Hyperspectral Band Selection: A Review

A hyperspectral imaging sensor collects detailed spectral responses from ground objects using hundreds of narrow bands; this technology is used in many real-world applications. Band selection aims to select a small subset of hyperspectral bands to remove spectral redundancy and reduce computational...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing magazine Ročník 7; číslo 2; s. 118 - 139
Hlavní autoři: Sun, Weiwei, Du, Qian
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.06.2019
Témata:
ISSN:2473-2397, 2168-6831
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A hyperspectral imaging sensor collects detailed spectral responses from ground objects using hundreds of narrow bands; this technology is used in many real-world applications. Band selection aims to select a small subset of hyperspectral bands to remove spectral redundancy and reduce computational costs while preserving the significant spectral information of ground objects. In this article, we review current hyperspectral band selection methods, which can be classified into six main categories: ranking based, searching based, clustering based, sparsity based, embedding-learning based, and hybrid-scheme based. With two widely used hyperspectral data sets, we illustrate the classification performances of several popular band selection methods. The challenges and research directions of hyperspectral band selection are also discussed.
ISSN:2473-2397
2168-6831
DOI:10.1109/MGRS.2019.2911100