Low-Rank Factorizations in Data Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite Matrices

We consider the problem of choosing low-rank factorizations in data sparse matrix approximations for preconditioning large-scale symmetric positive definite (SPD) matrices. These approximations are memory-efficient schemes that rely on hierarchical matrix partitioning and compression of certain sub-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on matrix analysis and applications Ročník 39; číslo 4; s. 1701 - 1725
Hlavní autoři: Agullo, Emmanuel, Darve, Eric, Giraud, Luc, Harness, Yuval
Médium: Journal Article
Jazyk:angličtina
Vydáno: Society for Industrial and Applied Mathematics 01.01.2018
Témata:
ISSN:0895-4798, 1095-7162
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the problem of choosing low-rank factorizations in data sparse matrix approximations for preconditioning large-scale symmetric positive definite (SPD) matrices. These approximations are memory-efficient schemes that rely on hierarchical matrix partitioning and compression of certain sub-blocks of the matrix. Typically, these matrix approximations can be constructed very fast, and their matrix product can be applied rapidly as well. The common practice is to express the compressed sub-blocks by low-rank factorizations, and the main contribution of this work is the numerical and spectral analysis of SPD preconditioning schemes represented by $2\times2$ block matrices, whose off-diagonal sub-blocks are low-rank approximations of the original matrix off-diagonal sub-blocks. We propose an optimal choice of low-rank approximations which minimizes the condition number of the preconditioned system, and demonstrate that the analysis can be applied to the class of hierarchically off-diagonal low-rank matrix approximations. Spectral estimates that take into account the error propagation through levels of the hierarchy which quantify the impact of the choice of low-rank compression on the global condition number are provided. The numerical results indicate that the properties of the preconditioning scheme using proper low-rank compression are superior to employing standard choices for low-rank compression. A major goal of this work is to provide an insight into how proper reweighted prior to low-rank compression influences the condition number for a simple case, which would lead to an extended analysis for more general and more efficient hierarchical matrix approximation techniques.
AbstractList We consider the problem of choosing low-rank factorizations in data sparse matrix approximations for preconditioning large-scale symmetric positive definite (SPD) matrices. These approximations are memory-efficient schemes that rely on hierarchical matrix partitioning and compression of certain sub-blocks of the matrix. Typically, these matrix approximations can be constructed very fast, and their matrix product can be applied rapidly as well. The common practice is to express the compressed sub-blocks by low-rank factorizations, and the main contribution of this work is the numerical and spectral analysis of SPD preconditioning schemes represented by $2\times2$ block matrices, whose off-diagonal sub-blocks are low-rank approximations of the original matrix off-diagonal sub-blocks. We propose an optimal choice of low-rank approximations which minimizes the condition number of the preconditioned system, and demonstrate that the analysis can be applied to the class of hierarchically off-diagonal low-rank matrix approximations. Spectral estimates that take into account the error propagation through levels of the hierarchy which quantify the impact of the choice of low-rank compression on the global condition number are provided. The numerical results indicate that the properties of the preconditioning scheme using proper low-rank compression are superior to employing standard choices for low-rank compression. A major goal of this work is to provide an insight into how proper reweighted prior to low-rank compression influences the condition number for a simple case, which would lead to an extended analysis for more general and more efficient hierarchical matrix approximation techniques.
Author Darve, Eric
Agullo, Emmanuel
Harness, Yuval
Giraud, Luc
Author_xml – sequence: 1
  givenname: Emmanuel
  surname: Agullo
  fullname: Agullo, Emmanuel
– sequence: 2
  givenname: Eric
  surname: Darve
  fullname: Darve, Eric
– sequence: 3
  givenname: Luc
  surname: Giraud
  fullname: Giraud, Luc
– sequence: 4
  givenname: Yuval
  surname: Harness
  fullname: Harness, Yuval
BackLink https://inria.hal.science/hal-01940053$$DView record in HAL
BookMark eNptkE9Lw0AQxRepYFu9-An2qhDdzf8cS2utkGKxeg6TzWy7mmTL7mKpn97EioIIAzO8-b13eCMyaHWLhFxydsN5kNzyZMl51E16QoacZZGX8NgfkCFLuztMsvSMjKx9ZYzHYcaHZJ_rvfcE7Rudg3DaqA9wSreWqpbOwAFd78BYpAuFBozYKgE1ndSbjnTbxlKpDV0ZFLqtVG9U7YauD02DzihBV9p26jvSGUrVKod0Cf0D7Tk5lVBbvPjeY_Iyv3ueLrz88f5hOsk94ceR89CPUlZmfunHIH1RZSCiMEYeVEywUgiMRSpLCYgyiSussjLiSeUzIcuSpREEY3J1zN1CXeyMasAcCg2qWEzyotcYz0LGouCdd-z1kRVGW2tQ_hg4K_p6i996O5j9gYVyX905A6r-z_IJGL2BIA
CitedBy_id crossref_primary_10_1109_TAP_2024_3432281
crossref_primary_10_1002_nla_2294
crossref_primary_10_1137_20M1349540
crossref_primary_10_1137_17M1153765
crossref_primary_10_1016_j_laa_2024_04_035
Cites_doi 10.1137/S0895479803436652
10.1017/S0962492915000021
10.1007/BF02288367
10.1137/0727092
10.1137/0917055
10.1016/j.acha.2007.12.002
10.1137/17M1124152
10.1007/BF01409783
10.1007/s00607-003-0019-1
10.1007/PL00021408
10.1073/pnas.0709640104
10.1016/j.jcp.2015.10.012
10.1016/S0024-3795(02)00572-4
10.1016/j.parco.2007.12.001
10.1002/nla.691
10.1145/1039488.1039494
10.1007/s006070050015
10.6028/jres.049.044
10.1090/mcom/3086
10.1137/100786617
10.1007/BF01389760
10.1137/090750500
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1137/17M1151158
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1095-7162
EndPage 1725
ExternalDocumentID oai:HAL:hal-01940053v1
10_1137_17M1151158
GroupedDBID -~X
.4S
.DC
123
186
4.4
7WY
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8G5
8V8
AALVN
AASXH
AAYXX
ABDBF
ABDPE
ABJCF
ABKAD
ABMZU
ABUWG
ACGFO
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AEMOZ
AENEX
AFFHD
AFFNX
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CS3
CZ9
D0L
D1I
D1J
D1K
DQ2
DU5
DWQXO
EAP
EBR
EBS
EBU
ECS
EDO
EJD
EMK
EST
ESX
FA8
FRNLG
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K1G
K6-
K60
K6V
K6~
K7-
KB.
KC.
L6V
LK5
LK8
M0C
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
RJG
RNS
RSI
TH9
TN5
TUS
YNT
ZKB
ZY4
1XC
VOOES
ID FETCH-LOGICAL-c265t-e2580b92b26af2cd9ac546e13d0c0bcce6c8fbfaeef76ded9b517d20cfbb085a3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453731100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0895-4798
IngestDate Tue Oct 14 20:38:55 EDT 2025
Sat Nov 29 02:43:43 EST 2025
Tue Nov 18 22:12:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c265t-e2580b92b26af2cd9ac546e13d0c0bcce6c8fbfaeef76ded9b517d20cfbb085a3
ORCID 0000-0003-0655-6934
0000-0002-7062-7672
OpenAccessLink https://inria.hal.science/hal-01940053
PageCount 25
ParticipantIDs hal_primary_oai_HAL_hal_01940053v1
crossref_primary_10_1137_17M1151158
crossref_citationtrail_10_1137_17M1151158
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle SIAM journal on matrix analysis and applications
PublicationYear 2018
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References atypb9
atypb8
atypb27
atypb28
atypb29
atypb22
atypb23
atypb20
atypb21
Hackbusch W. (atypb19) 2000; 64
Davis T. A. (atypb11) 2011; 38
Rjasanow S. (atypb25) 2002
atypb16
atypb17
atypb18
atypb12
atypb13
atypb14
atypb30
atypb3
atypb31
Bebendorf M. (atypb7) 2013; 53
atypb10
atypb5
atypb4
References_xml – volume: 38
  start-page: 1
  year: 2011
  ident: atypb11
  publication-title: ACM Trans. Math. Softw.
– ident: atypb9
  doi: 10.1137/S0895479803436652
– ident: atypb27
  doi: 10.1017/S0962492915000021
– ident: atypb12
  doi: 10.1007/BF02288367
– ident: atypb5
  doi: 10.1137/0727092
– ident: atypb17
  doi: 10.1137/0917055
– ident: atypb28
  doi: 10.1016/j.acha.2007.12.002
– ident: atypb31
  doi: 10.1137/17M1124152
– ident: atypb4
  doi: 10.1007/BF01409783
– ident: atypb16
  doi: 10.1007/s00607-003-0019-1
– volume: 64
  start-page: 21
  year: 2000
  ident: atypb19
  publication-title: Computing
  doi: 10.1007/PL00021408
– ident: atypb21
  doi: 10.1073/pnas.0709640104
– ident: atypb3
  doi: 10.1016/j.jcp.2015.10.012
– ident: atypb23
  doi: 10.1016/S0024-3795(02)00572-4
– ident: atypb10
  doi: 10.1016/j.parco.2007.12.001
– ident: atypb29
  doi: 10.1002/nla.691
– ident: atypb14
  doi: 10.1145/1039488.1039494
– ident: atypb18
  doi: 10.1007/s006070050015
– ident: atypb20
  doi: 10.6028/jres.049.044
– ident: atypb8
  doi: 10.1090/mcom/3086
– start-page: 28
  year: 2002
  ident: atypb25
  publication-title: IABEM
– ident: atypb22
  doi: 10.1137/100786617
– volume: 53
  start-page: 311
  year: 2013
  ident: atypb7
  publication-title: BIT
– ident: atypb13
  doi: 10.1007/BF01389760
– ident: atypb30
  doi: 10.1137/090750500
SSID ssj0016491
Score 2.2195823
Snippet We consider the problem of choosing low-rank factorizations in data sparse matrix approximations for preconditioning large-scale symmetric positive definite...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 1701
SubjectTerms Computer Science
Distributed, Parallel, and Cluster Computing
Mathematics
Numerical Analysis
Title Low-Rank Factorizations in Data Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite Matrices
URI https://inria.hal.science/hal-01940053
Volume 39
WOSCitedRecordID wos000453731100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: P5Z
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: BENPR
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1095-7162
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0016491
  issn: 0895-4798
  databaseCode: M2O
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdtt4eVsY9uo90XYtvLMGaJbdnWY1gaUpZkZemgb0aSpcYscUMWp9l_v5Mt2U7pQ_cwCCLIR5B1v5zupNPvEPokA8I8KqgrPB65gVDEpR3J3VClYcxU5Aey5JkdRZNJfHlJz_f2H9u7MJt5lOfxdkuX_1XV0AfK1ldn_0Hd9Y9CB3wHpUMLaof2XoofXd-4P1j-yxmUpXTsPUu9sdFna-ZMlxDLSmeY6avHZSUUUNL8CiTXs4qdQedlQJicZnazdvpnsdCVt4Su7WuTjVSm3VVnXHL8m0xE4-VOz3rjhpMidxZaZuswS4BSEsS2Ts5r1F0V5ijodLFgeSHr9I8-W22ktdt1zlC2YkWJ0FEhGlO60ta7XFqKjZkss63RjW9ta7RzVltFTPT4rHs-rnlt29uaMSV6t7Cy6bIy6uBGupopq231Kwolg-6gZcI1QX3LHQAHj9y91FRkBdEYfGr4xM2CapMIhr1pct4fJKOzybfdp60kyGFvBO2MzeHtdZF64m8gmH_gRYTqDMWx970-FAuDqgCkfUXDtgsD-dIMY8e_2p_Z44HSXbp4hp6YOAf3Knw-R3syP0JPbQ0RbJaUI3TYmt8X6MaCF--CF2c51uDFFXhxG7y4AS8GPeJb4MU1eLEFL7bgxRa8L9HPwenF16FrSoOATQnJ2pUeiTucetwLmfJESpkgQSi7ftoRHS6EDEWsuGJSqihMZUo56Uap1xGKcwgymP8KHeTXuTxGWHIV8pgICoFOAECkKpRB4Ht-GKdCpeQEfbYTmgjDm6_Lt8yTMn72o6SZ_BP0sZZdVmwxd0p9AL3UAprgHVCQ6L4GA6_vI_QGPWr-O2_RwXpVyHfoodiss9-r9yV6_gLp_MZ4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Rank+Factorizations+in+Data+Sparse+Hierarchical+Algorithms+for+Preconditioning+Symmetric+Positive+Definite+Matrices&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=Agullo%2C+Emmanuel&rft.au=Darve%2C+Eric&rft.au=Giraud%2C+Luc&rft.au=Harness%2C+Yuval&rft.date=2018-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=39&rft.issue=4&rft.spage=1701&rft.epage=1725&rft_id=info:doi/10.1137%2F17M1151158&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01940053v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon