Cloud Workload Forecasting via Latency‐Aware Time Series Clustering‐Based Scheduling Technique

ABSTRACT Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for changing workloads over time. A critical challenge in such systems is the task scheduling problem, which aims to identify the optimal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Concurrency and computation Ročník 37; číslo 15-17
Hlavní autori: Sridhar, P., Sathiya, R. R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken, USA John Wiley & Sons, Inc 25.07.2025
Predmet:
ISSN:1532-0626, 1532-0634
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ABSTRACT Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for changing workloads over time. A critical challenge in such systems is the task scheduling problem, which aims to identify the optimal allocation of resources to maximize performance and minimize response times. To overcome these drawbacks, a novel latency‐aware time series‐based scheduling (LATS) algorithm has been proposed in this paper for predicting future server loads. The proposed method involves collecting workloads, preprocessing and clustering them, predicting time series, and post‐processing the data. The workload data will be divided according to a historical time window during the preprocessing phase. Next, the time series data will be clustered based on the latency classes using the dynamic fuzzy c‐means algorithm. The time series prediction phase utilizes the Gated Recurrent Unit (GRU), and post‐processing is performed to retrieve the original data. An evaluation of the accuracy of future workload predictions was conducted based on actual requests to web servers, and the silhouette score was utilized as the metric for assessing cluster performance. The proposed model has been compared with previous approaches involving Crystal LP, SWDF, and GA‐PSO approaches in terms of prediction accuracy by 31.9%, 18.74%, and 12.16%, respectively.
AbstractList Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for changing workloads over time. A critical challenge in such systems is the task scheduling problem, which aims to identify the optimal allocation of resources to maximize performance and minimize response times. To overcome these drawbacks, a novel latency‐aware time series‐based scheduling (LATS) algorithm has been proposed in this paper for predicting future server loads. The proposed method involves collecting workloads, preprocessing and clustering them, predicting time series, and post‐processing the data. The workload data will be divided according to a historical time window during the preprocessing phase. Next, the time series data will be clustered based on the latency classes using the dynamic fuzzy c‐means algorithm. The time series prediction phase utilizes the Gated Recurrent Unit (GRU), and post‐processing is performed to retrieve the original data. An evaluation of the accuracy of future workload predictions was conducted based on actual requests to web servers, and the silhouette score was utilized as the metric for assessing cluster performance. The proposed model has been compared with previous approaches involving Crystal LP, SWDF, and GA‐PSO approaches in terms of prediction accuracy by 31.9%, 18.74%, and 12.16%, respectively.
ABSTRACT Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for changing workloads over time. A critical challenge in such systems is the task scheduling problem, which aims to identify the optimal allocation of resources to maximize performance and minimize response times. To overcome these drawbacks, a novel latency‐aware time series‐based scheduling (LATS) algorithm has been proposed in this paper for predicting future server loads. The proposed method involves collecting workloads, preprocessing and clustering them, predicting time series, and post‐processing the data. The workload data will be divided according to a historical time window during the preprocessing phase. Next, the time series data will be clustered based on the latency classes using the dynamic fuzzy c‐means algorithm. The time series prediction phase utilizes the Gated Recurrent Unit (GRU), and post‐processing is performed to retrieve the original data. An evaluation of the accuracy of future workload predictions was conducted based on actual requests to web servers, and the silhouette score was utilized as the metric for assessing cluster performance. The proposed model has been compared with previous approaches involving Crystal LP, SWDF, and GA‐PSO approaches in terms of prediction accuracy by 31.9%, 18.74%, and 12.16%, respectively.
Author Sathiya, R. R.
Sridhar, P.
Author_xml – sequence: 1
  givenname: P.
  orcidid: 0000-0002-5076-1428
  surname: Sridhar
  fullname: Sridhar, P.
  organization: PSG Institute of Technology and Applied Research, Neelambur, Coimbatore, Tamil Nadu
– sequence: 2
  givenname: R. R.
  orcidid: 0009-0005-9420-6089
  surname: Sathiya
  fullname: Sathiya, R. R.
  email: rr_sathiya@cb.amrita.edu
  organization: Amrita School of Computing, Coimbatore, Amrita Vishwa Vidyapeetham
BookMark eNp1kM1OwkAUhScGEwFd-AazdVGYO9PfJTagJiSagHHZzExvYbS0ONNC2PkIPqNPYhHjztU9yf3OWXwD0qvqCgm5BjYCxvhYb3EUMQjgjPQhENxjofB7f5mHF2Tg3CtjAExAn6i0rNucvtT2raxlTme1RS1dY6oV3RlJ57LBSh--Pj4ne2mRLs0G6QKtQUfTsnVNF6tV976VDnO60GvM2_LYXqJeV-a9xUtyXsjS4dXvHZLn2XSZ3nvzx7uHdDL3NA9D8CQoJhUC5ErGIWJcBCpAnxcYRBAJzeIEdC6En8QF50wlPlcyivxQxlwgxGJIbk672tbOWSyyrTUbaQ8ZsOwoJ-vkZD9yOnZ8YvemxMP_YJY-TU-NbyaZanQ
Cites_doi 10.1007/s11227-021-03723-6
10.1016/j.future.2022.05.016
10.1007/s11277-020-07773-6
10.1007/s10723-022-09607-0
10.1016/j.compeleceng.2015.07.021
10.1109/Confluence51648.2021.9377032
10.1016/j.aej.2022.05.017
10.1016/j.ins.2020.07.012
10.1007/s11227-021-04234-0
10.3390/app12042160
10.59277/RRST-EE.2024.1.14
10.1109/TCC.2022.3160228
10.1109/ICCWorkshops50388.2021.9473607
10.1016/j.neucom.2020.11.011
10.1109/TSC.2022.3156619
10.1002/ett.4652
10.1007/s00521-021-06665-5
10.1109/TC.2019.2956505
10.1109/CSCWD54268.2022.9776279
10.1007/s00607-022-01129-7
10.3390/app12073523
10.1145/3447548.3467357
10.1109/ACCESS.2021.3113714
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
DOI 10.1002/cpe.70151
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10_1002_cpe_70151
CPE70151
Genre researchArticle
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
LH4
O8X
ID FETCH-LOGICAL-c2661-a1b0abe11dba86ee8f5b5e42fe57173c0891cd33498f220b942ba7746a823e183
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001519774100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sat Nov 29 07:50:53 EST 2025
Mon Jun 30 09:44:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15-17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2661-a1b0abe11dba86ee8f5b5e42fe57173c0891cd33498f220b942ba7746a823e183
Notes The authors received no specific funding for this work.
Funding
ORCID 0000-0002-5076-1428
0009-0005-9420-6089
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70151
PageCount 13
ParticipantIDs crossref_primary_10_1002_cpe_70151
wiley_primary_10_1002_cpe_70151_CPE70151
PublicationCentury 2000
PublicationDate 25 July 2025
2025-07-25
PublicationDateYYYYMMDD 2025-07-25
PublicationDate_xml – month: 07
  year: 2025
  text: 25 July 2025
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Concurrency and computation
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 9
2015; 47
2021; 26
2021; 77
2023
2022
2021
2022; 61
2021; 543
2021; 116
2021; 424
2019; 69
2022; 34
2022; 12
2022; 78
2024; 2
2023; 1
2022; 20
2022; 11
2024; 69
2022; 16
2022; 105
2022; 135
Ruan L. (e_1_2_11_22_1) 2021; 26
Prabhu M. (e_1_2_11_4_1) 2023; 1
Madavarapu J. B. (e_1_2_11_21_1) 2023; 1
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_14_1
Saranya G. (e_1_2_11_7_1) 2024; 2
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_33_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
Senthil Singh C. (e_1_2_11_13_1) 2024; 2
e_1_2_11_26_1
e_1_2_11_2_1
Jesi M. (e_1_2_11_11_1) 2024; 69
Aarthy A. R. (e_1_2_11_19_1) 2024; 2
Jenice Prabhu A. (e_1_2_11_3_1) 2023
e_1_2_11_20_1
Asha M. B. (e_1_2_11_17_1) 2024; 2
e_1_2_11_25_1
e_1_2_11_24_1
Champla D. (e_1_2_11_9_1) 2023; 1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_18_1
e_1_2_11_15_1
Rose R. A. M. (e_1_2_11_16_1) 2024; 2
References_xml – start-page: 495
  year: 2023
  end-page: 502
– start-page: 106
  year: 2021
  end-page: 116
– volume: 2
  start-page: 98
  issue: 4
  year: 2024
  end-page: 104
  article-title: Dynamic Load Balancing in Cloud Computing Using Hybrid Kookaburra‐Pelican Optimization Algorithms
  publication-title: International Journal of Data Science and Artificial Intelligence
– volume: 2
  start-page: 155
  issue: 5
  year: 2024
  end-page: 160
  article-title: Mass Robot: Predictive Maintenance Using Stacked CNN BI‐LSTM for Cleaning Robots
  publication-title: International Journal of Data Science and Artificial Intelligence
– volume: 69
  start-page: 79
  issue: 1
  year: 2024
  end-page: 84
  article-title: Load Balancing in Cloud Computing via Mayfly Optimization Algorithm
  publication-title: Revue Roumaine des Sciences Techniques—Série Électrotechnique et Énergétique
– volume: 77
  start-page: 11052
  issue: 10
  year: 2021
  end-page: 11082
  article-title: E2LG: A Multiscale Ensemble of LSTM/GAN Deep Learning Architecture for Multistep‐Ahead Cloud Workload Prediction
  publication-title: Journal of Supercomputing
– volume: 61
  start-page: 11565
  issue: 12
  year: 2022
  end-page: 11577
  article-title: Multimodal Cloud Resources Utilization Forecasting Using a Bidirectional Gated Recurrent Unit Predictor Based on a Power Efficient Stacked Denoising Autoencoders
  publication-title: Alexandria Engineering Journal
– volume: 20
  start-page: 1
  issue: 2
  year: 2022
  end-page: 29
  article-title: Workload Time Series Cumulative Prediction Mechanism for Cloud Resources Using Neural Machine Translation Technique
  publication-title: Journal of Grid Computing
– start-page: 267
  year: 2021
  end-page: 272
– start-page: 1
  year: 2021
  end-page: 6
– volume: 543
  start-page: 345
  year: 2021
  end-page: 366
  article-title: Self‐Directed Learning‐Based Workload Forecasting Model for Cloud Resource Management
  publication-title: Information Sciences
– volume: 34
  start-page: 10211
  issue: 13
  year: 2022
  end-page: 10228
  article-title: A Deep Learning‐Based Resource Usage Prediction Model for Resource Provisioning in an Autonomic Cloud Computing Environment
  publication-title: Neural Computing and Applications
– volume: 2
  start-page: 68
  issue: 3
  year: 2024
  end-page: 73
  article-title: Deep Learning Based Lstm‐Gan Approach for Intrusion Detection in Cloud Environment
  publication-title: International Journal of Data Science and Artificial Intelligence
– volume: 12
  start-page: 2160
  issue: 4
  year: 2022
  article-title: A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary Algorithms and Machine Learning Techniques
  publication-title: Applied Sciences
– volume: 2
  start-page: 14
  issue: 1
  year: 2024
  end-page: 19
  article-title: DNA Encryption‐Based Secure Access Control and Data Sharing in an Enabled Cloud Environment
  publication-title: International Journal of System Design and Computing
– start-page: 59
  year: 2022
  end-page: 64
– volume: 2
  start-page: 81
  issue: 3
  year: 2024
  end-page: 87
  article-title: Iot‐Centric Data Protection Using Deep Learning Technique for Preserving Security and Privacy in Cloud
  publication-title: International Journal of Data Science and Artificial Intelligence
– volume: 1
  start-page: 63
  issue: 2
  year: 2023
  end-page: 68
  article-title: CAB‐IDS: IoT‐Based Intrusion Detection Using Bacteria Foraging Optimized BiGRU‐CNN Network
  publication-title: International Journal of Computer and Engineering Optimization
– volume: 47
  start-page: 186
  year: 2015
  end-page: 203
  article-title: Resource Management in Cloud Computing: Taxonomy, Prospects, and Challenges
  publication-title: Computers and Electrical Engineering
– volume: 69
  start-page: 563
  issue: 4
  year: 2019
  end-page: 576
  article-title: Performance Analysis for Heterogeneous Cloud Servers Using Queueing Theory
  publication-title: IEEE Transactions on Computers
– volume: 12
  start-page: 3523
  issue: 7
  year: 2022
  article-title: An Efficient Multivariate Autoscaling Framework Using Bi‐LSTM for Cloud Computing
  publication-title: Applied Sciences
– volume: 11
  start-page: 1719
  year: 2022
  end-page: 1732
  article-title: Cloud Workload Turning Points Prediction via Cloud Feature‐Enhanced Deep Learning
  publication-title: IEEE Transactions on Cloud Computing
– year: 2022
– volume: 34
  year: 2022
  article-title: COSCO2: AI‐Augmented Evolutionary Algorithm‐Based Workload Prediction Framework for Sustainable Cloud Data Centers
  publication-title: Transactions on Emerging Telecommunications Technologies
– volume: 9
  start-page: 131476
  year: 2021
  end-page: 131495
  article-title: BHyPreC: A Novel Bi‐LSTM Based Hybrid Recurrent Neural Network Model to Predict the CPU Workload of Cloud Virtual Machine
  publication-title: IEEE Access
– volume: 424
  start-page: 35
  year: 2021
  end-page: 48
  article-title: Integrated Deep Learning Method for Workload and Resource Prediction in Cloud Systems
  publication-title: Neurocomputing
– volume: 1
  start-page: 1
  issue: 2
  year: 2023
  end-page: 9
  article-title: C‐Avpso: Dynamic Load Balancing Using African Vulture Particle Swarm Optimization
  publication-title: International Journal of Data Science and Artificial Intelligence
– volume: 105
  start-page: 353
  issue: 2
  year: 2022
  end-page: 374
  article-title: Time Series‐Based Workload Prediction Using the Statistical Hybrid Model for the Cloud Environment
  publication-title: Computing
– volume: 1
  start-page: 10
  issue: 1
  year: 2023
  end-page: 14
  article-title: Deep Learning Based Authentication Secure Data Storing in Cloud Computing
  publication-title: International Journal of Computer and Engineering Optimization
– volume: 135
  start-page: 438
  year: 2022
  end-page: 449
  article-title: WBATimeNet: A Deep Neural Network Approach for VM Live Migration in the Cloud
  publication-title: Future Generation Computer Systems
– volume: 78
  start-page: 1
  issue: 8
  year: 2022
  end-page: 30
  article-title: A Hybrid CNN‐LSTM Model for Predicting Server Load in Cloud Computing
  publication-title: Journal of Supercomputing
– volume: 116
  start-page: 1949
  issue: 3
  year: 2021
  end-page: 1969
  article-title: Performance Assessment of Time Series Forecasting Models for Cloud Datacenter Networks' Workload Prediction
  publication-title: Wireless Personal Communications
– volume: 16
  start-page: 1184
  year: 2022
  end-page: 1197
  article-title: FAST: A Forecasting Model With Adaptive Sliding Window and Time Locality Integration for Dynamic Cloud Workloads
  publication-title: IEEE Transactions on Services Computing
– volume: 26
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  article-title: Workload Time Series Prediction in Storage Systems: A Deep Learning‐Based Approach
  publication-title: Cluster Computing
– ident: e_1_2_11_5_1
– ident: e_1_2_11_20_1
  doi: 10.1007/s11227-021-03723-6
– volume: 2
  start-page: 14
  issue: 1
  year: 2024
  ident: e_1_2_11_19_1
  article-title: DNA Encryption‐Based Secure Access Control and Data Sharing in an Enabled Cloud Environment
  publication-title: International Journal of System Design and Computing
– volume: 1
  start-page: 10
  issue: 1
  year: 2023
  ident: e_1_2_11_4_1
  article-title: Deep Learning Based Authentication Secure Data Storing in Cloud Computing
  publication-title: International Journal of Computer and Engineering Optimization
– ident: e_1_2_11_29_1
  doi: 10.1016/j.future.2022.05.016
– ident: e_1_2_11_15_1
  doi: 10.1007/s11277-020-07773-6
– ident: e_1_2_11_25_1
  doi: 10.1007/s10723-022-09607-0
– volume: 2
  start-page: 81
  issue: 3
  year: 2024
  ident: e_1_2_11_13_1
  article-title: Iot‐Centric Data Protection Using Deep Learning Technique for Preserving Security and Privacy in Cloud
  publication-title: International Journal of Data Science and Artificial Intelligence
– start-page: 495
  volume-title: International Conference on Frontiers of Intelligent Computing: Theory and Applications
  year: 2023
  ident: e_1_2_11_3_1
– ident: e_1_2_11_8_1
  doi: 10.1016/j.compeleceng.2015.07.021
– volume: 1
  start-page: 63
  issue: 2
  year: 2023
  ident: e_1_2_11_21_1
  article-title: CAB‐IDS: IoT‐Based Intrusion Detection Using Bacteria Foraging Optimized BiGRU‐CNN Network
  publication-title: International Journal of Computer and Engineering Optimization
– ident: e_1_2_11_2_1
  doi: 10.1109/Confluence51648.2021.9377032
– ident: e_1_2_11_30_1
  doi: 10.1016/j.aej.2022.05.017
– ident: e_1_2_11_23_1
  doi: 10.1016/j.ins.2020.07.012
– ident: e_1_2_11_33_1
  doi: 10.1007/s11227-021-04234-0
– ident: e_1_2_11_35_1
  doi: 10.3390/app12042160
– volume: 69
  start-page: 79
  issue: 1
  year: 2024
  ident: e_1_2_11_11_1
  article-title: Load Balancing in Cloud Computing via Mayfly Optimization Algorithm
  publication-title: Revue Roumaine des Sciences Techniques—Série Électrotechnique et Énergétique
  doi: 10.59277/RRST-EE.2024.1.14
– ident: e_1_2_11_26_1
  doi: 10.1109/TCC.2022.3160228
– ident: e_1_2_11_12_1
  doi: 10.1109/ICCWorkshops50388.2021.9473607
– ident: e_1_2_11_24_1
  doi: 10.1016/j.neucom.2020.11.011
– ident: e_1_2_11_27_1
  doi: 10.1109/TSC.2022.3156619
– volume: 1
  start-page: 1
  issue: 2
  year: 2023
  ident: e_1_2_11_9_1
  article-title: C‐Avpso: Dynamic Load Balancing Using African Vulture Particle Swarm Optimization
  publication-title: International Journal of Data Science and Artificial Intelligence
– volume: 26
  start-page: 1
  issue: 1
  year: 2021
  ident: e_1_2_11_22_1
  article-title: Workload Time Series Prediction in Storage Systems: A Deep Learning‐Based Approach
  publication-title: Cluster Computing
– ident: e_1_2_11_28_1
  doi: 10.1002/ett.4652
– volume: 2
  start-page: 155
  issue: 5
  year: 2024
  ident: e_1_2_11_17_1
  article-title: Mass Robot: Predictive Maintenance Using Stacked CNN BI‐LSTM for Cleaning Robots
  publication-title: International Journal of Data Science and Artificial Intelligence
– ident: e_1_2_11_6_1
  doi: 10.1007/s00521-021-06665-5
– ident: e_1_2_11_10_1
  doi: 10.1109/TC.2019.2956505
– volume: 2
  start-page: 68
  issue: 3
  year: 2024
  ident: e_1_2_11_16_1
  article-title: Deep Learning Based Lstm‐Gan Approach for Intrusion Detection in Cloud Environment
  publication-title: International Journal of Data Science and Artificial Intelligence
– ident: e_1_2_11_31_1
  doi: 10.1109/CSCWD54268.2022.9776279
– volume: 2
  start-page: 98
  issue: 4
  year: 2024
  ident: e_1_2_11_7_1
  article-title: Dynamic Load Balancing in Cloud Computing Using Hybrid Kookaburra‐Pelican Optimization Algorithms
  publication-title: International Journal of Data Science and Artificial Intelligence
– ident: e_1_2_11_34_1
  doi: 10.1007/s00607-022-01129-7
– ident: e_1_2_11_32_1
  doi: 10.3390/app12073523
– ident: e_1_2_11_14_1
  doi: 10.1145/3447548.3467357
– ident: e_1_2_11_18_1
  doi: 10.1109/ACCESS.2021.3113714
SSID ssj0011031
Score 2.4013124
Snippet ABSTRACT Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively...
Cloud computing is a fundamental paradigm for computing services based on the elasticity attribute, in which available resources are effectively adjusted for...
SourceID crossref
wiley
SourceType Index Database
Publisher
SubjectTerms dynamic fuzzy c‐means algorithm
gated recurrent unit
server
workload prediction
Title Cloud Workload Forecasting via Latency‐Aware Time Series Clustering‐Based Scheduling Technique
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70151
Volume 37
WOSCitedRecordID wos001519774100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5K68GL9Yn1xSIevKzdbJJmg6caWzyUUqSF3sK-gkJpS9NWvPkT_I3-EnfyqHoQBG-BTEKYzOw3mc18H0JXUjqOYq4hnis94rWMS6QtBIjRYRBaTDGypTKxiaDf5-NxOKig23IWJueH2DTcIDOy9RoSXMi0-UUaqubmJrBgZj99aszGrV9FtfvH7qi32UQABYOcLpURagv3kliIsubm4h9w9L08zfClW__Xk-2inaKsxO08DvZQxUz3Ub2UbMBFBh8gGU1mK42hRT6ZCY1BmVOJFP59xutngXsCaujXj7f39otYGAwTIhg6aCbF0WQFrArW1J6-s-in7X2fLFTBRDselmSwh2jU7QyjB1LILBAF6EyEI6mQxnG0FLxlDE986RuPJcaHLXpFeego7bpeyBPGqAw9JoWtGluC25dsl4QjVJ3OpuYYYa6UoUyCShX3tAPEO0HCwoAmiY2IRDfQZenteJ6zacQ5bzKLrdfizGsNdJ1593eLOBp0soOTv5ueom0G0r0UiCnOUHW5WJlztKXWy-d0cVGEzieINcmK
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6KFfRifWJ9LuLBS2yySZsNeKmxpWIsRVroLexuNlgobelLvPkT_I3-EmfyqHoQBG-BTEKYzOw3mc18HyGXUlqWYrY2HFs6hlPTtiGhEDB05LkeYIqWNZWITbjtNu_3vU6B3OSzMCk_xKrhhpmRrNeY4NiQrnyxhqqJvnYBzeDbp-hAGEF8F--emr1gtYuAEgYpXyozTKjcc2Yhk1VWF__Ao-_1aQIwzdL_Hm2bbGWFJa2nkbBDCnq0S0q5aAPNcniPSH84XkQUm-TDsYgoanMqMcO_n-lyIGggsIp-_Xh7r7-IqaY4I0Kxh6Zn1B8ukFcBTOH0LeBfBPd9BrDCmXbazelg90mv2ej6LSMTWjAU4rMhLGkKqS0rkoLXtOZxVVa1w2JdxU16ZXLPUpFtOx6PGTOl5zApoG6sCQ6vGRaFA7I2Go_0IaFcKW0yiTpV3IkspN5xY-a5ZhxDTMRRmVzk7g4nKZ9GmDInsxC8FiZeK5OrxL2_W4R-p5EcHP3d9JxstLqPQRjctx-OySZDIV8TaSpOyNp8utCnZF0t54PZ9CyLo0-eQM16
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNQEB2kirjxLdbnRVy4iSY3aR7gRmOLYilFKrgL9zHBQmlLX-LOT_Ab_RLv5FF1IQjuApmEMJm5ZzI3cw7AqZSOo7iLludKz_J8dC1pCgELdRREBlNQ-ioTmwharfDpKWovwGU5C5PzQ8wbbpQZ2XpNCY5DnV58sYaqIZ4HBs3Mt8-iRyIyFVi8eWg8Nue7CCRhkPOlcss2lXvJLGTzi_nFP_Doe32aAUxj7X-Ptg6rRWHJrvJI2IAF7G_CWinawIoc3gIZ9wZTzahJ3hsIzUibU4kx_f3MZl3BmoKq6NePt_erFzFCRjMijHpoOGZxb0q8CsbUnL42-KfNfZ8NWNFMO-uUdLDb8Niod-JbqxBasBThsyUcaQuJjqOlCH3EMK3JGno8xRpt0is7jBylXdeLwpRzW0Yel8LUjb4IzWs2i8IOVPqDPu4CC5VCm0vSqQo97RD1TpDyKLDT1MREqqtwUro7GeZ8GknOnMwT47Uk81oVzjL3_m6RxO16drD3d9NjWG7fNJLmXet-H1Y46fjaxFJxAJXJaIqHsKRmk-54dFSE0Sd0Nsz1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cloud+Workload+Forecasting+via+Latency%E2%80%90Aware+Time+Series+Clustering%E2%80%90Based+Scheduling+Technique&rft.jtitle=Concurrency+and+computation&rft.au=Sridhar%2C+P.&rft.au=Sathiya%2C+R.+R.&rft.date=2025-07-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=15-17&rft_id=info:doi/10.1002%2Fcpe.70151&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_70151
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon