Data-Driven Controller Tuning for MIMO Systems: A Set-Membership Approach

Over time, Single-Input Single-Output systems have received significant attention in the field of data-driven control. However, real-world applications often involve Multi-Input Multi-Output systems, where the challenges associated with multivariable control are considerably greater. This letter pre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE control systems letters Ročník 9; s. 799 - 804
Hlavní autoři: Cordoba-Pacheco, Andres, Ruiz, Fredy
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 2025
Témata:
ISSN:2475-1456, 2475-1456
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Over time, Single-Input Single-Output systems have received significant attention in the field of data-driven control. However, real-world applications often involve Multi-Input Multi-Output systems, where the challenges associated with multivariable control are considerably greater. This letter presents an innovative extension of the Set Membership Data-Driven approach from Single-Input Single-Output to Multi-Input Multi-Output systems. Exploiting unknown but bounded assumptions on process noise and fixed bases controllers parametrization, an efficient batch algorithm for controller tuning is developed, relying on low dimensional convex optimization problems. Through a comparative analysis with Virtual Reference Feedback Tuning, it is quantitatively demonstrated that the Set Membership Data-Driven approach significantly outperforms existing solutions, achieving reductions in Integral Square Error and Integral Absolute Error by up to 6% and 27%, respectively, thereby reducing coupling errors. Furthermore, the designed controllers exhibit faster rise and settling times, with improvements of up to 20% and 39%, eliminating the overshoots. These findings indicate that the SMDD approach effectively enhances decoupling and error minimization, making it a reliable solution for managing the complexities of MIMO systems.
AbstractList Over time, Single-Input Single-Output systems have received significant attention in the field of data-driven control. However, real-world applications often involve Multi-Input Multi-Output systems, where the challenges associated with multivariable control are considerably greater. This letter presents an innovative extension of the Set Membership Data-Driven approach from Single-Input Single-Output to Multi-Input Multi-Output systems. Exploiting unknown but bounded assumptions on process noise and fixed bases controllers parametrization, an efficient batch algorithm for controller tuning is developed, relying on low dimensional convex optimization problems. Through a comparative analysis with Virtual Reference Feedback Tuning, it is quantitatively demonstrated that the Set Membership Data-Driven approach significantly outperforms existing solutions, achieving reductions in Integral Square Error and Integral Absolute Error by up to 6% and 27%, respectively, thereby reducing coupling errors. Furthermore, the designed controllers exhibit faster rise and settling times, with improvements of up to 20% and 39%, eliminating the overshoots. These findings indicate that the SMDD approach effectively enhances decoupling and error minimization, making it a reliable solution for managing the complexities of MIMO systems.
Author Ruiz, Fredy
Cordoba-Pacheco, Andres
Author_xml – sequence: 1
  givenname: Andres
  orcidid: 0000-0002-8375-788X
  surname: Cordoba-Pacheco
  fullname: Cordoba-Pacheco, Andres
  email: andresfelipe.cordoba@polimi.it
  organization: Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
– sequence: 2
  givenname: Fredy
  orcidid: 0000-0003-2276-3722
  surname: Ruiz
  fullname: Ruiz, Fredy
  email: fredy.ruiz@polimi.it
  organization: Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
BookMark eNpN0MFOwkAQxvGNwUREXsB42Bcozs50t603UkRJIByKB0_Nbt2VGmib3WrC2ytCoqeZy_87_K7ZoGkby9itgIkQkN0v8-K1mCCgnJBMUpngBRtinMhIxFIN_v1XbBzCBwCIFBPAbMgWM93raObrL9vwvG163-521vPNZ1M379y1nq8WqzUvDqG3-_DAp7ywfbSye2N92NYdn3adb3W1vWGXTu-CHZ_viL3MHzf5c7RcPy3y6TKqUMk-MiquVEwJJo7IxBm9aZGaWCutgUxWCQUVqUSjFJlKyTlIDQpCEo6s0UgjhqfdyrcheOvKztd77Q-lgPLoUf56lEeP8uzxE92dotpa-xcIIEgB6Rsgb1yf
CODEN ICSLBO
Cites_doi 10.1016/j.ifacol.2020.12.2258
10.1109/TAC.2020.2970146
10.1016/j.automatica.2021.109786
10.1049/iet-cta.2011.0204
10.9746/sicetr1965.42.863
10.23919/ChiCC.2018.8483119
10.1109/ACC.2009.5160155
10.1109/ICARCV.2018.8580631
10.1109/TMECH.2023.3301497
10.1016/j.sysconle.2019.03.007
10.23919/ACC.2019.8814372
10.1016/j.isatra.2024.05.002
10.1002/acs.2415
10.1016/j.jprocont.2015.12.010
10.23919/ECC.2007.7068802
10.1016/j.apenergy.2023.121740
10.1016/j.ejcon.2020.07.002
10.1109/37.710876
10.1109/CDC.2012.6425955
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LCSYS.2025.3578572
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2475-1456
EndPage 804
ExternalDocumentID 10_1109_LCSYS_2025_3578572
11030802
Genre orig-research
GrantInformation_xml – fundername: (PRIN PNRR 2022 Fund)
  grantid: P2022EXP2W
– fundername: “Learning-Based Model Predictive Control by Exploration and Exploitation in Uncertain Environments”
– fundername: Italian Ministry of University and Research
GroupedDBID 0R~
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-b64c643727f33b493da18b4a6aa03b9c160c367a2519683ff08b213231f3eba23
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001515518400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2475-1456
IngestDate Sat Nov 29 07:49:43 EST 2025
Wed Aug 27 01:36:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-b64c643727f33b493da18b4a6aa03b9c160c367a2519683ff08b213231f3eba23
ORCID 0000-0003-2276-3722
0000-0002-8375-788X
OpenAccessLink https://ieeexplore.ieee.org/document/11030802
PageCount 6
ParticipantIDs ieee_primary_11030802
crossref_primary_10_1109_LCSYS_2025_3578572
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE control systems letters
PublicationTitleAbbrev LCSYS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref21
Ishizaki (ref20)
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Singh (ref2)
References_xml – ident: ref12
  doi: 10.1016/j.ifacol.2020.12.2258
– start-page: 1
  volume-title: Proc. IEEE Int. Conf. Technol., Eng., Manag. Soc. Impact Using Mark., Entrep. Talent (TEMSMET)
  ident: ref2
  article-title: Self-tuning of multivariable plant
– ident: ref21
  doi: 10.1109/TAC.2020.2970146
– ident: ref13
  doi: 10.1016/j.automatica.2021.109786
– ident: ref15
  doi: 10.1049/iet-cta.2011.0204
– start-page: 1611
  volume-title: Proc. 12th Int. Conf. Control, Autom. Syst.
  ident: ref20
  article-title: A design of H ∞ model-matching multivariable controller by spectral analysis using model-free controller tuning
– ident: ref18
  doi: 10.9746/sicetr1965.42.863
– ident: ref19
  doi: 10.23919/ChiCC.2018.8483119
– ident: ref1
  doi: 10.1109/ACC.2009.5160155
– ident: ref8
  doi: 10.1109/ICARCV.2018.8580631
– ident: ref3
  doi: 10.1109/TMECH.2023.3301497
– ident: ref10
  doi: 10.1016/j.sysconle.2019.03.007
– ident: ref9
  doi: 10.23919/ACC.2019.8814372
– ident: ref14
  doi: 10.1016/j.isatra.2024.05.002
– ident: ref4
  doi: 10.1002/acs.2415
– ident: ref11
  doi: 10.1016/j.jprocont.2015.12.010
– ident: ref7
  doi: 10.23919/ECC.2007.7068802
– ident: ref5
  doi: 10.1016/j.apenergy.2023.121740
– ident: ref17
  doi: 10.1016/j.ejcon.2020.07.002
– ident: ref6
  doi: 10.1109/37.710876
– ident: ref16
  doi: 10.1109/CDC.2012.6425955
SSID ssj0001827029
Score 2.2859485
Snippet Over time, Single-Input Single-Output systems have received significant attention in the field of data-driven control. However, real-world applications often...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 799
SubjectTerms Complexity theory
Data driven control
Data models
Identification for control
Mathematical models
MIMO
Noise
Noise measurement
Taylor series
Transfer functions
Tuning
uncertain systems
Vectors
Title Data-Driven Controller Tuning for MIMO Systems: A Set-Membership Approach
URI https://ieeexplore.ieee.org/document/11030802
Volume 9
WOSCitedRecordID wos001515518400023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2475-1456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001827029
  issn: 2475-1456
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPHjxgRXrixy8yba7m2we3kq1WGir0Ar1tCTZWRCklXXr73cnu6V68OAtCUkIXyDJTOb7hpAbocAqZURgNcQBNzILrEAFWuEY0zwyxnqi8FhOp2qx0M8NWd1zYQDAB59BF4v-Lz9buTW6ynoR5sRSKB25K6WsyVpbh4pCapXeEGNC3RsPZq-zygSMk67XdJHxr8vnRzYVf5kMD_-5jCNy0Lwaab_e5mOyA8sTMro3pQnuCzyv6KAOOX-Hgs7X6Oug1WuUTkaTJ9qIkt_RPp1BGUwAc4BgkBbtN4LibfIyfJgPHoMmM0LgYpGUFZzc-R83mTNmuWaZiZTlRhgTMqtdJELHhDRISxWK5XmobFzZnSzKGVgTs1PSWq6WcEaoCsEkUsuQs4xXIw1UNZxSRTy3SdQhtxvI0o9aACP1hkOoUw9wigCnDcAd0ka8tj0bqM7_aL8g-zi89mlcklZZrOGK7Lmv8u2zuPYb_A2qk6ML
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBb34gRPnZw7epFvTpPnwNqZjw3YKmzBPJWlTEGST2vn325d2TA8evCUhCeEXSPJe3u_3ELrh0hopNfeMsoHHtMg8w0GBlqeUKka0No4oHInJRM7n6rkhqzsujLXWBZ_ZLhTdX362TFfgKusRyIklQTpyO2QsIDVda-NSkUCuUmtqjK960WD6Oq2MwCDsOlUXEfy6fn7kU3HXyfDgnws5RPvNuxH3640-Qlt2cYzG97rU3n0BJxYe1EHn77bAsxV4O3D1HsXxOH7CjSz5He7jqS292EIWEAjTwv1GUryNXoYPs8HIa3IjeGnAw7IClKXuz03klBqmaKaJNExzrX1qVEq4n1IuNBBTuaR57ksTVJYnJTm1Rgf0BLUWy4U9RVj6VodCCZ_RjFUjta1qMKUkLDch6aDbNWTJRy2BkTjTwVeJAzgBgJMG4A5qA16bng1UZ3-0X6Pd0SyOkmg8eTxHezBV7eG4QK2yWNlLtJN-lW-fxZXb7G9ZY6ZS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Controller+Tuning+for+MIMO+Systems%3A+A+Set-Membership+Approach&rft.jtitle=IEEE+control+systems+letters&rft.au=Cordoba-Pacheco%2C+Andres&rft.au=Ruiz%2C+Fredy&rft.date=2025&rft.issn=2475-1456&rft.eissn=2475-1456&rft.volume=9&rft.spage=799&rft.epage=804&rft_id=info:doi/10.1109%2FLCSYS.2025.3578572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCSYS_2025_3578572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-1456&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-1456&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-1456&client=summon