Multimodal geometric AutoEncoder (MGAE) for rail fasteners tightness evaluation with point clouds & monocular depth fusion

•Introduces a Multimodal Geometric AutoEncoder (MGAE) for rail fastener tightness evaluation.•Integrates point cloud and monocular depth fusion for improved feature extraction.•Reduces manual annotation efforts and increases computational efficiency in rail inspection.•Provides a scalable, automated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation Jg. 244; S. 116557
Hauptverfasser: Qiu, Shi, Zaheer, Qasim, Muhammad Ahmed Hassan Shah, S., Faizan Hussain Shah, Syed, Ehsan, Haleema, Atta, Zunaira, Ai, Chengbo, Wang, Jin, Wang, Weidong, Peng, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 28.02.2025
Schlagworte:
ISSN:0263-2241
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Introduces a Multimodal Geometric AutoEncoder (MGAE) for rail fastener tightness evaluation.•Integrates point cloud and monocular depth fusion for improved feature extraction.•Reduces manual annotation efforts and increases computational efficiency in rail inspection.•Provides a scalable, automated solution for rail infrastructure maintenance. Accurate detection and estimation of railway fastener tightness are vital for rail infrastructure safety and reliability. Traditional methods depend on manual annotation tools like Label Me, which are error-prone, labor-intensive, and costly. Additionally, monocular depth estimation and instance segmentation involve complex computations that challenge real-time implementation, particularly on resource-constrained platforms. This study introduces a novel three-phase solution using the Multimodal Geometric Autoencoder (MGAE) for fastener tightness detection, integrating point clouds with monocular-depth-guided multimodal data. Our approach utilizes a hybrid autoencoder for high-quality feature extraction, enabling precise tightness estimation. Employing unsupervised learning, MGAE eliminates the need for labeled data, thus reducing labor and costs. The framework integrates point clouds, mesh, monocular depth, and 2D images, with various fusion blocks enhancing feature extraction accuracy and computational efficiency. Post-feature extraction, classical techniques such as isolation forest, stress–strain, and elastic potential energy methods assess fastener tightness.
AbstractList •Introduces a Multimodal Geometric AutoEncoder (MGAE) for rail fastener tightness evaluation.•Integrates point cloud and monocular depth fusion for improved feature extraction.•Reduces manual annotation efforts and increases computational efficiency in rail inspection.•Provides a scalable, automated solution for rail infrastructure maintenance. Accurate detection and estimation of railway fastener tightness are vital for rail infrastructure safety and reliability. Traditional methods depend on manual annotation tools like Label Me, which are error-prone, labor-intensive, and costly. Additionally, monocular depth estimation and instance segmentation involve complex computations that challenge real-time implementation, particularly on resource-constrained platforms. This study introduces a novel three-phase solution using the Multimodal Geometric Autoencoder (MGAE) for fastener tightness detection, integrating point clouds with monocular-depth-guided multimodal data. Our approach utilizes a hybrid autoencoder for high-quality feature extraction, enabling precise tightness estimation. Employing unsupervised learning, MGAE eliminates the need for labeled data, thus reducing labor and costs. The framework integrates point clouds, mesh, monocular depth, and 2D images, with various fusion blocks enhancing feature extraction accuracy and computational efficiency. Post-feature extraction, classical techniques such as isolation forest, stress–strain, and elastic potential energy methods assess fastener tightness.
ArticleNumber 116557
Author Ehsan, Haleema
Atta, Zunaira
Qiu, Shi
Muhammad Ahmed Hassan Shah, S.
Peng, Jun
Faizan Hussain Shah, Syed
Wang, Weidong
Wang, Jin
Zaheer, Qasim
Ai, Chengbo
Author_xml – sequence: 1
  givenname: Shi
  surname: Qiu
  fullname: Qiu, Shi
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 2
  givenname: Qasim
  surname: Zaheer
  fullname: Zaheer, Qasim
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 3
  givenname: S.
  surname: Muhammad Ahmed Hassan Shah
  fullname: Muhammad Ahmed Hassan Shah, S.
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 4
  givenname: Syed
  surname: Faizan Hussain Shah
  fullname: Faizan Hussain Shah, Syed
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 5
  givenname: Haleema
  surname: Ehsan
  fullname: Ehsan, Haleema
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 6
  givenname: Zunaira
  surname: Atta
  fullname: Atta, Zunaira
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 7
  givenname: Chengbo
  surname: Ai
  fullname: Ai, Chengbo
  organization: Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA
– sequence: 8
  givenname: Jin
  surname: Wang
  fullname: Wang, Jin
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 9
  givenname: Weidong
  surname: Wang
  fullname: Wang, Weidong
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
– sequence: 10
  givenname: Jun
  orcidid: 0000-0002-8027-3396
  surname: Peng
  fullname: Peng, Jun
  email: civilpengjun@csu.edu.cn
  organization: School of Civil Engineering, Central South University, Changsha 410075, China
BookMark eNqNkE1PwjAcxnvAREC_Q70YPQy7bi3bkRBEE4gXPTdd-y-UbC1pO4x-ekfw4NHTc3he8uQ3QSPnHSB0l5NZTnL-dJh1IGMfoAOXZpTQcpbnnLH5CI0J5UVGaZlfo0mMB0IIL2o-Rt_bvk2281q2eAe-gxSswos--ZVTXkPAD9v1YvWIjQ84SNtiI2MCByHiZHf75CBGDCfZ9jJZ7_CnTXt89NYlrFrf64jvceedV30rA9ZwHGzTxyF6g66MbCPc_uoUfTyv3pcv2eZt_bpcbDJFOUuZBM5rVTUFEKoka6DW87JmqqgaUoOBhjSaFhXjFeVKG0YaYMSUFWNU1oWRxRTVl10VfIwBjDgG28nwJXIizuDEQfwBJ87gxAXc0F1eujAcPFkIIioLToG2AVQS2tt_rPwAAG-ERA
Cites_doi 10.1109/ACCESS.2017.2685629
10.1109/IAEAC54830.2022.9929911
10.1109/TITS.2023.3319135
10.1016/j.actaastro.2023.08.001
10.1016/j.trc.2017.04.011
10.1007/s13042-013-0223-z
10.1016/j.trc.2018.05.007
10.1109/ACCESS.2024.3388889
10.1108/EC-01-2022-0034
10.1007/s00202-022-01590-9
10.1016/j.trc.2018.02.019
10.3390/ai5030064
10.3390/s110807364
10.1111/mice.13173
10.1016/j.engappai.2019.01.008
10.1109/TIE.2020.3013748
10.1016/j.trc.2019.02.001
10.3390/s20051367
10.1109/TAES.2024.3404915
10.3390/s22176409
10.1109/ACCESS.2021.3053408
10.1007/s44163-024-00127-2
10.1109/TCSVT.2021.3049869
10.1109/TCSVT.2017.2740321
10.1016/j.asr.2024.06.002
10.1109/TPAMI.2020.2983686
10.1109/ACCESS.2019.2961686
10.1109/TITS.2021.3095167
10.3233/IFS-151883
10.1109/TSMC.2024.3373031
10.1109/TPAMI.2017.2699184
10.1016/j.trc.2022.103679
10.1016/j.ress.2012.03.017
10.1016/j.actaastro.2024.06.002
10.1007/978-981-99-5804-7_6
10.1108/TQM-10-2023-0347
10.1109/ICCV.2015.304
10.1109/JIOT.2021.3126875
10.3390/app13126982
10.1007/s11071-024-10291-w
10.1109/TIM.2013.2283741
10.1016/j.autcon.2016.06.008
10.1016/j.trc.2018.04.001
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2024.116557
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_measurement_2024_116557
S0263224124024424
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSH
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
9DU
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
WUQ
XPP
~HD
ID FETCH-LOGICAL-c265t-ae669c8b3e02ca5be9d7495c38b09efeb0bd23856826cdf50be50f48552a93fa3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001403429200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Sat Nov 29 08:05:16 EST 2025
Sat Apr 12 15:21:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Rail infrastructure
Multimodal approach
Autoencoder
Rail fasteners
Fastener tightness
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c265t-ae669c8b3e02ca5be9d7495c38b09efeb0bd23856826cdf50be50f48552a93fa3
ORCID 0000-0002-8027-3396
ParticipantIDs crossref_primary_10_1016_j_measurement_2024_116557
elsevier_sciencedirect_doi_10_1016_j_measurement_2024_116557
PublicationCentury 2000
PublicationDate 2025-02-28
PublicationDateYYYYMMDD 2025-02-28
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-28
  day: 28
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cha, You, Choi (b0105) 2016; 71
Weng, Zhu (b0250) 2021; 9
Jin, Hu (b0060) 2024
Feng, Jiang, Xie, Yang, Shi, Chen (b0115) 2014; 63
U. of M. L. Christopher Niezrecki (Department of Mechanical Engineering, Digital Image Correlation Techniques for Non-Destructive Evaluation and Structural Health Monitoring Christopher, vol. 47, no. 4, pp. 124–134, 2021, 10.31857/s013116462104007x.
M.J. Pappaterra, M.L. Pappaterra, F. Flammini, A study on the application of convolutional neural networks for the maintenance of railway tracks, Discov. Artif. Intell., vol. 4, no. 1, 2024, 10.1007/s44163-024-00127-2.
Yang, Tao, Liu, Zhang, Zhang, Zhao (b0095) 2011; 11
Cui, Li, Hu, Mao (b0185) 2020; 8
Zaheer, Manzoor, Ahamad (b0035) 2023; 40
Wang, Qiu (b0040) 2024; 39
Qi (b0210) 2024; 161
Yang, Liu (b0120) 2024; 74
Wang, Wang (b0085) 2023; 2023
A. Olejniczak, O. Błaszkiewicz, and R. Burczyk, Networks Using Deep Learning, vol. 70, no. 9, 2021.
Li (b0205) 2023; 152
Pauly, Rharbaoui, Shneider, Rathinam, Gaudillière, Aouada (b0290) 2023; 212
Liu, Liu, Chakraborty, Yu, Shao, Ma (b0140) 2023; 10
Qiu (b0160) 2024; 162
Abbasi (b0265) 2022; 104
Gazafrudi, Younesian, Torabi (b0310) 2021; 68
Ma, Zheng, Wong, Easa, Cheng (b0175) 2022; 134
P. Martinez, Automatic intelligent inspection systems for quality control, vol. 120, no. 7, pp. 1–23, 2016.
Zhu, Chen, Wang, Yu, Tang (b0285) 2024; 25
E. Panagiotidou, P. T. Chountalas, A. Magoutas, F. C. Kitsios, The multifaceted impact of ISO/IEC 17025 accreditation: a sector-specific analysis in civil engineering testing and calibration laboratories. 2024. 10.1108/TQM-10-2023-0347.
D. Eigen, R. Fergus, Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture, Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, pp. 2650–2658, 2015, 10.1109/ICCV.2015.304.
Tanzib Hosain, Zaman, Abir, Akter, Mursalin, Khan (b0295) 2024; 12
H. Qiang, A Rail Fastener Tightness Detection Approach Using Multi-source Visual Sensor, vol. 20, no. 9, 2020.
Cao, Wu, Shen (b0225) 2018; 28
MacChi, Garetti, Centrone, Fumagalli, Piero Pavirani (b0005) 2012; 104
Dou, Huang, Li, Luo (b0100) 2014; 5
Wofk, Ma, Yang, Karaman, Sze (b0230) 2019; 2019-May
Shao, Pei, Chen, Wu, Li (b0240) 2023
Luan, Corman, Meng (b0065) 2017; 80
Ranftl, Bochkovskiy, Koltun (b0280) 2021
Eigen, Puhrsch, Fergus (b0215) 2014; 3
Song, Lim, Kim (b0260) 2021; 31
Liu, Ma, Qiu, Ni, Shi, Liu (b0150) 2022; 23
Shahin, Ali Babar, Zhu (b0300) 2017; 5
M. Hussain, Sustainable Machine Vision for Industry 4 . 0 : A Comprehensive Review of Convolutional Neural Networks and Hardware Accelerators in Computer Vision, vol. 17, no. 8, pp. 1324–1356, 2024.
Z. Su, K. Han, W. Song, and K. Ning, Railway fastener defect detection based on improved YOLOv5 algorithm, IEEE Adv. Inf. Technol. Electron. Autom. Control Conf., vol. 2022-Octob, no. 7, pp. 1923–1927, 2022, 10.1109/IAEAC54830.2022.9929911.
Hu, Qiu (b0045) 2024; 2024
Sharma, Cui, He, Mohammadi, Li (b0165) 2018; 90
Wang (b0255) 2021; 43
R. Tang, De Donato, A literature review of Artificial Intelligence applications in railway systems, Transp. Res. Part C Emerg. Technol., vol. 140, no. May, 2022, 10.1016/j.trc.2022.103679.
Lasisi, Attoh-Okine (b0070) 2018; 91
Allah Bukhsh, Saeed, Stipanovic, Doree (b0170) 2019; 101
Hu, Qasim, Digital Twins in Design and Construction. 2024. 10.1007/978-981-99-5804-7_5.
Aela, Cai, Jing, Chi (b0180) 2024; 442
Abbasi, Gandhi (b0270) 2022; 71
Liu (b0135) 2021; 186
Bhat, Alhashim, Wonka (b0235) 2021
R. S. Adhikari, Image-based Condition Assessment for Concrete Bridge Inspection, vol. 120, no. 7, 2014.
Akbari (b0275) 2016; 30
Qiu, Cai (b0090) 2024; 162
Zhuang, Wang, Zhang, Tsui (b0075) 2018; 92
C. Bragança, E. F. Souza, D. Ribeiro, A. Meixedo, T. N. Bittencourt, and H. Carvalho, Drive-by Methodologies Applied to Railway Infrastructure Subsystems: A Literature Review—Part II: Track and Vehicle, Appl. Sci., vol. 13, no. 12, 2023, 10.3390/app13126982.
Yang, Fan, Xia (b0130) 2024; 54
Chen, Papandreou, Kokkinos, Murphy, Yuille (b0245) 2018; 40
Wei, Yang, Liu, Wei, Jia, Li (b0110) 2019; 80
Yang, Fang, Ren, Lu, Xia (b0125) 2024; 222
Wang (b0030) 2024
C. Yang, Q. Wang, W. Lu, Y. Li, Integrated uncertain optimal design strategy for truss configuration and attitude–vibration control in rigid–flexible coupling structure with interval uncertainties, Nonlinear Dyn., vol. 0123456789, no. 7, 2024, 10.1007/s11071-024-10291-w.
Yang, Fan, Lu, Gao (b0335) 2024; 60
Y. Zhao, A review on rail defect detection systems based on wireless sensors, Sensors, vol. 22, no. 17, 2022, 10.3390/s22176409.
Weidong (b0025) 2023; 197
Yang (b0330) 2025; 595
Q. Zaheer, Digital Twins in Operation and Maintenance (O& P), pp. 179–203, 2024, 10.1007/978-981-99-5804-7_6.
Eigen (10.1016/j.measurement.2024.116557_b0215) 2014; 3
Wofk (10.1016/j.measurement.2024.116557_b0230) 2019; 2019-May
10.1016/j.measurement.2024.116557_b0015
Sharma (10.1016/j.measurement.2024.116557_b0165) 2018; 90
Pauly (10.1016/j.measurement.2024.116557_b0290) 2023; 212
Liu (10.1016/j.measurement.2024.116557_b0135) 2021; 186
Aela (10.1016/j.measurement.2024.116557_b0180) 2024; 442
10.1016/j.measurement.2024.116557_b0055
Yang (10.1016/j.measurement.2024.116557_b0125) 2024; 222
Allah Bukhsh (10.1016/j.measurement.2024.116557_b0170) 2019; 101
Wang (10.1016/j.measurement.2024.116557_b0255) 2021; 43
Shahin (10.1016/j.measurement.2024.116557_b0300) 2017; 5
10.1016/j.measurement.2024.116557_b0020
Qi (10.1016/j.measurement.2024.116557_b0210) 2024; 161
Zaheer (10.1016/j.measurement.2024.116557_b0035) 2023; 40
Ranftl (10.1016/j.measurement.2024.116557_b0280) 2021
Jin (10.1016/j.measurement.2024.116557_b0060) 2024
Zhu (10.1016/j.measurement.2024.116557_b0285) 2024; 25
Abbasi (10.1016/j.measurement.2024.116557_b0265) 2022; 104
Qiu (10.1016/j.measurement.2024.116557_b0090) 2024; 162
Yang (10.1016/j.measurement.2024.116557_b0335) 2024; 60
Chen (10.1016/j.measurement.2024.116557_b0245) 2018; 40
Akbari (10.1016/j.measurement.2024.116557_b0275) 2016; 30
Gazafrudi (10.1016/j.measurement.2024.116557_b0310) 2021; 68
10.1016/j.measurement.2024.116557_b0325
10.1016/j.measurement.2024.116557_b0320
Ma (10.1016/j.measurement.2024.116557_b0175) 2022; 134
10.1016/j.measurement.2024.116557_b0200
10.1016/j.measurement.2024.116557_b0010
10.1016/j.measurement.2024.116557_b0050
Wei (10.1016/j.measurement.2024.116557_b0110) 2019; 80
Qiu (10.1016/j.measurement.2024.116557_b0160) 2024; 162
Wang (10.1016/j.measurement.2024.116557_b0085) 2023; 2023
Li (10.1016/j.measurement.2024.116557_b0205) 2023; 152
Abbasi (10.1016/j.measurement.2024.116557_b0270) 2022; 71
MacChi (10.1016/j.measurement.2024.116557_b0005) 2012; 104
Yang (10.1016/j.measurement.2024.116557_b0130) 2024; 54
Wang (10.1016/j.measurement.2024.116557_b0030) 2024
Bhat (10.1016/j.measurement.2024.116557_b0235) 2021
Yang (10.1016/j.measurement.2024.116557_b0120) 2024; 74
Liu (10.1016/j.measurement.2024.116557_b0150) 2022; 23
10.1016/j.measurement.2024.116557_b0315
10.1016/j.measurement.2024.116557_b0155
Cao (10.1016/j.measurement.2024.116557_b0225) 2018; 28
Dou (10.1016/j.measurement.2024.116557_b0100) 2014; 5
10.1016/j.measurement.2024.116557_b0080
Zhuang (10.1016/j.measurement.2024.116557_b0075) 2018; 92
Weng (10.1016/j.measurement.2024.116557_b0250) 2021; 9
Hu (10.1016/j.measurement.2024.116557_b0045) 2024; 2024
Song (10.1016/j.measurement.2024.116557_b0260) 2021; 31
Feng (10.1016/j.measurement.2024.116557_b0115) 2014; 63
Lasisi (10.1016/j.measurement.2024.116557_b0070) 2018; 91
Shao (10.1016/j.measurement.2024.116557_b0240) 2023
10.1016/j.measurement.2024.116557_b0305
Weidong (10.1016/j.measurement.2024.116557_b0025) 2023; 197
Yang (10.1016/j.measurement.2024.116557_b0330) 2025; 595
Liu (10.1016/j.measurement.2024.116557_b0140) 2023; 10
10.1016/j.measurement.2024.116557_b0220
Cui (10.1016/j.measurement.2024.116557_b0185) 2020; 8
Tanzib Hosain (10.1016/j.measurement.2024.116557_b0295) 2024; 12
Wang (10.1016/j.measurement.2024.116557_b0040) 2024; 39
10.1016/j.measurement.2024.116557_b0145
10.1016/j.measurement.2024.116557_b0195
10.1016/j.measurement.2024.116557_b0190
Yang (10.1016/j.measurement.2024.116557_b0095) 2011; 11
Cha (10.1016/j.measurement.2024.116557_b0105) 2016; 71
Luan (10.1016/j.measurement.2024.116557_b0065) 2017; 80
References_xml – volume: 68
  start-page: 8894
  year: 2021
  end-page: 8903
  ident: b0310
  article-title: A high accuracy and high speed imaging and measurement system for rail corrugation inspection
  publication-title: IEEE Trans. Ind. Electron.
– volume: 162
  year: 2024
  ident: b0090
  article-title: Automated detection of railway defective fasteners based on YOLOv8-FAM and synthetic data using style transfer
  publication-title: Autom. Constr.
– volume: 186
  year: 2021
  ident: b0135
  article-title: A hierarchical learning approach for railway fastener detection using imbalanced samples
  publication-title: Meas. J. Int. Meas. Confed.
– start-page: 1
  year: 2024
  end-page: 25
  ident: b0030
  article-title: Introduction to Digital Twin Technologies in Transportation Infrastructure Management (TIM)
  publication-title: Digit. Twin Technol. Transp. Infrastruct. Manag.
– start-page: 7897
  year: 2023
  end-page: 7906
  ident: b0240
  article-title: NDDepth: Normal-distance assisted monocular depth estimation
  publication-title: Proc. IEEE Int. Conf. Comput. vis.
– volume: 28
  start-page: 3174
  year: 2018
  end-page: 3182
  ident: b0225
  article-title: Estimating depth from monocular images as classification using deep fully convolutional residual networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 134
  year: 2022
  ident: b0175
  article-title: A virtual procedure for real-time monitoring of intervisibility between conflicting agents at intersections using point cloud and trajectory data
  publication-title: Transp. Res. Part C Emerg. Technol.
– start-page: 4008
  year: 2021
  end-page: 4017
  ident: b0235
  article-title: AdaBins: Depth estimation using adaptive bins
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis Pattern Recognit.
– volume: 25
  start-page: 2182
  year: 2024
  end-page: 2207
  ident: b0285
  article-title: Machine learning in urban rail transit systems: a survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: U. of M. L. Christopher Niezrecki (Department of Mechanical Engineering, Digital Image Correlation Techniques for Non-Destructive Evaluation and Structural Health Monitoring Christopher, vol. 47, no. 4, pp. 124–134, 2021, 10.31857/s013116462104007x.
– volume: 2024
  year: 2024
  ident: b0045
  article-title: Hybrid pixel-level crack segmentation for ballastless track slab using digital twin model and weakly supervised style transfer
  publication-title: Struct. Control Heal. Monit.
– volume: 31
  start-page: 4381
  year: 2021
  end-page: 4393
  ident: b0260
  article-title: Monocular depth estimation using Laplacian pyramid-based depth residuals
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: Hu, Qasim, Digital Twins in Design and Construction. 2024. 10.1007/978-981-99-5804-7_5.
– volume: 60
  start-page: 6461
  year: 2024
  end-page: 6473
  ident: b0335
  article-title: Uncertain iterative optimal attitude control method for periodic satellite with reliability constraint
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– reference: E. Panagiotidou, P. T. Chountalas, A. Magoutas, F. C. Kitsios, The multifaceted impact of ISO/IEC 17025 accreditation: a sector-specific analysis in civil engineering testing and calibration laboratories. 2024. 10.1108/TQM-10-2023-0347.
– volume: 71
  start-page: 181
  year: 2016
  end-page: 188
  ident: b0105
  article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines
  publication-title: Autom. Constr.
– volume: 212
  start-page: 339
  year: 2023
  end-page: 360
  ident: b0290
  article-title: A survey on deep learning-based monocular spacecraft pose estimation: Current state, limitations and prospects
  publication-title: Acta Astronaut.
– volume: 5
  start-page: 3909
  year: 2017
  end-page: 3943
  ident: b0300
  article-title: Continuous integration, delivery and deployment: a systematic review on approaches, tools, challenges and practices
  publication-title: IEEE Access
– volume: 63
  start-page: 877
  year: 2014
  end-page: 888
  ident: b0115
  article-title: Automatic fastener classification and defect detection in vision-based railway inspection systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 3
  start-page: 2366
  year: 2014
  end-page: 2374
  ident: b0215
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: H. Qiang, A Rail Fastener Tightness Detection Approach Using Multi-source Visual Sensor, vol. 20, no. 9, 2020.
– reference: C. Yang, Q. Wang, W. Lu, Y. Li, Integrated uncertain optimal design strategy for truss configuration and attitude–vibration control in rigid–flexible coupling structure with interval uncertainties, Nonlinear Dyn., vol. 0123456789, no. 7, 2024, 10.1007/s11071-024-10291-w.
– volume: 11
  start-page: 7364
  year: 2011
  end-page: 7381
  ident: b0095
  article-title: An efficient direction field-based method for the detection of fasteners on high-speed railways
  publication-title: Sensors
– volume: 9
  start-page: 16591
  year: 2021
  end-page: 16603
  ident: b0250
  article-title: INet: Convolutional Networks for Biomedical Image Segmentation
  publication-title: IEEE Access
– reference: R. S. Adhikari, Image-based Condition Assessment for Concrete Bridge Inspection, vol. 120, no. 7, 2014.
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: b0245
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 161
  year: 2024
  ident: b0210
  article-title: Geometric information constraint 3D object detection from LiDAR point cloud for autonomous vehicles under adverse weather
  publication-title: Transp. Res. Part C Emerg Technol.
– volume: 2023
  year: 2023
  ident: b0085
  article-title: A multistation 3D point cloud automated global registration and accurate positioning method for railway tunnels
  publication-title: Struct. Control Heal. Monit.
– reference: C. Bragança, E. F. Souza, D. Ribeiro, A. Meixedo, T. N. Bittencourt, and H. Carvalho, Drive-by Methodologies Applied to Railway Infrastructure Subsystems: A Literature Review—Part II: Track and Vehicle, Appl. Sci., vol. 13, no. 12, 2023, 10.3390/app13126982.
– reference: M. Hussain, Sustainable Machine Vision for Industry 4 . 0 : A Comprehensive Review of Convolutional Neural Networks and Hardware Accelerators in Computer Vision, vol. 17, no. 8, pp. 1324–1356, 2024.
– volume: 104
  start-page: 71
  year: 2012
  end-page: 83
  ident: b0005
  article-title: Maintenance management of railway infrastructures based on reliability analysis
  publication-title: Reliab. Eng. Syst. Saf.
– reference: R. Tang, De Donato, A literature review of Artificial Intelligence applications in railway systems, Transp. Res. Part C Emerg. Technol., vol. 140, no. May, 2022, 10.1016/j.trc.2022.103679.
– volume: 222
  start-page: 207
  year: 2024
  end-page: 218
  ident: b0125
  article-title: Interval uncertainty-oriented impedance force control for space manipulator with time-dependent reliability
  publication-title: Acta Astronaut.
– volume: 104
  start-page: 3943
  year: 2022
  end-page: 3954
  ident: b0265
  article-title: Comparison parametric and non-parametric methods in probabilistic load flow studies for power distribution networks
  publication-title: Electr. Eng.
– reference: Q. Zaheer, Digital Twins in Operation and Maintenance (O& P), pp. 179–203, 2024, 10.1007/978-981-99-5804-7_6.
– volume: 10
  start-page: 3006
  year: 2023
  end-page: 3017
  ident: b0140
  article-title: Cascade Learning Embedded Vision Inspection of Rail Fastener by Using a Fault Detection IoT Vehicle
  publication-title: IEEE Internet Things J.
– reference: D. Eigen, R. Fergus, Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture, Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, pp. 2650–2658, 2015, 10.1109/ICCV.2015.304.
– volume: 5
  start-page: 835
  year: 2014
  end-page: 844
  ident: b0100
  article-title: A fast template matching-based algorithm for railway bolts detection
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 91
  start-page: 230
  year: 2018
  end-page: 248
  ident: b0070
  article-title: Principal components analysis and track quality index: A machine learning approach
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 54
  start-page: 4236
  year: 2024
  end-page: 4246
  ident: b0130
  article-title: Convex model-based reduced-order model for uncertain control systems
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 162
  year: 2024
  ident: b0160
  article-title: Automated detection of railway defective fasteners based on YOLOv8-FAM and synthetic data using style transfer
  publication-title: Autom. Constr.
– reference: Y. Zhao, A review on rail defect detection systems based on wireless sensors, Sensors, vol. 22, no. 17, 2022, 10.3390/s22176409.
– volume: 2019-May
  start-page: 6101
  year: 2019
  end-page: 6108
  ident: b0230
  article-title: FastDepth: Fast monocular depth estimation on embedded systems
  publication-title: Proc. - IEEE Int. Conf. Robot. Autom.
– volume: 595
  year: 2025
  ident: b0330
  article-title: Interval riccati equation-based and non-probabilistic dynamic reliability-constrained multi-objective optimal vibration control with multi-source uncertainties
  publication-title: J. Sound Vib.
– volume: 92
  start-page: 258
  year: 2018
  end-page: 277
  ident: b0075
  article-title: Automated vision inspection of rail surface cracks: A double-layer data-driven framework
  publication-title: Transp. Res. Part C Emerg. Technol.
– start-page: 12159
  year: 2021
  end-page: 12168
  ident: b0280
  article-title: Vision transformers for dense prediction
  publication-title: Proc. IEEE Int. Conf. Comput. vis.
– volume: 74
  start-page: 3273
  year: 2024
  end-page: 3283
  ident: b0120
  article-title: Multi-objective optimization for robust attitude determination of satellite with narrow bound theory
  publication-title: Adv. Sp. Res.
– volume: 90
  start-page: 34
  year: 2018
  end-page: 58
  ident: b0165
  article-title: Data-driven optimization of railway maintenance for track geometry
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 71
  start-page: 1
  year: 2022
  end-page: 8
  ident: b0270
  article-title: A novel hyperbolic fuzzy entropy measure for discrimination and taxonomy of transformer winding faults
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 197
  year: 2023
  ident: b0025
  article-title: Target-free recognition of cable vibration in complex backgrounds based on computer vision
  publication-title: Mech. Syst. Signal Process.
– volume: 152
  year: 2023
  ident: b0205
  article-title: A novel one-stage approach for pointwise transportation mode identification inspired by point cloud processing
  publication-title: Transp. Res. Part C Emerg Technol.
– volume: 39
  start-page: 2010
  year: 2024
  end-page: 2027
  ident: b0040
  article-title: A multi-degree-of-freedom monitoring method for slope displacement based on stereo vision
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 23
  start-page: 10636
  year: 2022
  end-page: 10645
  ident: b0150
  article-title: Four discriminator cycle-consistent adversarial network for improving railway defective fastener inspection
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: A. Olejniczak, O. Błaszkiewicz, and R. Burczyk, Networks Using Deep Learning, vol. 70, no. 9, 2021.
– volume: 12
  start-page: 54129
  year: 2024
  end-page: 54167
  ident: b0295
  article-title: Synchronizing object detection: applications, advancements and existing challenges
  publication-title: IEEE Access
– reference: Z. Su, K. Han, W. Song, and K. Ning, Railway fastener defect detection based on improved YOLOv5 algorithm, IEEE Adv. Inf. Technol. Electron. Autom. Control Conf., vol. 2022-Octob, no. 7, pp. 1923–1927, 2022, 10.1109/IAEAC54830.2022.9929911.
– reference: M.J. Pappaterra, M.L. Pappaterra, F. Flammini, A study on the application of convolutional neural networks for the maintenance of railway tracks, Discov. Artif. Intell., vol. 4, no. 1, 2024, 10.1007/s44163-024-00127-2.
– volume: 101
  start-page: 35
  year: 2019
  end-page: 54
  ident: b0170
  article-title: Predictive maintenance using tree-based classification techniques: A case of railway switches
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 442
  year: 2024
  ident: b0180
  article-title: Vision-based monitoring of railway superstructure : A review
  publication-title: Constr. Build. Mater.
– volume: 80
  start-page: 148
  year: 2017
  end-page: 174
  ident: b0065
  article-title: Non-discriminatory train dispatching in a rail transport market with multiple competing and collaborative train operating companies
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 80
  start-page: 66
  year: 2019
  end-page: 81
  ident: b0110
  article-title: Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 61604
  year: 2020
  end-page: 61614
  ident: b0185
  article-title: Real-time inspection system for ballast railway fasteners based on point cloud deep learning
  publication-title: IEEE Access
– volume: 30
  start-page: 1077
  year: 2016
  end-page: 1086
  ident: b0275
  article-title: Optimal placement of distributed generation in radial networks considering reliability and cost indices
  publication-title: J. Intell. Fuzzy Syst.
– reference: P. Martinez, Automatic intelligent inspection systems for quality control, vol. 120, no. 7, pp. 1–23, 2016.
– volume: 40
  start-page: 348
  year: 2023
  end-page: 377
  ident: b0035
  article-title: A review on developing optimization techniques in civil engineering
  publication-title: Eng. Comput. (swansea, Wales)
– start-page: 205
  year: 2024
  end-page: 222
  ident: b0060
  article-title: Future Digital Twin in Infrastructure Management
  publication-title: Digit. Twin Technol. Transp. Infrastruct. Manag.
– volume: 43
  start-page: 3349
  year: 2021
  end-page: 3364
  ident: b0255
  article-title: Deep High-Resolution Representation Learning for Visual Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 5
  start-page: 3909
  issue: 7
  year: 2017
  ident: 10.1016/j.measurement.2024.116557_b0300
  article-title: Continuous integration, delivery and deployment: a systematic review on approaches, tools, challenges and practices
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2685629
– ident: 10.1016/j.measurement.2024.116557_b0155
  doi: 10.1109/IAEAC54830.2022.9929911
– volume: 25
  start-page: 2182
  issue: 3
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0285
  article-title: Machine learning in urban rail transit systems: a survey
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3319135
– volume: 212
  start-page: 339
  issue: 7
  year: 2023
  ident: 10.1016/j.measurement.2024.116557_b0290
  article-title: A survey on deep learning-based monocular spacecraft pose estimation: Current state, limitations and prospects
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2023.08.001
– volume: 80
  start-page: 148
  year: 2017
  ident: 10.1016/j.measurement.2024.116557_b0065
  article-title: Non-discriminatory train dispatching in a rail transport market with multiple competing and collaborative train operating companies
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2017.04.011
– volume: 161
  issue: January
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0210
  article-title: Geometric information constraint 3D object detection from LiDAR point cloud for autonomous vehicles under adverse weather
  publication-title: Transp. Res. Part C Emerg Technol.
– volume: 5
  start-page: 835
  issue: 6
  year: 2014
  ident: 10.1016/j.measurement.2024.116557_b0100
  article-title: A fast template matching-based algorithm for railway bolts detection
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-013-0223-z
– volume: 152
  issue: February
  year: 2023
  ident: 10.1016/j.measurement.2024.116557_b0205
  article-title: A novel one-stage approach for pointwise transportation mode identification inspired by point cloud processing
  publication-title: Transp. Res. Part C Emerg Technol.
– volume: 92
  start-page: 258
  issue: May
  year: 2018
  ident: 10.1016/j.measurement.2024.116557_b0075
  article-title: Automated vision inspection of rail surface cracks: A double-layer data-driven framework
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.05.007
– volume: 12
  start-page: 54129
  issue: 3
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0295
  article-title: Synchronizing object detection: applications, advancements and existing challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3388889
– volume: 2024
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0045
  article-title: Hybrid pixel-level crack segmentation for ballastless track slab using digital twin model and weakly supervised style transfer
  publication-title: Struct. Control Heal. Monit.
– volume: 40
  start-page: 348
  issue: 2
  year: 2023
  ident: 10.1016/j.measurement.2024.116557_b0035
  article-title: A review on developing optimization techniques in civil engineering
  publication-title: Eng. Comput. (swansea, Wales)
  doi: 10.1108/EC-01-2022-0034
– volume: 104
  start-page: 3943
  issue: 6
  year: 2022
  ident: 10.1016/j.measurement.2024.116557_b0265
  article-title: Comparison parametric and non-parametric methods in probabilistic load flow studies for power distribution networks
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-022-01590-9
– volume: 3
  start-page: 2366
  issue: January
  year: 2014
  ident: 10.1016/j.measurement.2024.116557_b0215
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.measurement.2024.116557_b0145
– volume: 90
  start-page: 34
  issue: September 2017
  year: 2018
  ident: 10.1016/j.measurement.2024.116557_b0165
  article-title: Data-driven optimization of railway maintenance for track geometry
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.02.019
– volume: 162
  issue: 3
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0160
  article-title: Automated detection of railway defective fasteners based on YOLOv8-FAM and synthetic data using style transfer
  publication-title: Autom. Constr.
– ident: 10.1016/j.measurement.2024.116557_b0080
  doi: 10.3390/ai5030064
– volume: 2023
  year: 2023
  ident: 10.1016/j.measurement.2024.116557_b0085
  article-title: A multistation 3D point cloud automated global registration and accurate positioning method for railway tunnels
  publication-title: Struct. Control Heal. Monit.
– volume: 11
  start-page: 7364
  issue: 8
  year: 2011
  ident: 10.1016/j.measurement.2024.116557_b0095
  article-title: An efficient direction field-based method for the detection of fasteners on high-speed railways
  publication-title: Sensors
  doi: 10.3390/s110807364
– start-page: 205
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0060
  article-title: Future Digital Twin in Infrastructure Management
  publication-title: Digit. Twin Technol. Transp. Infrastruct. Manag.
– volume: 2019-May
  start-page: 6101
  year: 2019
  ident: 10.1016/j.measurement.2024.116557_b0230
  article-title: FastDepth: Fast monocular depth estimation on embedded systems
  publication-title: Proc. - IEEE Int. Conf. Robot. Autom.
– volume: 39
  start-page: 2010
  issue: 13
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0040
  article-title: A multi-degree-of-freedom monitoring method for slope displacement based on stereo vision
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.13173
– volume: 80
  start-page: 66
  issue: 2
  year: 2019
  ident: 10.1016/j.measurement.2024.116557_b0110
  article-title: Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.01.008
– volume: 68
  start-page: 8894
  issue: 9
  year: 2021
  ident: 10.1016/j.measurement.2024.116557_b0310
  article-title: A high accuracy and high speed imaging and measurement system for rail corrugation inspection
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3013748
– volume: 101
  start-page: 35
  issue: June 2018
  year: 2019
  ident: 10.1016/j.measurement.2024.116557_b0170
  article-title: Predictive maintenance using tree-based classification techniques: A case of railway switches
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2019.02.001
– ident: 10.1016/j.measurement.2024.116557_b0190
  doi: 10.3390/s20051367
– volume: 60
  start-page: 6461
  issue: 5
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0335
  article-title: Uncertain iterative optimal attitude control method for periodic satellite with reliability constraint
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2024.3404915
– volume: 197
  issue: April
  year: 2023
  ident: 10.1016/j.measurement.2024.116557_b0025
  article-title: Target-free recognition of cable vibration in complex backgrounds based on computer vision
  publication-title: Mech. Syst. Signal Process.
– volume: 186
  issue: 9
  year: 2021
  ident: 10.1016/j.measurement.2024.116557_b0135
  article-title: A hierarchical learning approach for railway fastener detection using imbalanced samples
  publication-title: Meas. J. Int. Meas. Confed.
– ident: 10.1016/j.measurement.2024.116557_b0315
  doi: 10.3390/s22176409
– volume: 9
  start-page: 16591
  year: 2021
  ident: 10.1016/j.measurement.2024.116557_b0250
  article-title: INet: Convolutional Networks for Biomedical Image Segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053408
– volume: 134
  issue: October 2021
  year: 2022
  ident: 10.1016/j.measurement.2024.116557_b0175
  article-title: A virtual procedure for real-time monitoring of intervisibility between conflicting agents at intersections using point cloud and trajectory data
  publication-title: Transp. Res. Part C Emerg. Technol.
– ident: 10.1016/j.measurement.2024.116557_b0305
  doi: 10.1007/s44163-024-00127-2
– volume: 162
  issue: March
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0090
  article-title: Automated detection of railway defective fasteners based on YOLOv8-FAM and synthetic data using style transfer
  publication-title: Autom. Constr.
– volume: 31
  start-page: 4381
  issue: 11
  year: 2021
  ident: 10.1016/j.measurement.2024.116557_b0260
  article-title: Monocular depth estimation using Laplacian pyramid-based depth residuals
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3049869
– volume: 28
  start-page: 3174
  issue: 11
  year: 2018
  ident: 10.1016/j.measurement.2024.116557_b0225
  article-title: Estimating depth from monocular images as classification using deep fully convolutional residual networks
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2740321
– volume: 74
  start-page: 3273
  issue: 7
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0120
  article-title: Multi-objective optimization for robust attitude determination of satellite with narrow bound theory
  publication-title: Adv. Sp. Res.
  doi: 10.1016/j.asr.2024.06.002
– ident: 10.1016/j.measurement.2024.116557_b0050
– volume: 43
  start-page: 3349
  issue: 10
  year: 2021
  ident: 10.1016/j.measurement.2024.116557_b0255
  article-title: Deep High-Resolution Representation Learning for Visual Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983686
– volume: 8
  start-page: 61604
  issue: 7
  year: 2020
  ident: 10.1016/j.measurement.2024.116557_b0185
  article-title: Real-time inspection system for ballast railway fasteners based on point cloud deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2961686
– ident: 10.1016/j.measurement.2024.116557_b0195
– start-page: 1
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0030
  article-title: Introduction to Digital Twin Technologies in Transportation Infrastructure Management (TIM)
  publication-title: Digit. Twin Technol. Transp. Infrastruct. Manag.
– volume: 23
  start-page: 10636
  issue: 8
  year: 2022
  ident: 10.1016/j.measurement.2024.116557_b0150
  article-title: Four discriminator cycle-consistent adversarial network for improving railway defective fastener inspection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2021.3095167
– volume: 30
  start-page: 1077
  issue: 2
  year: 2016
  ident: 10.1016/j.measurement.2024.116557_b0275
  article-title: Optimal placement of distributed generation in radial networks considering reliability and cost indices
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/IFS-151883
– volume: 54
  start-page: 4236
  issue: 7
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0130
  article-title: Convex model-based reduced-order model for uncertain control systems
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2024.3373031
– ident: 10.1016/j.measurement.2024.116557_b0200
– volume: 40
  start-page: 834
  issue: 4
  year: 2018
  ident: 10.1016/j.measurement.2024.116557_b0245
  article-title: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: 10.1016/j.measurement.2024.116557_b0015
– start-page: 12159
  year: 2021
  ident: 10.1016/j.measurement.2024.116557_b0280
  article-title: Vision transformers for dense prediction
  publication-title: Proc. IEEE Int. Conf. Comput. vis.
– ident: 10.1016/j.measurement.2024.116557_b0010
  doi: 10.1016/j.trc.2022.103679
– start-page: 4008
  year: 2021
  ident: 10.1016/j.measurement.2024.116557_b0235
  article-title: AdaBins: Depth estimation using adaptive bins
  publication-title: Proc. IEEE Comput. Soc. Conf. Comput. Vis Pattern Recognit.
– volume: 104
  start-page: 71
  issue: 4
  year: 2012
  ident: 10.1016/j.measurement.2024.116557_b0005
  article-title: Maintenance management of railway infrastructures based on reliability analysis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2012.03.017
– volume: 222
  start-page: 207
  issue: 8
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0125
  article-title: Interval uncertainty-oriented impedance force control for space manipulator with time-dependent reliability
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2024.06.002
– ident: 10.1016/j.measurement.2024.116557_b0055
  doi: 10.1007/978-981-99-5804-7_6
– volume: 71
  start-page: 1
  issue: 7
  year: 2022
  ident: 10.1016/j.measurement.2024.116557_b0270
  article-title: A novel hyperbolic fuzzy entropy measure for discrimination and taxonomy of transformer winding faults
  publication-title: IEEE Trans. Instrum. Meas.
– ident: 10.1016/j.measurement.2024.116557_b0020
  doi: 10.1108/TQM-10-2023-0347
– ident: 10.1016/j.measurement.2024.116557_b0220
  doi: 10.1109/ICCV.2015.304
– volume: 10
  start-page: 3006
  issue: 4
  year: 2023
  ident: 10.1016/j.measurement.2024.116557_b0140
  article-title: Cascade Learning Embedded Vision Inspection of Rail Fastener by Using a Fault Detection IoT Vehicle
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3126875
– ident: 10.1016/j.measurement.2024.116557_b0320
  doi: 10.3390/app13126982
– ident: 10.1016/j.measurement.2024.116557_b0325
  doi: 10.1007/s11071-024-10291-w
– volume: 595
  issue: 9
  year: 2025
  ident: 10.1016/j.measurement.2024.116557_b0330
  article-title: Interval riccati equation-based and non-probabilistic dynamic reliability-constrained multi-objective optimal vibration control with multi-source uncertainties
  publication-title: J. Sound Vib.
– volume: 63
  start-page: 877
  issue: 4
  year: 2014
  ident: 10.1016/j.measurement.2024.116557_b0115
  article-title: Automatic fastener classification and defect detection in vision-based railway inspection systems
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2013.2283741
– volume: 442
  issue: 2
  year: 2024
  ident: 10.1016/j.measurement.2024.116557_b0180
  article-title: Vision-based monitoring of railway superstructure : A review
  publication-title: Constr. Build. Mater.
– start-page: 7897
  year: 2023
  ident: 10.1016/j.measurement.2024.116557_b0240
  article-title: NDDepth: Normal-distance assisted monocular depth estimation
  publication-title: Proc. IEEE Int. Conf. Comput. vis.
– volume: 71
  start-page: 181
  issue: 2
  year: 2016
  ident: 10.1016/j.measurement.2024.116557_b0105
  article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.06.008
– volume: 91
  start-page: 230
  issue: July 2017
  year: 2018
  ident: 10.1016/j.measurement.2024.116557_b0070
  article-title: Principal components analysis and track quality index: A machine learning approach
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.04.001
SSID ssj0006396
Score 2.3980267
Snippet •Introduces a Multimodal Geometric AutoEncoder (MGAE) for rail fastener tightness evaluation.•Integrates point cloud and monocular depth fusion for improved...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 116557
SubjectTerms Autoencoder
Fastener tightness
Multimodal approach
Rail fasteners
Rail infrastructure
Title Multimodal geometric AutoEncoder (MGAE) for rail fasteners tightness evaluation with point clouds & monocular depth fusion
URI https://dx.doi.org/10.1016/j.measurement.2024.116557
Volume 244
WOSCitedRecordID wos001403429200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006396
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA7jrIo-iK4r7nohgogydKhpegNfioyOoovLrjBvJU1T22XaDtN22d3_6H_yJOkNL6iIL6W0adrmfE1Ovp7zBaGnjsm5kxD4kIQgBo1gz6MRNRxOYfyDEb6VzP_gHh56q5X_aTL52uXCnK3dovDOz_3NfzU1HANjy9TZvzB3XykcgH0wOmzB7LD9I8OrlNq8jKHtv4gylytm8VnQ1OWikPnrcj0N7-PbYCH5ABljuGXZepYwsHYhk3lrOVtX_d8gBK7Z2k2ZFfWMr8smrhRi4JVKHcYaiw0USJqqs3K3RtTAQCruYaRTMURtdnTkuLBKRJSioOM4gaOsUWRtmvV0N0uFxtwRq7J8QE_K8pzFsyCFwX62hAmC7MZSpjik43kPWpZdwollA-ezUYGLNuOrZUPIOLtcUXRdms4QE1UpdVnLkL7KuNsnWnfyhyFEsxmn83x46Tncic6lUJEW0_5OoftY1i-rl3-qKCX0Ctohru17U7QTvFus3veuAbiDjib99PNcR0-GgMNf3PDnDtPICTq5jW61sxccaNTdQRNR7KKbI03LXXRNxRTz6i66HJCIeyTiERLxc4nDFxhQiCUKcY9C3KMQDyjEEoVYoRBrFOJnuMcgVhjEGoN76PObxcnrpdEu9WFw4ti1wYTj-NyLLGESzuxI-LELU3dueZHpi0REZhSDc2k7MBvmcWKbkbDNRAobEeZbCbPuoWlRFuI-woIknCSOIJS5FAawyIeuyHJcavOXZhLRfUS69gw3WtEl7EIdT8OREUJphFAbYR-96lo-bF1T7XKGAJvfX37wb5c_QDcGrD9E03rbiEfoKj-rs2r7uAXZNxISwK4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+geometric+AutoEncoder+%28MGAE%29+for+rail+fasteners+tightness+evaluation+with+point+clouds+%26+monocular+depth+fusion&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Qiu%2C+Shi&rft.au=Zaheer%2C+Qasim&rft.au=Muhammad+Ahmed+Hassan+Shah%2C+S.&rft.au=Faizan+Hussain+Shah%2C+Syed&rft.date=2025-02-28&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=244&rft_id=info:doi/10.1016%2Fj.measurement.2024.116557&rft.externalDocID=S0263224124024424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon