJlztKXWy-d0cVGEzieINcmK |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KFfRifWJ9LuLBS2yySZsNeKmxpWIsRVroLexuNlgobelLvPkT_I3-EmfyqHoQBG-BTEKYzOw3mc18HyGXUlqWYrY2HFs6hlPTtiGhEDB05LkeYIqWNZWITbjtNu_3vU6B3OSzMCk_xKrhhpmRrNeY4NiQrnyxhqqJvnYBzeDbp-hAGEF8F--emr1gtYuAEgYpXyozTKjcc2Yhk1VWF__Ao-_1aQIwzdL_Hm2bbGWFJa2nkbBDCnq0S0q5aAPNcniPSH84XkQUm-TDsYgoanMqMcO_n-lyIGggsIp-_Xh7r7-IqaY4I0Kxh6Zn1B8ukFcBTOH0LeBfBPd9BrDCmXbazelg90mv2ej6LSMTWjAU4rMhLGkKqS0rkoLXtOZxVVa1w2JdxU16ZXLPUpFtOx6PGTOl5zApoG6sCQ6vGRaFA7I2Go_0IaFcKW0yiTpV3IkspN5xY-a5ZhxDTMRRmVzk7g4nKZ9GmDInsxC8FiZeK5OrxL2_W4R-p5EcHP3d9JxstLqPQRjctx-OySZDIV8TaSpOyNp8utCnZF0t54PZ9CyLo0-eQM16 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNQEB2kirjxLdbnRVy4iSY3aR7gRmOLYilFKrgL9zHBQmlLX-LOT_Ab_RLv5FF1IQjuApmEMJm5ZzI3cw7AqZSOo7iLludKz_J8dC1pCgELdRREBlNQ-ioTmwharfDpKWovwGU5C5PzQ8wbbpQZ2XpNCY5DnV58sYaqIZ4HBs3Mt8-iRyIyFVi8eWg8Nue7CCRhkPOlcss2lXvJLGTzi_nFP_Doe32aAUxj7X-Ptg6rRWHJrvJI2IAF7G_CWinawIoc3gIZ9wZTzahJ3hsIzUibU4kx_f3MZl3BmoKq6NePt_erFzFCRjMijHpoOGZxb0q8CsbUnL42-KfNfZ8NWNFMO-uUdLDb8Niod-JbqxBasBThsyUcaQuJjqOlCH3EMK3JGno8xRpt0is7jBylXdeLwpRzW0Yel8LUjb4IzWs2i8IOVPqDPu4CC5VCm0vSqQo97RD1TpDyKLDT1MREqqtwUro7GeZ8GknOnMwT47Uk81oVzjL3_m6RxO16drD3d9NjWG7fNJLmXet-H1Y46fjaxFJxAJXJaIqHsKRmk-54dFSE0Sd0Nsz1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cloud+Workload+Forecasting+via+Latency%E2%80%90Aware+Time+Series+Clustering%E2%80%90Based+Scheduling+Technique&rft.jtitle=Concurrency+and+computation&rft.au=Sridhar%2C+P.&rft.au=Sathiya%2C+R.+R.&rft.date=2025-07-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=15-17&rft_id=info:doi/10.1002%2Fcpe.70151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_70151 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |