Node Immunization on Large Graphs: Theory and Algorithms

Given a large graph, like a computer communication network, which k nodes should we immunize (or monitor, or remove), to make it as robust as possible against a computer virus attack? This problem, referred to as the node immunization problem, is the core building block in many high-impact applicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 28; H. 1; S. 113 - 126
Hauptverfasser: Chen Chen, Hanghang Tong, Prakash, B. Aditya, Tsourakakis, Charalampos E., Eliassi-Rad, Tina, Faloutsos, Christos, Duen Horng Chau
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.01.2016
Schlagworte:
ISSN:1041-4347
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Given a large graph, like a computer communication network, which k nodes should we immunize (or monitor, or remove), to make it as robust as possible against a computer virus attack? This problem, referred to as the node immunization problem, is the core building block in many high-impact applications, ranging from public health, cybersecurity to viral marketing. A central component in node immunization is to find the best k bridges of a given graph. In this setting, we typically want to determine the relative importance of a node (or a set of nodes) within the graph, for example, how valuable (as a bridge) a person or a group of persons is in a social network. First of all, we propose a novel `bridging' score Dλ, inspired by immunology, and we show that its results agree with intuition for several realistic settings. Since the straightforward way to compute Dλ is computationally intractable, we then focus on the computational issues and propose a surprisingly efficient way (O(nk 2 + m)) to estimate it. Experimental results on real graphs show that (1) the proposed `bridging' score gives mining results consistent with intuition; and (2) the proposed fast solution is up to seven orders of magnitude faster than straightforward alternatives.
AbstractList Given a large graph, like a computer communication network, which k nodes should we immunize (or monitor, or remove), to make it as robust as possible against a computer virus attack? This problem, referred to as the node immunization problem, is the core building block in many high-impact applications, ranging from public health, cybersecurity to viral marketing. A central component in node immunization is to find the best k bridges of a given graph. In this setting, we typically want to determine the relative importance of a node (or a set of nodes) within the graph, for example, how valuable (as a bridge) a person or a group of persons is in a social network. First of all, we propose a novel `bridging' score Dλ, inspired by immunology, and we show that its results agree with intuition for several realistic settings. Since the straightforward way to compute Dλ is computationally intractable, we then focus on the computational issues and propose a surprisingly efficient way (O(nk 2 + m)) to estimate it. Experimental results on real graphs show that (1) the proposed `bridging' score gives mining results consistent with intuition; and (2) the proposed fast solution is up to seven orders of magnitude faster than straightforward alternatives.
Author Chen Chen
Duen Horng Chau
Hanghang Tong
Eliassi-Rad, Tina
Tsourakakis, Charalampos E.
Faloutsos, Christos
Prakash, B. Aditya
Author_xml – sequence: 1
  surname: Chen Chen
  fullname: Chen Chen
  email: cchen211@asu.edu
  organization: Comput. Sci. Dept., Arizona State Univ., Tempe, AZ, USA
– sequence: 2
  surname: Hanghang Tong
  fullname: Hanghang Tong
  email: hanghang.tong@asu.edu
  organization: Comput. Sci. Dept., Arizona State Univ., Tempe, AZ, USA
– sequence: 3
  givenname: B. Aditya
  surname: Prakash
  fullname: Prakash, B. Aditya
  email: badityap@cs.vt.edu
  organization: Virginia Tech, Blacksburg, VA, USA
– sequence: 4
  givenname: Charalampos E.
  surname: Tsourakakis
  fullname: Tsourakakis, Charalampos E.
  email: babis@seas.harvard.edu
  organization: Sch. of Eng. & Appl. Sci., Harvard Univ., Cambridge, MA, USA
– sequence: 5
  givenname: Tina
  surname: Eliassi-Rad
  fullname: Eliassi-Rad, Tina
  email: tina@eliassi.org
  organization: Comput. Sci. Dept., Rutgers Univ., Piscataway, NJ, USA
– sequence: 6
  givenname: Christos
  surname: Faloutsos
  fullname: Faloutsos, Christos
  email: christos@cs.cmu.edu
  organization: Comput. Sci. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 7
  surname: Duen Horng Chau
  fullname: Duen Horng Chau
  email: polo@gatech.edu
  organization: Sch. of Comput. Sci. & Eng., Georgia Tech, Atlanta, GA, USA
BookMark eNp9jz1PwzAQhj0UibbwAxBL_kDKnR3HDltVSqmoYClz5DiX1qhJKjsM5deTfoiBAel0t9zz6n1GbNC0DTF2hzBBhOxh_fo0n3BAOeFJKoXSAzZESDBORKKu2SiETwDQSuOQ6be2pGhZ11-N-zada5uon5XxG4oW3uy34TFab6n1h8g0ZTTdbVrvum0dbthVZXaBbi93zD6e5-vZS7x6Xyxn01VseSq7mLhOC5GWWZEBmlSSrrQGKLjslywN5ySICpFBKjM0aJXBzKrKitIKqFCMmTrnWt-G4KnKretORTtv3C5HyI_S-VE6P0rnF-mexD_k3rva-MO_zP2ZcUT0-69Qo0IpfgDnR2Xb
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_ins_2020_01_037
crossref_primary_10_1016_j_ins_2023_119201
crossref_primary_10_1016_j_jestch_2024_101728
crossref_primary_10_1109_TKDE_2021_3071081
crossref_primary_10_26599_IJCS_2022_9100027
crossref_primary_10_1007_s10618_020_00688_7
crossref_primary_10_1109_ACCESS_2019_2962197
crossref_primary_10_1109_TKDE_2019_2934447
crossref_primary_10_1109_TCSS_2021_3059430
crossref_primary_10_1109_TSP_2025_3527755
crossref_primary_10_1016_j_jocs_2023_101972
crossref_primary_10_1016_j_meegid_2025_105768
crossref_primary_10_1109_TKDE_2022_3163672
crossref_primary_10_3390_systems11090458
crossref_primary_10_1145_2903148
crossref_primary_10_1109_ACCESS_2023_3331220
crossref_primary_10_1016_j_knosys_2024_111632
crossref_primary_10_1007_s10955_017_1923_7
crossref_primary_10_32604_cmes_2024_047156
crossref_primary_10_3390_sym13020156
crossref_primary_10_1108_IDD_09_2016_0032
crossref_primary_10_1007_s41109_019_0122_7
crossref_primary_10_1145_3442342
crossref_primary_10_3390_math12162535
crossref_primary_10_1109_ACCESS_2017_2723838
crossref_primary_10_1109_TSMC_2021_3098630
crossref_primary_10_1109_TNSE_2024_3406415
crossref_primary_10_3389_fphy_2021_805584
crossref_primary_10_1007_s41109_018_0061_8
crossref_primary_10_1016_j_endm_2017_11_051
crossref_primary_10_1016_j_jmateco_2021_102486
crossref_primary_10_3390_app11115115
crossref_primary_10_1016_j_physrep_2022_05_003
crossref_primary_10_1080_24725854_2020_1798037
crossref_primary_10_1016_j_physa_2018_05_107
crossref_primary_10_1109_TCSS_2024_3429400
crossref_primary_10_1109_TNSE_2022_3164357
crossref_primary_10_1109_TKDE_2017_2719026
crossref_primary_10_1007_s11432_018_9855_7
Cites_doi 10.1155/ASP/2006/79412
10.1109/ICDM.2010.118
10.1109/ICDM.2008.130
10.1007/s10115-013-0671-5
10.1103/PhysRevLett.91.247901
10.1145/1379092.1379108
10.1145/502512.502525
10.1109/JSAC.2013.130610
10.1145/1557019.1557047
10.1109/INFCOM.2005.1498374
10.1109/ICDM.2012.136
10.1145/2339530.2339537
10.1103/PhysRevE.77.016107
10.2307/3033543
10.1109/RELDIS.2003.1238052
10.1137/S0036144500371907
10.1145/2339530.2339601
10.1145/2661829.2662088
10.1017/CBO9780511721649
10.1145/2124295.2124381
10.1145/1081870.1081944
10.1145/2396761.2396795
10.1137/1.9781611972832.43
10.1145/1281192.1281239
10.1007/978-3-642-21916-0_18
10.1016/B978-012088469-8/50050-4
10.1137/1.9781611973440.37
10.1007/s10115-012-0520-y
10.1145/2020408.2020512
10.1016/S1389-1286(00)00083-9
10.1145/1150402.1150412
10.1145/1401890.1401934
10.21136/CMJ.1973.101168
10.1145/2020408.2020431
10.1038/43601
10.1145/948187.948200
10.1145/324133.324140
10.1145/1963405.1963508
10.1145/956750.956769
10.1109/ICDM.2006.149
10.1016/j.socnet.2004.11.009
10.1145/2331042.2331059
10.1109/JSAC.2013.130607
10.1086/jar.33.4.3629752
10.1145/1284680.1284681
10.1109/ICDM.2011.132
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TKDE.2015.2465378
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 126
ExternalDocumentID 10_1109_TKDE_2015_2465378
7181715
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-e286b36d9b901a65e8f8800b2500b5da22e3eeb3906591a1c7a19c7fc3dc30f13
IEDL.DBID RIE
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000366833100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1041-4347
IngestDate Tue Nov 18 22:18:25 EST 2025
Sat Nov 29 04:46:38 EST 2025
Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords graph mining
Immunization
scalability
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-e286b36d9b901a65e8f8800b2500b5da22e3eeb3906591a1c7a19c7fc3dc30f13
PageCount 14
ParticipantIDs crossref_primary_10_1109_TKDE_2015_2465378
crossref_citationtrail_10_1109_TKDE_2015_2465378
ieee_primary_7181715
PublicationCentury 2000
PublicationDate 2016-Jan.-1
2016-1-1
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-Jan.-1
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
prakash (ref45) 0
hethcote (ref24) 2000; 42
ref15
ref52
ref11
ref10
ref17
ref16
ref19
valler (ref59) 2012
ref18
ref51
karypis (ref27) 0
zha (ref66) 0
ng (ref40) 0
tong (ref55) 2006
ref46
ref48
ref47
ref42
stewart (ref53) 1990
ref44
tuli (ref58) 0
maiya (ref33) 2011
ref49
ref8
ref7
ref9
ref4
ref6
ref5
moody (ref36) 0
habiba (ref21) 0
habiba (ref22) 2013
fiedler (ref14) 1973; 23
ref35
ref34
ref31
sun (ref54) 0
ref32
nguyen (ref41) 2013
ref2
ref39
ref38
yamagishi (ref64) 2011; 20
berger-wolf (ref3) 0
shi (ref50) 0
munro (ref37) 0
ref67
ref23
ref26
ref25
ref20
ref65
xin (ref63) 0
ref28
ref29
krause (ref30) 0
albert (ref1) 1999; 401
ref60
ref62
ref61
page (ref43) 1998
References_xml – year: 2013
  ident: ref22
  article-title: Critical individuals in dynamic population networks
– ident: ref56
  doi: 10.1155/ASP/2006/79412
– ident: ref10
  doi: 10.1109/ICDM.2010.118
– ident: ref12
  doi: 10.1109/ICDM.2008.130
– year: 0
  ident: ref21
  article-title: Graph theoretic measures for identifying effective blockers of spreading processes in dynamic networks
  publication-title: Proc MLG-ICML Workshop Mach Learn Graphs
– ident: ref48
  doi: 10.1007/s10115-013-0671-5
– ident: ref11
  doi: 10.1103/PhysRevLett.91.247901
– ident: ref51
  doi: 10.1145/1379092.1379108
– ident: ref13
  doi: 10.1145/502512.502525
– ident: ref42
  doi: 10.1109/JSAC.2013.130610
– ident: ref9
  doi: 10.1145/1557019.1557047
– ident: ref16
  doi: 10.1109/INFCOM.2005.1498374
– ident: ref47
  doi: 10.1109/ICDM.2012.136
– ident: ref35
  doi: 10.1145/2339530.2339537
– ident: ref38
  doi: 10.1103/PhysRevE.77.016107
– ident: ref15
  doi: 10.2307/3033543
– ident: ref61
  doi: 10.1109/RELDIS.2003.1238052
– year: 1990
  ident: ref53
  publication-title: Matrix Perturbation Theory
– volume: 42
  start-page: 599
  year: 2000
  ident: ref24
  article-title: The mathematics of infectious diseases
  publication-title: SIAM Rev
  doi: 10.1137/S0036144500371907
– start-page: 849
  year: 0
  ident: ref40
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1145/2339530.2339601
– start-page: 1057
  year: 0
  ident: ref66
  article-title: Spectral relaxation for k-means clustering
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref67
  doi: 10.1145/2661829.2662088
– ident: ref20
  doi: 10.1017/CBO9780511721649
– year: 0
  ident: ref45
  article-title: Fractional immunization in hospital-transfer graphs
– year: 2011
  ident: ref33
  article-title: Sampling and inference in complex networks
– ident: ref52
  doi: 10.1145/2124295.2124381
– ident: ref26
  doi: 10.1145/1081870.1081944
– ident: ref57
  doi: 10.1145/2396761.2396795
– ident: ref18
  doi: 10.1137/1.9781611972832.43
– year: 1998
  ident: ref43
  article-title: The PageRank citation ranking: Bringing order to the web
– year: 0
  ident: ref37
  article-title: Better approximation of betweenness centrality
  publication-title: Proc 10th Workshop Algorithm Eng Experiments
– start-page: 731
  year: 0
  ident: ref50
  article-title: Normalized cuts and image segmentation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref31
  doi: 10.1145/1281192.1281239
– ident: ref49
  doi: 10.1007/978-3-642-21916-0_18
– ident: ref17
  doi: 10.1016/B978-012088469-8/50050-4
– volume: 20
  start-page: 263
  year: 2011
  ident: ref64
  article-title: Learning attribute-weighted voter model over social networks
  publication-title: J Mach Learn Res -Proc Track
– ident: ref8
  doi: 10.1137/1.9781611973440.37
– year: 0
  ident: ref58
  article-title: Blocking complex contagions using community structure
  publication-title: Proc Workshop Multiagent Interaction Netw
– ident: ref46
  doi: 10.1007/s10115-012-0520-y
– ident: ref23
  doi: 10.1145/2020408.2020512
– ident: ref6
  doi: 10.1016/S1389-1286(00)00083-9
– ident: ref2
  doi: 10.1145/1150402.1150412
– ident: ref25
  doi: 10.1145/1401890.1401934
– volume: 23
  start-page: 298
  year: 1973
  ident: ref14
  article-title: Algebraic connectivity of graphs
  publication-title: Czechoslovak Math J
  doi: 10.21136/CMJ.1973.101168
– ident: ref34
  doi: 10.1145/2020408.2020431
– start-page: 613
  year: 2006
  ident: ref55
  article-title: Fast random walk with restart and its applications
  publication-title: Proc Int Conf Data Mining
– start-page: 933
  year: 0
  ident: ref3
  article-title: Working for influence: Effect of network density and modularity on diffusion in networks
  publication-title: Proc IEEE 11th Int Conf Data Mining Workshops
– start-page: 709
  year: 0
  ident: ref63
  article-title: Mining compressed frequent-pattern sets
  publication-title: Proc Int Conf Very Large Databases
– start-page: 343
  year: 0
  ident: ref27
  article-title: Multilevel K-way hypergraph partitioning
  publication-title: Proc 36th Annu ACM/IEEE Design Automation Conf
– volume: 401
  start-page: 130
  year: 1999
  ident: ref1
  article-title: Diameter of the world wide web
  publication-title: Nature
  doi: 10.1038/43601
– ident: ref5
  doi: 10.1145/948187.948200
– start-page: 1650
  year: 0
  ident: ref30
  article-title: Near-optimal observation selection using submodular functions
  publication-title: Proc 22nd Nat Conf Artif Intell
– ident: ref29
  doi: 10.1145/324133.324140
– ident: ref60
  doi: 10.1145/1963405.1963508
– start-page: 1
  year: 0
  ident: ref36
  article-title: Social cohesion and embeddedness: A hierarchical conception of social groups
  publication-title: American Sociologic Review
– year: 2012
  ident: ref59
  article-title: Spreading processes on networks theory and applications
– ident: ref28
  doi: 10.1145/956750.956769
– ident: ref32
  doi: 10.1109/ICDM.2006.149
– ident: ref39
  doi: 10.1016/j.socnet.2004.11.009
– ident: ref44
  doi: 10.1145/2331042.2331059
– start-page: 418
  year: 0
  ident: ref54
  article-title: Neighborhood formation and anomaly detection in bipartite graphs
  publication-title: Proc Int Conf Data Mining
– ident: ref62
  doi: 10.1109/JSAC.2013.130607
– ident: ref65
  doi: 10.1086/jar.33.4.3629752
– ident: ref7
  doi: 10.1145/1284680.1284681
– ident: ref19
  doi: 10.1109/ICDM.2011.132
– year: 2013
  ident: ref41
  article-title: Interactions on complex networks: Inference algorithms and applications
SSID ssj0008781
Score 2.4986603
Snippet Given a large graph, like a computer communication network, which k nodes should we immunize (or monitor, or remove), to make it as robust as possible against...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 113
SubjectTerms Approximation methods
Computational complexity
Computers
Eigenvalues and eigenfunctions
Electronic mail
Graph Mining
Immune system
Immunization
Robustness
Scalability
Title Node Immunization on Large Graphs: Theory and Algorithms
URI https://ieeexplore.ieee.org/document/7181715
Volume 28
WOSCitedRecordID wos000366833100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0008781
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCD001x_iIHT2Jn07RJ623opqIMDxN2K0n6qoPZytb595uk2dhBBKGHUhIoX5u89-X9-BC6tB0IBQEvDHNzdMOkJwOmPKlUTnyhnWYprdgEH43iySR5baDrdS0MANjkM-iZWxvLz0q1NEdlN3ofJdxUlG9xzuparfWuG3MrSKrZheZENOQugkn85Gb8fD8wSVxRLzDdxIyi2oYN2hBVsTZl2Prf2-yjPec74n79sQ9QA4o2aq10GbBbpm20u9FksIPiUZkBfrJ1IHXNJdbXi8kAxw-mXfXiFtcV-lgUGe7P3sv5tPr4XByit-FgfPfoOb0ETwUsqjwIYiYpyxKpjbxgEcS5Xp2-1F6OL6NMBAFQ0OQ5MbFUIojigiSK54pmivo5oUeoWZQFHCPMMhCaO-SSAg0h0Dw5iWWuqZU0HkMcdpG_QjBVrpm40bSYpZZU-ElqQE8N6KkDvYuu1lO-6k4afw3uGMDXAx3WJ78_PkU7erI7GTlDzWq-hHO0rb6r6WJ-Yf-THye2uL8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGH4ZU1APTjfF-ZmDJ7Fb2vTT29DNjc3iYcJuJUlTHcxWts7fb5J2ZQcRhB5KSUt52uR9n7wfD8Ct7kBITWHYdqK2blxmMMvlBuM8MTGVTjNjWmzCC0N_Ngtea3Bf1cIIIXTymeioUx3LjzO-VltlXbmOmp6qKN9xbNvCRbVWte76npYklfxCsiJie2UM08RBdzp-6qs0LqdjqX5iSlNtywptyapoqzJo_O99juCw9B5Rr_jcx1ATaRMaG2UGVE7UJhxstRlsgR9msUAjXQlSVF0ieUxUDjh6Vg2rVw-oqNFHNI1Rb_GeLef5x-fqBN4G_enj0CgVEwxuuU5uCMt3GXHjgEkzT11H-Imcn5hJPwczJ6aWJYiQ9DlQ0VSTmtyjZsC9hJOYE5yY5BTqaZaKM0BuLKhkDwkjgtjCkkw58FkiyRVTPoNvtwFvEIx42U5cqVosIk0rcBAp0CMFelSC3oa76pavopfGX4NbCvBqYIn1-e-Xb2BvOH2ZRJNROL6Affmgcp_kEur5ci2uYJd_5_PV8lr_Mz_0RbwG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Node+Immunization+on+Large+Graphs%3A+Theory+and+Algorithms&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Chen%2C+Chen&rft.au=Tong%2C+Hanghang&rft.au=Prakash%2C+B.+Aditya&rft.au=Tsourakakis%2C+Charalampos+E.&rft.date=2016-01-01&rft.issn=1041-4347&rft.volume=28&rft.issue=1&rft.spage=113&rft.epage=126&rft_id=info:doi/10.1109%2FTKDE.2015.2465378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TKDE_2015_2465378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon