Low-Rank Factorizations in Data Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite Matrices
We consider the problem of choosing low-rank factorizations in data sparse matrix approximations for preconditioning large-scale symmetric positive definite (SPD) matrices. These approximations are memory-efficient schemes that rely on hierarchical matrix partitioning and compression of certain sub-...
Uloženo v:
| Vydáno v: | SIAM journal on matrix analysis and applications Ročník 39; číslo 4; s. 1701 - 1725 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Society for Industrial and Applied Mathematics
01.01.2018
|
| Témata: | |
| ISSN: | 0895-4798, 1095-7162 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider the problem of choosing low-rank factorizations in data sparse matrix approximations for preconditioning large-scale symmetric positive definite (SPD) matrices. These approximations are memory-efficient schemes that rely on hierarchical matrix partitioning and compression of certain sub-blocks of the matrix. Typically, these matrix approximations can be constructed very fast, and their matrix product can be applied rapidly as well. The common practice is to express the compressed sub-blocks by low-rank factorizations, and the main contribution of this work is the numerical and spectral analysis of SPD preconditioning schemes represented by $2\times2$ block matrices, whose off-diagonal sub-blocks are low-rank approximations of the original matrix off-diagonal sub-blocks. We propose an optimal choice of low-rank approximations which minimizes the condition number of the preconditioned system, and demonstrate that the analysis can be applied to the class of hierarchically off-diagonal low-rank matrix approximations. Spectral estimates that take into account the error propagation through levels of the hierarchy which quantify the impact of the choice of low-rank compression on the global condition number are provided. The numerical results indicate that the properties of the preconditioning scheme using proper low-rank compression are superior to employing standard choices for low-rank compression. A major goal of this work is to provide an insight into how proper reweighted prior to low-rank compression influences the condition number for a simple case, which would lead to an extended analysis for more general and more efficient hierarchical matrix approximation techniques. |
|---|---|
| AbstractList | We consider the problem of choosing low-rank factorizations in data sparse matrix approximations for preconditioning large-scale symmetric positive definite (SPD) matrices. These approximations are memory-efficient schemes that rely on hierarchical matrix partitioning and compression of certain sub-blocks of the matrix. Typically, these matrix approximations can be constructed very fast, and their matrix product can be applied rapidly as well. The common practice is to express the compressed sub-blocks by low-rank factorizations, and the main contribution of this work is the numerical and spectral analysis of SPD preconditioning schemes represented by $2\times2$ block matrices, whose off-diagonal sub-blocks are low-rank approximations of the original matrix off-diagonal sub-blocks. We propose an optimal choice of low-rank approximations which minimizes the condition number of the preconditioned system, and demonstrate that the analysis can be applied to the class of hierarchically off-diagonal low-rank matrix approximations. Spectral estimates that take into account the error propagation through levels of the hierarchy which quantify the impact of the choice of low-rank compression on the global condition number are provided. The numerical results indicate that the properties of the preconditioning scheme using proper low-rank compression are superior to employing standard choices for low-rank compression. A major goal of this work is to provide an insight into how proper reweighted prior to low-rank compression influences the condition number for a simple case, which would lead to an extended analysis for more general and more efficient hierarchical matrix approximation techniques. |
| Author | Darve, Eric Agullo, Emmanuel Harness, Yuval Giraud, Luc |
| Author_xml | – sequence: 1 givenname: Emmanuel surname: Agullo fullname: Agullo, Emmanuel – sequence: 2 givenname: Eric surname: Darve fullname: Darve, Eric – sequence: 3 givenname: Luc surname: Giraud fullname: Giraud, Luc – sequence: 4 givenname: Yuval surname: Harness fullname: Harness, Yuval |
| BackLink | https://inria.hal.science/hal-01940053$$DView record in HAL |
| BookMark | eNptkE9Lw0AQxRepYFu9-An2qhDdzf8cS2utkGKxeg6TzWy7mmTL7mKpn97EioIIAzO8-b13eCMyaHWLhFxydsN5kNzyZMl51E16QoacZZGX8NgfkCFLuztMsvSMjKx9ZYzHYcaHZJ_rvfcE7Rudg3DaqA9wSreWqpbOwAFd78BYpAuFBozYKgE1ndSbjnTbxlKpDV0ZFLqtVG9U7YauD02DzihBV9p26jvSGUrVKod0Cf0D7Tk5lVBbvPjeY_Iyv3ueLrz88f5hOsk94ceR89CPUlZmfunHIH1RZSCiMEYeVEywUgiMRSpLCYgyiSussjLiSeUzIcuSpREEY3J1zN1CXeyMasAcCg2qWEzyotcYz0LGouCdd-z1kRVGW2tQ_hg4K_p6i996O5j9gYVyX905A6r-z_IJGL2BIA |
| CitedBy_id | crossref_primary_10_1109_TAP_2024_3432281 crossref_primary_10_1002_nla_2294 crossref_primary_10_1137_20M1349540 crossref_primary_10_1137_17M1153765 crossref_primary_10_1016_j_laa_2024_04_035 |
| Cites_doi | 10.1137/S0895479803436652 10.1017/S0962492915000021 10.1007/BF02288367 10.1137/0727092 10.1137/0917055 10.1016/j.acha.2007.12.002 10.1137/17M1124152 10.1007/BF01409783 10.1007/s00607-003-0019-1 10.1007/PL00021408 10.1073/pnas.0709640104 10.1016/j.jcp.2015.10.012 10.1016/S0024-3795(02)00572-4 10.1016/j.parco.2007.12.001 10.1002/nla.691 10.1145/1039488.1039494 10.1007/s006070050015 10.6028/jres.049.044 10.1090/mcom/3086 10.1137/100786617 10.1007/BF01389760 10.1137/090750500 |
| ContentType | Journal Article |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1137/17M1151158 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1095-7162 |
| EndPage | 1725 |
| ExternalDocumentID | oai:HAL:hal-01940053v1 10_1137_17M1151158 |
| GroupedDBID | -~X .4S .DC 123 186 4.4 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFHD AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D0L D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU ECS EDO EJD EMK EST ESX FA8 FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TH9 TN5 TUS YNT ZKB ZY4 1XC VOOES |
| ID | FETCH-LOGICAL-c265t-e2580b92b26af2cd9ac546e13d0c0bcce6c8fbfaeef76ded9b517d20cfbb085a3 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000453731100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0895-4798 |
| IngestDate | Tue Oct 14 20:38:55 EDT 2025 Sat Nov 29 02:43:43 EST 2025 Tue Nov 18 22:12:55 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c265t-e2580b92b26af2cd9ac546e13d0c0bcce6c8fbfaeef76ded9b517d20cfbb085a3 |
| ORCID | 0000-0003-0655-6934 0000-0002-7062-7672 |
| OpenAccessLink | https://inria.hal.science/hal-01940053 |
| PageCount | 25 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01940053v1 crossref_primary_10_1137_17M1151158 crossref_citationtrail_10_1137_17M1151158 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | SIAM journal on matrix analysis and applications |
| PublicationYear | 2018 |
| Publisher | Society for Industrial and Applied Mathematics |
| Publisher_xml | – name: Society for Industrial and Applied Mathematics |
| References | atypb9 atypb8 atypb27 atypb28 atypb29 atypb22 atypb23 atypb20 atypb21 Hackbusch W. (atypb19) 2000; 64 Davis T. A. (atypb11) 2011; 38 Rjasanow S. (atypb25) 2002 atypb16 atypb17 atypb18 atypb12 atypb13 atypb14 atypb30 atypb3 atypb31 Bebendorf M. (atypb7) 2013; 53 atypb10 atypb5 atypb4 |
| References_xml | – volume: 38 start-page: 1 year: 2011 ident: atypb11 publication-title: ACM Trans. Math. Softw. – ident: atypb9 doi: 10.1137/S0895479803436652 – ident: atypb27 doi: 10.1017/S0962492915000021 – ident: atypb12 doi: 10.1007/BF02288367 – ident: atypb5 doi: 10.1137/0727092 – ident: atypb17 doi: 10.1137/0917055 – ident: atypb28 doi: 10.1016/j.acha.2007.12.002 – ident: atypb31 doi: 10.1137/17M1124152 – ident: atypb4 doi: 10.1007/BF01409783 – ident: atypb16 doi: 10.1007/s00607-003-0019-1 – volume: 64 start-page: 21 year: 2000 ident: atypb19 publication-title: Computing doi: 10.1007/PL00021408 – ident: atypb21 doi: 10.1073/pnas.0709640104 – ident: atypb3 doi: 10.1016/j.jcp.2015.10.012 – ident: atypb23 doi: 10.1016/S0024-3795(02)00572-4 – ident: atypb10 doi: 10.1016/j.parco.2007.12.001 – ident: atypb29 doi: 10.1002/nla.691 – ident: atypb14 doi: 10.1145/1039488.1039494 – ident: atypb18 doi: 10.1007/s006070050015 – ident: atypb20 doi: 10.6028/jres.049.044 – ident: atypb8 doi: 10.1090/mcom/3086 – start-page: 28 year: 2002 ident: atypb25 publication-title: IABEM – ident: atypb22 doi: 10.1137/100786617 – volume: 53 start-page: 311 year: 2013 ident: atypb7 publication-title: BIT – ident: atypb13 doi: 10.1007/BF01389760 – ident: atypb30 doi: 10.1137/090750500 |
| SSID | ssj0016491 |
| Score | 2.2195823 |
| Snippet | We consider the problem of choosing low-rank factorizations in data sparse matrix approximations for preconditioning large-scale symmetric positive definite... |
| SourceID | hal crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 1701 |
| SubjectTerms | Computer Science Distributed, Parallel, and Cluster Computing Mathematics Numerical Analysis |
| Title | Low-Rank Factorizations in Data Sparse Hierarchical Algorithms for Preconditioning Symmetric Positive Definite Matrices |
| URI | https://inria.hal.science/hal-01940053 |
| Volume | 39 |
| WOSCitedRecordID | wos000453731100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1095-7162 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: P5Z dateStart: 19880101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-7162 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: BENPR dateStart: 19880101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1095-7162 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0016491 issn: 0895-4798 databaseCode: M2O dateStart: 19880101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdtt4eVsY9uo90XYtvLMGa2Y8vSY1gaUpZkZemgb0aW5cYscUMWu9l_v5Mt2U7pQ_cwCCIowsi6X053p9PvEPqUMp8yGji2w11wULhLbJow3yaEcyfkDktEVbVkHE6n9PKSne_tPzZ3YcpFmOd0u2Wr_ypq6ANhq6uz_yDu5qHQAd9B6NCC2KG9l-DH1zf2D57_soZVKR1zz1IFNgZ8w63ZCnxZaY0ydfW4qoQCQlpcwcjNvGZnUHkZ4CYnmQnWzv4sl6ryllC1fU2yUZopc9WaVBz_OhNRW7mzs_6k5aTIraUas7W4IUCpCGI7J-cN6q4KfRR0ulzyvJBN-seAr0tp9HaTM5SteVEhdFyIVpWulfautpai1IulwxouvRXW6OasdoqYqPkZ83zS8Np2w5qUBSpaWOt0WSt1MCNtxZTV1fo1hZJGt99R4YqgvmMOgIEX3L3V1GQF4QRsavjQdkM1SQSj_iw6Hwyj8dn02-6vnSTIUX8M7Zwv4O1VkfqgV4Iz_8ALA6YyFCfe9-ZQjPh1AUjzipptFybypZ3Gjn21PzfHA5W5dPEMPdF-Du7X-HyO9mR-hJ6aGiJYbylH6LCzvi_QjQEv3gUvznKswItr8OIueHELXgxyxLfAixvwYgNebMCLDXhfop_D04uvI1uXBrGFR4KNLb2AOjHzYo_w1BMJ4yLwiXR7iSOcWAhJBE3jlEuZhiSRCYsDN0w8R6RxDE4G771CB_l1Lo8RdpzUh4dxQknPDySLfbBowS-SgiQ8JuEJ-mwWNBKaN1-Vb1lElf_cC6N28U_Qx2bsqmaLuXPUB5BLM0ARvAMKItXXYuD1fQa9QY_a_85bdLBZF_IdeijKTfZ7_b5Cz18F2sUN |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Rank+Factorizations+in+Data+Sparse+Hierarchical+Algorithms+for+Preconditioning+Symmetric+Positive+Definite+Matrices&rft.jtitle=SIAM+journal+on+matrix+analysis+and+applications&rft.au=Agullo%2C+Emmanuel&rft.au=Darve%2C+Eric&rft.au=Giraud%2C+Luc&rft.au=Harness%2C+Yuval&rft.date=2018-01-01&rft.pub=Society+for+Industrial+and+Applied+Mathematics&rft.issn=0895-4798&rft.eissn=1095-7162&rft.volume=39&rft.issue=4&rft.spage=1701&rft.epage=1725&rft_id=info:doi/10.1137%2F17M1151158&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01940053v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-4798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-4798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-4798&client=summon |