Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k -Nearest Neighbor Scheme

Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this paper, we propose a stereovision-based method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 18; číslo 12; s. 5122 - 5132
Hlavní autoři: Dairi, Abdelkader, Harrou, Fouzi, Ying Sun, Senouci, Mohamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 15.06.2018
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Obstacle detection is an essential element for the development of intelligent transportation systems so that accidents can be avoided. In this paper, we propose a stereovision-based method for detecting obstacles in urban environment. The proposed method uses a deep stacked auto-encoders (DSA) model that combines the greedy learning features with the dimensionality reduction capacity and employs an unsupervised k -nearest neighbors (KNN) algorithm to accurately and reliably detect the presence of obstacles. We consider obstacle detection as an anomaly detection problem. We evaluated the proposed method by using practical data from three publicly available data sets, the Malaga stereovision urban data set, the Daimler urban segmentation data set, and the Bahnhof data set. Also, we compared the efficiency of DSA-KNN approach to the deep belief network-based clustering schemes. Results show that the DSA-KNN is suitable to visually monitor urban scenes.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2018.2831082