Human Intention Inference Using Expectation-Maximization Algorithm With Online Model Learning

An algorithm called adaptive-neural-intention estimator (ANIE) is presented to infer the intent of a human operator's arm movements based on the observations from a 3-D camera sensor (Microsoft Kinect). Intentions are modeled as the goal locations of reaching motions in 3-D space. Human arm...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automation science and engineering Vol. 14; no. 2; pp. 855 - 868
Main Authors: Ravichandar, Harish Chaandar, Dani, Ashwin P.
Format: Journal Article
Language:English
Published: IEEE 01.04.2017
Subjects:
ISSN:1545-5955, 1558-3783
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An algorithm called adaptive-neural-intention estimator (ANIE) is presented to infer the intent of a human operator's arm movements based on the observations from a 3-D camera sensor (Microsoft Kinect). Intentions are modeled as the goal locations of reaching motions in 3-D space. Human arm's nonlinear motion dynamics are modeled using an unknown nonlinear function with intentions represented as parameters. The unknown model is learned by using a neural network. Based on the learned model, an approximate expectation-maximization algorithm is developed to infer human intentions. Furthermore, an identifier-based online model learning algorithm is developed to adapt to the variations in the arm motion dynamics, the motion trajectory, the goal locations, and the initial conditions of different human subjects. The results of experiments conducted on data obtained from different users performing a variety of reaching motions are presented. The ANIE algorithm is compared with an unsupervised Gaussian mixture model algorithm and an Euclidean distance-based approach by using Cornell's CAD-120 data set and data collected in the Robotics and Controls Laboratoy at UConn. The ANIE algorithm is compared with the inverse LQR and ATCRF algorithms using a labeling task carried out on the CAD-120 data set.
AbstractList An algorithm called adaptive-neural-intention estimator (ANIE) is presented to infer the intent of a human operator's arm movements based on the observations from a 3-D camera sensor (Microsoft Kinect). Intentions are modeled as the goal locations of reaching motions in 3-D space. Human arm's nonlinear motion dynamics are modeled using an unknown nonlinear function with intentions represented as parameters. The unknown model is learned by using a neural network. Based on the learned model, an approximate expectation-maximization algorithm is developed to infer human intentions. Furthermore, an identifier-based online model learning algorithm is developed to adapt to the variations in the arm motion dynamics, the motion trajectory, the goal locations, and the initial conditions of different human subjects. The results of experiments conducted on data obtained from different users performing a variety of reaching motions are presented. The ANIE algorithm is compared with an unsupervised Gaussian mixture model algorithm and an Euclidean distance-based approach by using Cornell's CAD-120 data set and data collected in the Robotics and Controls Laboratoy at UConn. The ANIE algorithm is compared with the inverse LQR and ATCRF algorithms using a labeling task carried out on the CAD-120 data set.
Author Dani, Ashwin P.
Ravichandar, Harish Chaandar
Author_xml – sequence: 1
  givenname: Harish Chaandar
  surname: Ravichandar
  fullname: Ravichandar, Harish Chaandar
  email: harish.ravichandar@uconn.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Connecticut, Storrs, CT, USA
– sequence: 2
  givenname: Ashwin P.
  surname: Dani
  fullname: Dani, Ashwin P.
  email: ashwin.dani@uconn.edu
  organization: Dept. of Electr. & Comput. Eng. & the Manage. & Eng. for Manuf. Program, Univ. of Connecticut, Storrs, CT, USA
BookMark eNp9kM9OwkAQxjcGEwF9AONlX6B1d7t_ukdCUEggHIR4Ms2yneKadku2NUGe3laIBw9eZr7JfL_J5Buhga89IHRPSUwp0Y-bycssZoTKmEnGmdJXaEiFSKNEpcmg11xEQgtxg0ZN80EI46kmQ_Q2_6yMxwvfgm9d3asCAngLeNs4v8ez4wFsa_pdtDJHV7nTz4An5b4Orn2v8GtX8dqXzgNe1TmUeAkm-I6-RdeFKRu4u_Qx2j7NNtN5tFw_L6aTZWSZFG1kqRXcKmMVIYkCzcHYPGeQFykYuiNAlSx2xBa8s2ibUkVFzomiO5DEKpmMkTrftaFumgBFZt355zYYV2aUZH1KWZ9S1qeUXVLqSPqHPARXmfD1L_NwZhwA_PqV0koykXwDcCh3Nw
CODEN ITASC7
CitedBy_id crossref_primary_10_3389_frobt_2024_1430740
crossref_primary_10_1016_j_ifacol_2023_10_515
crossref_primary_10_1016_j_ins_2019_02_005
crossref_primary_10_1002_cpe_4255
crossref_primary_10_3390_s20072104
crossref_primary_10_3389_frobt_2020_573096
crossref_primary_10_1109_TASE_2018_2874454
crossref_primary_10_1007_s12369_023_00965_7
crossref_primary_10_1007_s13272_024_00763_5
crossref_primary_10_1109_LRA_2018_2865034
crossref_primary_10_1109_JSEN_2024_3386683
crossref_primary_10_1109_TCST_2020_3009031
crossref_primary_10_1109_ACCESS_2023_3239009
crossref_primary_10_1016_j_inffus_2019_11_001
crossref_primary_10_1109_MCS_2020_3019725
crossref_primary_10_1007_s11263_020_01404_0
crossref_primary_10_1016_j_artint_2021_103525
crossref_primary_10_1109_TCYB_2018_2864784
crossref_primary_10_1016_j_ifacol_2019_01_001
crossref_primary_10_1162_neco_a_01764
crossref_primary_10_1016_j_ast_2023_108713
crossref_primary_10_1016_j_sigpro_2021_108453
crossref_primary_10_1016_j_conengprac_2023_105769
crossref_primary_10_1109_TASE_2018_2795241
crossref_primary_10_1109_ACCESS_2024_3400604
crossref_primary_10_3390_s22052040
crossref_primary_10_1007_s41315_018_0051_0
crossref_primary_10_1145_3439720
crossref_primary_10_1049_itr2_12090
crossref_primary_10_1109_TVT_2022_3194862
crossref_primary_10_1016_j_jmsy_2022_05_006
Cites_doi 10.1109/TPAMI.2007.1167
10.1109/TAC.2011.2162890
10.1109/ICRA.2013.6630785
10.1109/HAVE.2009.5356124
10.15607/RSS.2014.X.015
10.1109/TASE.2015.2412256
10.1007/978-3-319-00065-7_28
10.1016/S0921-8890(02)00372-X
10.1109/IROS.2014.6943153
10.1561/1100000005
10.1109/ICRA.2015.7139282
10.1115/1.4025810
10.1076/mcmd.5.3.220.3681
10.1111/j.2517-6161.1977.tb01600.x
10.1177/0278364913478447
10.1145/1349822.1349870
10.1109/TRO.2007.904899
10.1016/j.robot.2014.01.003
10.1109/IROS.2015.7353706
10.1145/2696454.2696455
10.1137/1.9780898717563
10.1109/ROMAN.2012.6343875
10.1007/s10514-007-9054-7
10.1177/0278364913478446
10.1109/IROS.2011.6095118
10.1016/S1364-6613(00)01615-6
10.5898/JHRI.2.1.Strabala
10.1109/TAC.2008.930200
10.1109/TAC.2012.2203452
10.15607/RSS.2013.IX.006
10.1109/CDC.2005.1582183
10.1111/j.2517-6161.1995.tb02037.x
10.15607/RSS.2014.X.003
10.1109/IROS.2000.894685
10.1162/neco.1992.4.3.415
10.1109/MFI.2015.7295812
10.1109/CVPRW.2003.10057
10.1109/IROS.2015.7353614
10.1115/DSCC2015-9870
10.1007/978-3-540-74048-3_4
10.1109/ICRA.2011.5980248
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2016.2624279
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 868
ExternalDocumentID 10_1109_TASE_2016_2624279
7797625
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-c1c54c7ac70037e94eacdd2edf8ea1b0e176fb0cf4ac79c81715d4071be60c763
IEDL.DBID RIE
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399347500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sat Nov 29 04:12:45 EST 2025
Tue Nov 18 22:23:12 EST 2025
Tue Aug 26 17:03:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-c1c54c7ac70037e94eacdd2edf8ea1b0e176fb0cf4ac79c81715d4071be60c763
ORCID 0000-0002-7091-5607
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TASE_2016_2624279
crossref_primary_10_1109_TASE_2016_2624279
ieee_primary_7797625
PublicationCentury 2000
PublicationDate 2017-April
2017-4-00
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April
PublicationDecade 2010
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref14
ref11
ghahramani (ref10) 1999
ref17
ref19
ref18
ref46
ref48
ref47
ref42
ref41
kuli? (ref31) 2003
ref43
lange (ref45) 1995; 57
ref49
ref8
ref7
ref9
ref4
ref3
ref5
simon (ref6) 1982
ref34
ref37
ref36
ref30
ref33
ref32
schrempf (ref35) 2005
ref2
ref1
ref39
ref38
monfort (ref15) 2015
dempster (ref44) 1977; 39
mainprice (ref40) 2014
ref24
ref23
ref26
ref25
matsumoto (ref27) 1999
ref20
ref22
preece (ref16) 1994
ref21
ref28
ref29
References_xml – ident: ref39
  doi: 10.1109/TPAMI.2007.1167
– ident: ref47
  doi: 10.1109/TAC.2011.2162890
– ident: ref41
  doi: 10.1109/ICRA.2013.6630785
– ident: ref32
  doi: 10.1109/HAVE.2009.5356124
– start-page: 299
  year: 2014
  ident: ref40
  article-title: Human-robot collaborative manipulation planning using early prediction of human motion
  publication-title: Proc Human-Robot Collaboration Ind Manuf Workshop Robot Sci Syst Conf
– ident: ref38
  doi: 10.15607/RSS.2014.X.015
– ident: ref2
  doi: 10.1109/TASE.2015.2412256
– ident: ref18
  doi: 10.1007/978-3-319-00065-7_28
– start-page: 810
  year: 2003
  ident: ref31
  article-title: Estimating intent for human-robot interaction
  publication-title: Proc IEEE Int Conf Adv Robot
– ident: ref29
  doi: 10.1016/S0921-8890(02)00372-X
– ident: ref1
  doi: 10.1109/IROS.2014.6943153
– ident: ref17
  doi: 10.1561/1100000005
– ident: ref23
  doi: 10.1109/ICRA.2015.7139282
– ident: ref43
  doi: 10.1115/1.4025810
– ident: ref11
  doi: 10.1076/mcmd.5.3.220.3681
– volume: 39
  start-page: 1
  year: 1977
  ident: ref44
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref24
  doi: 10.1177/0278364913478447
– ident: ref22
  doi: 10.1145/1349822.1349870
– ident: ref20
  doi: 10.1109/TRO.2007.904899
– start-page: 251
  year: 2005
  ident: ref35
  article-title: A generic model for estimating user-intentions in human-robot cooperation
  publication-title: Proc Int Conf Inform Control Autom Robot
– ident: ref36
  doi: 10.1016/j.robot.2014.01.003
– ident: ref13
  doi: 10.1109/IROS.2015.7353706
– ident: ref4
  doi: 10.1145/2696454.2696455
– ident: ref49
  doi: 10.1137/1.9780898717563
– ident: ref25
  doi: 10.1109/ROMAN.2012.6343875
– ident: ref30
  doi: 10.1007/s10514-007-9054-7
– ident: ref14
  doi: 10.1177/0278364913478446
– ident: ref34
  doi: 10.1109/IROS.2011.6095118
– start-page: 431
  year: 1999
  ident: ref10
  article-title: Learning nonlinear dynamical systems using an EM algorithm
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1016/S1364-6613(00)01615-6
– start-page: 43
  year: 1999
  ident: ref27
  article-title: The essential components of human-friendly robot systems
  publication-title: Proc Int Conf Field Service Robot
– ident: ref26
  doi: 10.5898/JHRI.2.1.Strabala
– start-page: 3672
  year: 2015
  ident: ref15
  article-title: Intent prediction and trajectory forecasting via predictive inverse linear-quadratic regulation
  publication-title: Proc AAAI Conf Artif Intell
– ident: ref46
  doi: 10.1109/TAC.2008.930200
– ident: ref12
  doi: 10.1109/TAC.2012.2203452
– ident: ref21
  doi: 10.15607/RSS.2013.IX.006
– ident: ref9
  doi: 10.1109/CDC.2005.1582183
– volume: 57
  start-page: 425
  year: 1995
  ident: ref45
  article-title: A gradient algorithm locally equivalent to the EM algorithm
  publication-title: J Roy Statist Soc Series B (Methodol )
  doi: 10.1111/j.2517-6161.1995.tb02037.x
– ident: ref37
  doi: 10.15607/RSS.2014.X.003
– ident: ref28
  doi: 10.1109/IROS.2000.894685
– year: 1994
  ident: ref16
  publication-title: Human-Computer Interaction
– ident: ref42
  doi: 10.1162/neco.1992.4.3.415
– ident: ref3
  doi: 10.1109/MFI.2015.7295812
– ident: ref19
  doi: 10.1109/CVPRW.2003.10057
– ident: ref7
  doi: 10.1109/IROS.2015.7353614
– ident: ref8
  doi: 10.1115/DSCC2015-9870
– ident: ref48
  doi: 10.1007/978-3-540-74048-3_4
– year: 1982
  ident: ref6
  publication-title: Understanding human action Social explanation and the vision of social science
– ident: ref33
  doi: 10.1109/ICRA.2011.5980248
SSID ssj0024890
Score 2.3325555
Snippet An algorithm called adaptive-neural-intention estimator (ANIE) is presented to infer the intent of a human operator's arm movements based on the observations...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 855
SubjectTerms Adaptation models
Artificial neural networks
Dynamics
expectation-maximization
Heuristic algorithms
Hidden Markov models
Human-robot interaction
Inference algorithms
intention inference
neural network modeling
Prediction algorithms
Title Human Intention Inference Using Expectation-Maximization Algorithm With Online Model Learning
URI https://ieeexplore.ieee.org/document/7797625
Volume 14
WOSCitedRecordID wos000399347500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqpYX-zBk7htNs1mk2ORFi8WwYq9SNjsbmqhD6mt-PPd2ay1BxG8hCVMIMxsMjsz33wDcIVZBcOVom0lUxpJzqjUvE1zoUWoQ2G_9dwNmxD9fjIcpg8VuFn3whhjHPjMNHHpavl6rlaYKmsJYZ1nyKtQFUKUvVo_vHqJy6fgiYDylHNfwWRB2hp0HrsI4oqbIXZDIGprwwdtDFVxPqW397-32Yddf3YkndLYB1Axs0PY2WAUrMOLS8oTB0xHlduVb-gjDhxAkNpYleV3ei8_x1Pfh0k6k9F8MV6-TsmzvZKSgpTgqLQJ8SSsoyN46nUHt3fUT1CgKoz5kiqmeKSEVAJ5ZkwaWdVrHRpdJEayPDBMxEUeqCKyIqlKmGBcY4iXmzhQ9tdzDLXZfGZOgOSyKIR1XTa8kVES2xhcy8iGh2licsli3YDgW6eZ8vTiOOVikrkwI0gzNEOGZsi8GRpwvX7kreTW-Eu4jiZYC3rtn_5--wy2Q_S_DmJzDrXlYmUuYEt9LMfvi0u3c74AXGbDDQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqDX1Ocn3nwScxsatO0j0M2JuoQnOiLlDRJdTA3mZv455tL49yDCL6UUK5Q7tJe7u53vwM4xqyC4UrRcyVTGknOqNT8nOZCi1CHwn7ruRs2ITqd5PExvZ2D02kvjDHGgc9MHZeulq-HaoKpsjMhrPMM-Tws8CgKWdmt9cOsl7iMCp4JKE859zVMFqRn3cZdE2FccT3EfgjEbc14oZmxKs6rtNb-9z7rsOpPj6RRmnsD5sxgE1ZmOAWr8OTS8sRB01HpduVb-oiDBxAkN1ZlAZ7eyM_eq-_EJI3-83DUG7-8kgd7JSUJKcFhaX3iaVift-C-1exetKmfoUBVGPMxVUzxSAmpBDLNmDSyytc6NLpIjGR5YJiIizxQRWRFUpUwwbjGIC83caDsz2cbKoPhwOwAyWVRCOu8bIAjoyS2UbiWkQ0Q08TkksW6BsG3TjPlCcZxzkU_c4FGkGZohgzNkHkz1OBk-shbya7xl3AVTTAV9Nrf_f32ESy1uzfX2fVl52oPlkP0xg5wsw-V8WhiDmBRfYx776NDt4u-AKvmxlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Intention+Inference+Using+Expectation-Maximization+Algorithm+With+Online+Model+Learning&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Ravichandar%2C+Harish+Chaandar&rft.au=Dani%2C+Ashwin+P.&rft.date=2017-04-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=14&rft.issue=2&rft.spage=855&rft.epage=868&rft_id=info:doi/10.1109%2FTASE.2016.2624279&rft.externalDocID=7797625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon