Hyperspectral Band Selection: A Review

A hyperspectral imaging sensor collects detailed spectral responses from ground objects using hundreds of narrow bands; this technology is used in many real-world applications. Band selection aims to select a small subset of hyperspectral bands to remove spectral redundancy and reduce computational...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE geoscience and remote sensing magazine Ročník 7; číslo 2; s. 118 - 139
Hlavní autori: Sun, Weiwei, Du, Qian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.06.2019
Predmet:
ISSN:2473-2397, 2168-6831
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A hyperspectral imaging sensor collects detailed spectral responses from ground objects using hundreds of narrow bands; this technology is used in many real-world applications. Band selection aims to select a small subset of hyperspectral bands to remove spectral redundancy and reduce computational costs while preserving the significant spectral information of ground objects. In this article, we review current hyperspectral band selection methods, which can be classified into six main categories: ranking based, searching based, clustering based, sparsity based, embedding-learning based, and hybrid-scheme based. With two widely used hyperspectral data sets, we illustrate the classification performances of several popular band selection methods. The challenges and research directions of hyperspectral band selection are also discussed.
AbstractList A hyperspectral imaging sensor collects detailed spectral responses from ground objects using hundreds of narrow bands; this technology is used in many real-world applications. Band selection aims to select a small subset of hyperspectral bands to remove spectral redundancy and reduce computational costs while preserving the significant spectral information of ground objects. In this article, we review current hyperspectral band selection methods, which can be classified into six main categories: ranking based, searching based, clustering based, sparsity based, embedding-learning based, and hybrid-scheme based. With two widely used hyperspectral data sets, we illustrate the classification performances of several popular band selection methods. The challenges and research directions of hyperspectral band selection are also discussed.
Author Du, Qian
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Weiwei
  orcidid: 0000-0003-3399-7858
  surname: Sun
  fullname: Sun, Weiwei
  email: nbsww@outlook.com
  organization: Ningbo University, Zhejiang, China
– sequence: 2
  givenname: Qian
  orcidid: 0000-0001-8354-7500
  surname: Du
  fullname: Du, Qian
  email: du@ece.msstate.edu
  organization: Electrical and Computer Engineering, Mississippi State University, Starkville, Mississippi United States
BookMark eNp9j01Lw0AQQBepYK39AeIlJ2-JM7vJ7qy3WmorVIRWz2HdTCASk5AEpf_ehBYPHpzLfMCbmXcpJlVdsRDXCBEi2Lvn9W4fSUAbSYvDBM7EVKKmUJPCyVDHRoVSWXMh5l33AUNQghZpKm43h4bbrmHft64MHlyVBXsuh7aoq_tgEez4q-DvK3Geu7Lj-SnPxNvj6nW5Cbcv66flYht6qZM-tJlnQh37nIwDZ6SSykkGBNLEPgGVQ2yY8sya7N1po4CsVz5mpBg0qpnA417f1l3Xcp42bfHp2kOKkI6u6eiajq7pyXVgzB_GF70b_x-UivJf8uZIFsz8e4mMIkhQ_QCSsmEn
CODEN IGRSCZ
CitedBy_id crossref_primary_10_3390_drones8100529
crossref_primary_10_1109_JSTARS_2021_3123087
crossref_primary_10_3390_s25061843
crossref_primary_10_1016_j_neucom_2023_03_025
crossref_primary_10_1364_AO_498021
crossref_primary_10_1016_j_marpolbul_2025_117965
crossref_primary_10_3390_rs16224247
crossref_primary_10_1109_TCYB_2020_3000725
crossref_primary_10_1109_TGRS_2021_3129841
crossref_primary_10_3390_rs17132234
crossref_primary_10_1109_LGRS_2021_3109484
crossref_primary_10_1109_TNNLS_2022_3157711
crossref_primary_10_1109_TGRS_2021_3102246
crossref_primary_10_3390_agronomy14071569
crossref_primary_10_3390_rs17030435
crossref_primary_10_1109_TGRS_2023_3267638
crossref_primary_10_1109_TGRS_2023_3292292
crossref_primary_10_1016_j_compag_2023_108444
crossref_primary_10_1109_TGRS_2020_2963848
crossref_primary_10_1080_00387010_2025_2465699
crossref_primary_10_1016_j_engappai_2023_106017
crossref_primary_10_1016_j_eswa_2024_125106
crossref_primary_10_1109_JSTARS_2023_3283342
crossref_primary_10_1109_TGRS_2023_3276589
crossref_primary_10_1109_TGRS_2022_3216685
crossref_primary_10_1109_JSTARS_2020_2990457
crossref_primary_10_1109_JSTARS_2025_3600452
crossref_primary_10_1007_s12559_022_10066_8
crossref_primary_10_3390_rs13193949
crossref_primary_10_1080_19479832_2021_1972047
crossref_primary_10_1109_TGRS_2022_3146803
crossref_primary_10_1080_2150704X_2023_2177124
crossref_primary_10_1007_s12145_024_01312_8
crossref_primary_10_3390_s24237771
crossref_primary_10_1109_TGRS_2020_3032528
crossref_primary_10_1109_TIM_2025_3582323
crossref_primary_10_3390_rs12182955
crossref_primary_10_1109_TGRS_2021_3121671
crossref_primary_10_1109_JSTARS_2021_3049527
crossref_primary_10_1109_TGRS_2023_3305545
crossref_primary_10_1109_TGRS_2022_3169018
crossref_primary_10_1016_j_knosys_2021_107428
crossref_primary_10_3390_s22041623
crossref_primary_10_1016_j_asr_2022_06_028
crossref_primary_10_1016_j_scitotenv_2021_147758
crossref_primary_10_1109_TGRS_2019_2958812
crossref_primary_10_1016_j_neucom_2024_128964
crossref_primary_10_1016_j_neucom_2024_127757
crossref_primary_10_3390_jimaging6090087
crossref_primary_10_1007_s00521_021_06121_4
crossref_primary_10_1016_j_swevo_2024_101614
crossref_primary_10_3390_rs15082117
crossref_primary_10_1109_TIM_2024_3480227
crossref_primary_10_1080_15481603_2023_2243671
crossref_primary_10_1109_TIP_2023_3312928
crossref_primary_10_1016_j_foodcont_2025_111526
crossref_primary_10_1002_jsfa_10697
crossref_primary_10_3390_rs15174211
crossref_primary_10_3390_rs16010172
crossref_primary_10_1109_TIP_2021_3071557
crossref_primary_10_3390_s22249790
crossref_primary_10_1109_TGRS_2023_3273776
crossref_primary_10_1016_j_ecss_2020_107111
crossref_primary_10_1109_TPS_2023_3297579
crossref_primary_10_3390_app13148451
crossref_primary_10_1109_LGRS_2022_3147272
crossref_primary_10_1109_TGRS_2019_2959342
crossref_primary_10_1109_TGRS_2022_3176216
crossref_primary_10_3390_drones9090603
crossref_primary_10_3390_rs12091392
crossref_primary_10_1109_LGRS_2020_3034631
crossref_primary_10_1109_TIP_2022_3192712
crossref_primary_10_3390_rs13122399
crossref_primary_10_1109_JSTARS_2022_3172112
crossref_primary_10_1016_j_eswa_2025_127611
crossref_primary_10_1016_j_porgcoat_2023_108074
crossref_primary_10_1109_TGRS_2023_3296728
crossref_primary_10_1080_01431161_2022_2105174
crossref_primary_10_1109_TGRS_2023_3304311
crossref_primary_10_1109_JSTARS_2020_3018229
crossref_primary_10_3390_rs17020315
crossref_primary_10_1080_15481603_2025_2500793
crossref_primary_10_1109_TGRS_2021_3133582
crossref_primary_10_1109_TGRS_2022_3231870
crossref_primary_10_1109_JSTARS_2020_3014784
crossref_primary_10_1109_JSEN_2025_3561018
crossref_primary_10_1364_AO_525923
crossref_primary_10_3390_electronics14081486
crossref_primary_10_1016_j_cj_2021_12_011
crossref_primary_10_3390_rs13183649
crossref_primary_10_1109_JSTARS_2022_3172120
crossref_primary_10_1111_nph_17947
crossref_primary_10_1016_j_eswa_2023_122172
crossref_primary_10_1007_s11676_022_01593_z
crossref_primary_10_1016_j_rsase_2024_101218
crossref_primary_10_1109_JSTARS_2023_3299731
crossref_primary_10_1016_j_infrared_2025_105726
crossref_primary_10_1016_j_patcog_2023_109699
crossref_primary_10_1109_MGRS_2020_2979764
crossref_primary_10_1109_TGRS_2024_3389651
crossref_primary_10_3390_rs12071104
crossref_primary_10_1016_j_eswa_2025_128394
crossref_primary_10_1109_MGRS_2021_3051979
crossref_primary_10_1364_AO_523199
crossref_primary_10_3390_rs15164112
crossref_primary_10_1117_1_JRS_15_028504
crossref_primary_10_1080_01431161_2025_2506158
crossref_primary_10_1109_TGRS_2020_2994057
crossref_primary_10_32604_cmc_2024_049847
crossref_primary_10_1080_10106049_2025_2465518
crossref_primary_10_3390_rs12203319
crossref_primary_10_3390_rs16203884
crossref_primary_10_3390_rs14174379
crossref_primary_10_1016_j_cmpb_2023_107721
crossref_primary_10_1109_TGRS_2020_3046727
crossref_primary_10_1038_s41467_024_53747_8
crossref_primary_10_1109_ACCESS_2020_2981475
crossref_primary_10_1016_j_engappai_2024_108130
crossref_primary_10_1109_TGRS_2021_3102861
crossref_primary_10_3390_rs12244060
crossref_primary_10_1016_j_catena_2023_107713
crossref_primary_10_1109_TGRS_2021_3075663
crossref_primary_10_1109_JSTARS_2020_2984568
crossref_primary_10_1016_j_jfranklin_2024_107269
crossref_primary_10_3390_s20082305
crossref_primary_10_1016_j_asr_2022_11_047
crossref_primary_10_1016_j_eswa_2023_122273
crossref_primary_10_1109_TGRS_2019_2944189
crossref_primary_10_3390_s21155138
crossref_primary_10_1016_j_jhydrol_2025_133403
crossref_primary_10_3390_rs14133078
crossref_primary_10_1109_LGRS_2020_2970079
crossref_primary_10_1016_j_patcog_2022_108969
crossref_primary_10_1007_s11042_023_16638_6
crossref_primary_10_1109_ACCESS_2019_2935496
crossref_primary_10_1016_j_compag_2025_110072
crossref_primary_10_1109_TGRS_2025_3528411
crossref_primary_10_1007_s11431_021_1987_8
crossref_primary_10_1109_TCSVT_2025_3556548
crossref_primary_10_1080_2150704X_2024_2302939
crossref_primary_10_1109_TGRS_2024_3379199
crossref_primary_10_1109_TIM_2025_3551470
crossref_primary_10_1016_j_compag_2024_108813
crossref_primary_10_1109_JSTARS_2024_3464758
crossref_primary_10_1016_j_geoderma_2025_117324
crossref_primary_10_3390_rs15153701
crossref_primary_10_3390_s21113846
crossref_primary_10_1109_MGRS_2023_3269979
crossref_primary_10_1109_TGRS_2022_3187867
crossref_primary_10_1109_JSTARS_2020_3030304
crossref_primary_10_1109_TIM_2022_3184353
crossref_primary_10_1016_j_fmre_2023_10_014
crossref_primary_10_3390_agriculture15030288
crossref_primary_10_3390_rs16111837
crossref_primary_10_1109_JSTARS_2023_3335286
crossref_primary_10_1080_01431161_2023_2277168
crossref_primary_10_1109_TGRS_2021_3051199
crossref_primary_10_3390_rs14051156
crossref_primary_10_1080_01431161_2024_2318775
crossref_primary_10_1016_j_ecoinf_2025_103051
crossref_primary_10_3390_rs16060970
crossref_primary_10_1016_j_knosys_2021_107934
crossref_primary_10_1117_1_JRS_18_042604
crossref_primary_10_3390_rs15030668
crossref_primary_10_1109_JSTARS_2023_3337112
crossref_primary_10_1080_01431161_2020_1736732
crossref_primary_10_1109_LGRS_2021_3072948
crossref_primary_10_3390_rs14225686
crossref_primary_10_3389_fpls_2023_1073346
crossref_primary_10_1080_01431161_2024_2358545
crossref_primary_10_1007_s12145_023_01118_0
crossref_primary_10_1016_j_asr_2024_05_064
crossref_primary_10_1016_j_rsase_2024_101424
crossref_primary_10_1109_JSTARS_2025_3552310
crossref_primary_10_1007_s12161_024_02574_0
crossref_primary_10_1109_LGRS_2021_3119346
crossref_primary_10_3390_rs15112832
crossref_primary_10_3390_rs15184460
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_1016_j_asoc_2021_107889
crossref_primary_10_1007_s10462_025_11169_y
crossref_primary_10_1109_TGRS_2023_3263580
crossref_primary_10_1109_TGRS_2024_3414128
crossref_primary_10_1109_TGRS_2023_3331236
crossref_primary_10_3390_rs13224704
crossref_primary_10_3390_rs17173038
crossref_primary_10_1109_TGRS_2021_3068779
crossref_primary_10_1016_j_infrared_2024_105173
crossref_primary_10_1016_j_atech_2023_100316
crossref_primary_10_1016_j_engappai_2023_107835
crossref_primary_10_1016_j_compbiomed_2024_108849
crossref_primary_10_1109_JSTARS_2021_3063507
crossref_primary_10_1016_j_infrared_2022_104317
crossref_primary_10_1109_JSTARS_2021_3124308
crossref_primary_10_3390_rs12121983
crossref_primary_10_1109_TGRS_2021_3102422
crossref_primary_10_3390_cancers14174292
crossref_primary_10_3390_rs14071542
crossref_primary_10_1016_j_procs_2021_04_115
crossref_primary_10_1109_TIM_2024_3415229
crossref_primary_10_1016_j_jfca_2025_107857
crossref_primary_10_1109_TGRS_2022_3150361
crossref_primary_10_1109_TGRS_2023_3324028
crossref_primary_10_1109_JSTARS_2020_2964000
crossref_primary_10_1080_2150704X_2021_2005270
crossref_primary_10_3390_rs14092215
crossref_primary_10_1016_j_compag_2023_107745
crossref_primary_10_1109_ACCESS_2020_2977454
crossref_primary_10_1016_j_compag_2022_107433
crossref_primary_10_1080_01431161_2024_2391583
crossref_primary_10_3390_s25113570
crossref_primary_10_1109_JSTARS_2020_3008939
crossref_primary_10_1016_j_watres_2024_122544
crossref_primary_10_1109_TGRS_2022_3186612
crossref_primary_10_1016_j_eswa_2024_123937
crossref_primary_10_1007_s42979_022_01314_7
crossref_primary_10_1109_TGRS_2025_3527138
crossref_primary_10_1109_MGRS_2020_3048443
crossref_primary_10_1109_TGRS_2020_3047682
crossref_primary_10_1016_j_engappai_2025_111631
crossref_primary_10_1016_j_patcog_2021_107967
crossref_primary_10_1016_j_asoc_2023_110753
crossref_primary_10_1109_JSTARS_2020_3011431
crossref_primary_10_1109_TGRS_2023_3249344
crossref_primary_10_1016_j_asr_2024_09_013
crossref_primary_10_3390_rs13142833
crossref_primary_10_1080_01431161_2024_2371618
crossref_primary_10_1109_ACCESS_2025_3569213
crossref_primary_10_1109_TGRS_2020_3037746
crossref_primary_10_1007_s11694_024_02497_8
crossref_primary_10_1109_JSTARS_2021_3062116
crossref_primary_10_1016_j_compag_2023_108008
crossref_primary_10_1016_j_procs_2020_08_058
crossref_primary_10_3390_rs17142488
crossref_primary_10_1016_j_heliyon_2023_e19654
crossref_primary_10_1038_s41598_022_20814_3
crossref_primary_10_1080_01431161_2025_2452311
crossref_primary_10_1109_TGRS_2022_3190327
crossref_primary_10_3390_s22051978
crossref_primary_10_1016_j_rse_2021_112724
crossref_primary_10_3390_rs15071731
crossref_primary_10_3390_s24123958
crossref_primary_10_1080_01431161_2023_2234091
crossref_primary_10_1016_j_infrared_2023_104754
crossref_primary_10_3390_rs17091620
crossref_primary_10_1080_01431161_2024_2431174
crossref_primary_10_1007_s10489_021_02270_0
crossref_primary_10_1080_01431161_2020_1807650
crossref_primary_10_3390_bioengineering12080828
crossref_primary_10_1109_LGRS_2022_3221536
crossref_primary_10_1016_j_patcog_2022_108788
crossref_primary_10_1109_LGRS_2023_3284675
crossref_primary_10_3390_rs13132607
crossref_primary_10_1109_TGRS_2024_3493879
crossref_primary_10_3390_horticulturae9090967
crossref_primary_10_1016_j_jfoodeng_2019_109808
crossref_primary_10_3390_su142013168
crossref_primary_10_3390_rs16152848
crossref_primary_10_1109_TGRS_2022_3228638
crossref_primary_10_3390_rs15153841
crossref_primary_10_1016_j_infrared_2023_105053
crossref_primary_10_3390_jimaging6120132
crossref_primary_10_3390_s23042129
crossref_primary_10_1080_01431161_2021_1929540
crossref_primary_10_3390_s21186002
crossref_primary_10_4995_raet_2025_22291
crossref_primary_10_1109_LGRS_2022_3165313
crossref_primary_10_1007_s12145_024_01378_4
crossref_primary_10_1016_j_optlaseng_2024_108425
crossref_primary_10_1109_TGRS_2021_3067096
crossref_primary_10_3390_rs17173081
crossref_primary_10_1109_MGRS_2021_3105440
crossref_primary_10_1016_j_optlastec_2025_112420
crossref_primary_10_3390_rs13081532
crossref_primary_10_1109_TGRS_2023_3284475
crossref_primary_10_1109_TCSVT_2024_3439369
crossref_primary_10_1016_j_jfranklin_2024_107424
crossref_primary_10_3390_s20195546
crossref_primary_10_1109_JSTARS_2023_3341339
crossref_primary_10_1109_LGRS_2024_3418856
crossref_primary_10_1007_s11042_023_14510_1
crossref_primary_10_1007_s11042_024_18562_9
crossref_primary_10_1016_j_patcog_2023_109832
crossref_primary_10_1016_j_saa_2025_126766
crossref_primary_10_1371_journal_pone_0269174
crossref_primary_10_1109_TGRS_2023_3344583
crossref_primary_10_3390_land10080867
crossref_primary_10_1109_TGRS_2023_3274661
crossref_primary_10_1109_TGRS_2024_3488824
crossref_primary_10_3390_rs16132353
crossref_primary_10_1109_LGRS_2025_3554265
crossref_primary_10_1016_j_eswa_2022_118797
crossref_primary_10_1109_LGRS_2021_3057117
crossref_primary_10_3390_rs16071277
crossref_primary_10_1080_22797254_2020_1796526
crossref_primary_10_1016_j_knosys_2025_113988
crossref_primary_10_1038_s41598_024_62166_0
crossref_primary_10_1109_ACCESS_2020_3010519
crossref_primary_10_3390_rs14071737
crossref_primary_10_1109_TGRS_2023_3329639
crossref_primary_10_1007_s12652_024_04782_2
crossref_primary_10_1109_TGRS_2020_2997863
crossref_primary_10_1109_TGRS_2024_3382638
crossref_primary_10_3390_rs13163306
Cites_doi 10.1109/TGRS.2015.2480866
10.1364/AO.51.002656
10.1109/TGRS.2016.2585961
10.1109/JPROC.2012.2197589
10.1109/MSP.2013.2279894
10.1109/TGRS.2007.905311
10.1038/srep09915
10.1109/JSTARS.2014.2320299
10.1088/2040-8978/13/1/015401
10.1109/JSTARS.2015.2417156
10.1109/ICALIP.2008.4590145
10.1109/EUVIP.2018.8611643
10.1109/LGRS.2006.878240
10.1109/LGRS.2017.2658666
10.1109/JSTARS.2013.2262926
10.1109/TGRS.2015.2461653
10.1080/2150704X.2013.822119
10.1109/TGRS.2016.2642479
10.1109/IGARSS.2016.7729628
10.1016/j.rse.2013.04.006
10.14358/PERS.70.7.793
10.1109/CISP.2009.5304614
10.1109/IGARSS.2013.6723064
10.1109/TGRS.2004.830549
10.1016/j.isprsjprs.2015.08.001
10.1016/j.neucom.2017.07.059
10.1109/JSTARS.2013.2267204
10.1109/JSTARS.2015.2509461
10.1016/j.jag.2011.08.002
10.1201/b11222
10.1111/j.1472-4642.2011.00761.x
10.1016/j.asoc.2012.11.042
10.1109/LGRS.2008.915934
10.1109/JSTARS.2015.2428276
10.1117/12.685683
10.1080/2150704X.2014.930196
10.1109/ISSPA.2012.6310665
10.1109/79.974718
10.1080/01431161.2017.1302110
10.1109/JSTARS.2012.2185822
10.1109/TGRS.2007.904951
10.1016/j.compag.2015.10.017
10.1016/j.jvcir.2017.02.002
10.1109/JSTARS.2011.2176721
10.1007/978-3-662-05605-9
10.1109/JSTARS.2014.2371931
10.1109/EUSIPCO.2015.7362664
10.1126/science.1242072
10.1109/36.934069
10.1109/LGRS.2015.2497085
10.1080/01431161.2012.663111
10.1080/15481603.2015.1075180
10.1109/TGRS.2014.2326655
10.1109/TGRS.2015.2450759
10.1109/LGRS.2012.2233711
10.1109/LGRS.2008.2000619
10.1109/LGRS.2017.2681118
10.1109/LGRS.2003.822879
10.1109/TNNLS.2015.2477537
10.1109/TIP.2017.2676344
10.1109/TGRS.2011.2158319
10.1109/MSP.2013.2278992
10.1016/j.knosys.2010.07.003
10.21307/ijssis-2017-948
10.1109/TGRS.2016.2636850
10.1049/iet-cvi.2009.0034
10.1109/LGRS.2006.887142
10.1109/TGRS.2007.901051
10.1109/ICIP.2013.6738664
10.1007/s12145-014-0201-3
10.1109/TII.2012.2205397
10.1109/TGRS.2013.2263510
10.1109/LGRS.2005.848511
10.1007/s00500-014-1508-1
10.1109/LGRS.2017.2765339
10.1109/LGRS.2008.915930
10.1109/79.974724
10.1109/5254.708428
10.3390/rs8030238
10.1109/SOPO.2010.5504325
10.1109/JSTARS.2017.2737400
10.1117/1.OE.56.5.053101
10.1016/j.asoc.2015.09.045
10.1109/LGRS.2012.2236819
10.1109/36.298007
10.1109/TIP.2016.2617462
10.1117/1.JRS.8.085094
10.1080/01431161.2013.871392
10.1109/TGRS.2013.2279591
10.1007/978-3-030-03341-5_33
10.1016/j.engappai.2013.07.010
10.1109/LGRS.2011.2158185
10.1080/01431160701802471
10.1109/ICIP.2011.6116223
10.1109/LGRS.2010.2091673
10.1109/LGRS.2005.844658
10.1109/TGRS.2017.2681278
10.1109/TGRS.2015.2424236
10.1117/1.JRS.8.084798
10.1109/JSTSP.2015.2405902
10.1080/2150704X.2014.993482
10.1080/01431161.2014.968686
10.1109/TGRS.2013.2257604
10.1016/j.patcog.2015.08.018
10.1109/JSTARS.2014.2312539
10.1109/LGRS.2010.2053516
10.1109/36.803411
10.1364/AO.55.000462
10.1109/JSTARS.2016.2539981
10.1007/BF00048682
10.1631/jzus.C1000304
10.1109/IGARSS.2016.7730606
10.1109/TGRS.2006.886177
10.1109/TGRS.2015.2453362
10.1109/IGARSS.2012.6350781
10.3390/rs9080782
10.1109/TGRS.2014.2367010
10.1109/JSTARS.2015.2441771
10.1109/LGRS.2014.2337957
10.1080/01431160802609718
10.1109/JSTARS.2015.2443047
10.1109/LGRS.2014.2301864
10.1109/TGRS.2013.2258351
10.1016/j.isprsjprs.2013.12.003
10.1109/LGRS.2007.905116
10.1109/TGRS.2014.2307880
10.1109/MSP.2013.2279179
10.1109/TGRS.2014.2367022
10.1109/TGRS.2006.864389
10.1016/j.rse.2007.12.014
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/MGRS.2019.2911100
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 2168-6831
EndPage 139
ExternalDocumentID 10_1109_MGRS_2019_2911100
8738051
Genre orig-research
GrantInformation_xml – fundername: the K. C. Wong Magna Fund in Ningbo University
– fundername: Zhejiang Provincial Natural Science Foundation of China
  grantid: LR19D010001
– fundername: Natural Science Foundation of Ningbo
  grantid: 2017A610294
  funderid: http://dx.doi.org/10.13039/100007834
– fundername: National Natural Science Foundation of China
  grantid: 41671342; U1609203
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-9dce8164cf87a0a72323a2e010868ec503f047e8fd97dba673089c3c4e1840613
IEDL.DBID RIE
ISICitedReferencesCount 380
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472581700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-2397
IngestDate Tue Nov 18 22:16:38 EST 2025
Sat Nov 29 05:56:56 EST 2025
Wed Aug 27 05:51:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-9dce8164cf87a0a72323a2e010868ec503f047e8fd97dba673089c3c4e1840613
ORCID 0000-0003-3399-7858
0000-0001-8354-7500
PageCount 22
ParticipantIDs crossref_primary_10_1109_MGRS_2019_2911100
ieee_primary_8738051
crossref_citationtrail_10_1109_MGRS_2019_2911100
PublicationCentury 2000
PublicationDate 2019-June
2019-6-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-June
PublicationDecade 2010
PublicationTitle IEEE geoscience and remote sensing magazine
PublicationTitleAbbrev GRSM
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref56
ref59
ref58
miao (ref17) 2007; 73
ref53
ref52
ref55
ref54
kuo (ref125) 2014; 7
ref51
ref50
ref46
ref45
pal (ref28) 0
ref48
ref47
ref41
ref49
ref8
ref7
ref4
ref3
ref6
mojaradi (ref94) 2008; 37
ref5
ref100
ahmad (ref90) 2011; 3
ref101
wang (ref43) 2012; 9
ref40
su (ref27) 2008; 37
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref39
ref38
du (ref37) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
hook (ref9) 2014
kumar (ref103) 0
sun (ref120) 2015; 12
ref13
ref12
ref128
ref15
ref129
ref14
ref97
ref127
ref96
ref124
ref99
ref11
ref98
ref10
ref16
ref19
ref18
kamandar (ref42) 0
ref133
ref93
ref92
ref131
ref95
ref132
ref130
ref91
ref89
ref139
ref137
ref86
ref138
ref85
ref135
ref88
ref136
ref87
rodriguez (ref29) 2014; 344
ref82
ref81
ref142
ref143
ref83
ref140
ref141
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
sharma (ref126) 2016
ref2
lorenzo (ref134) 2018
ref1
sun (ref84) 2014; 7
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
wang (ref80) 2018; 273
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
du (ref44) 0
ref60
ref122
ref123
ref62
ref61
ref121
References_xml – ident: ref93
  doi: 10.1109/TGRS.2015.2480866
– ident: ref100
  doi: 10.1364/AO.51.002656
– ident: ref99
  doi: 10.1109/TGRS.2016.2585961
– ident: ref11
  doi: 10.1109/JPROC.2012.2197589
– ident: ref16
  doi: 10.1109/MSP.2013.2279894
– ident: ref69
  doi: 10.1109/TGRS.2007.905311
– ident: ref85
  doi: 10.1038/srep09915
– volume: 7
  start-page: 2697
  year: 2014
  ident: ref84
  article-title: A new band selection method for hyperspectral image based on data quality
  publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2014.2320299
– ident: ref40
  doi: 10.1088/2040-8978/13/1/015401
– ident: ref113
  doi: 10.1109/JSTARS.2015.2417156
– ident: ref62
  doi: 10.1109/ICALIP.2008.4590145
– ident: ref133
  doi: 10.1109/EUVIP.2018.8611643
– ident: ref32
  doi: 10.1109/LGRS.2006.878240
– ident: ref56
  doi: 10.1109/LGRS.2017.2658666
– volume: 7
  start-page: 317
  year: 2014
  ident: ref125
  article-title: A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification
  publication-title: IEEE J Select Topics Appl Earth Observ Remote Sens
  doi: 10.1109/JSTARS.2013.2262926
– ident: ref68
  doi: 10.1109/TGRS.2015.2461653
– ident: ref57
  doi: 10.1080/2150704X.2013.822119
– ident: ref119
  doi: 10.1109/TGRS.2016.2642479
– ident: ref114
  doi: 10.1109/IGARSS.2016.7729628
– ident: ref38
  doi: 10.1016/j.rse.2013.04.006
– ident: ref14
  doi: 10.14358/PERS.70.7.793
– ident: ref66
  doi: 10.1109/CISP.2009.5304614
– ident: ref118
  doi: 10.1109/IGARSS.2013.6723064
– ident: ref48
  doi: 10.1109/TGRS.2004.830549
– ident: ref13
  doi: 10.1016/j.isprsjprs.2015.08.001
– volume: 273
  start-page: 57
  year: 2018
  ident: ref80
  article-title: A band selection method for airborne hyperspectral image based on chaotic binary coded gravitational search algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.059
– ident: ref2
  doi: 10.1109/JSTARS.2013.2267204
– ident: ref89
  doi: 10.1109/JSTARS.2015.2509461
– start-page: 1
  year: 0
  ident: ref42
  article-title: Maximum relevance, minimum redundancy band selection for hyperspectral images
  publication-title: Proc 19th Iranian Conf Electrical Engineering (ICEE)
– ident: ref4
  doi: 10.1016/j.jag.2011.08.002
– ident: ref5
  doi: 10.1201/b11222
– ident: ref3
  doi: 10.1111/j.1472-4642.2011.00761.x
– ident: ref64
  doi: 10.1016/j.asoc.2012.11.042
– ident: ref130
  doi: 10.1109/LGRS.2008.915934
– ident: ref137
  doi: 10.1109/JSTARS.2015.2428276
– ident: ref61
  doi: 10.1117/12.685683
– ident: ref81
  doi: 10.1080/2150704X.2014.930196
– ident: ref105
  doi: 10.1109/ISSPA.2012.6310665
– ident: ref12
  doi: 10.1109/79.974718
– ident: ref41
  doi: 10.1080/01431161.2017.1302110
– ident: ref21
  doi: 10.1109/JSTARS.2012.2185822
– ident: ref20
  doi: 10.1109/TGRS.2007.904951
– ident: ref142
  doi: 10.1016/j.compag.2015.10.017
– ident: ref91
  doi: 10.1016/j.jvcir.2017.02.002
– ident: ref19
  doi: 10.1109/JSTARS.2011.2176721
– ident: ref10
  doi: 10.1007/978-3-662-05605-9
– ident: ref101
  doi: 10.1109/JSTARS.2014.2371931
– ident: ref92
  doi: 10.1109/EUSIPCO.2015.7362664
– volume: 344
  start-page: 1492
  year: 2014
  ident: ref29
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– ident: ref58
  doi: 10.1109/36.934069
– ident: ref63
  doi: 10.1109/LGRS.2015.2497085
– ident: ref51
  doi: 10.1080/01431161.2012.663111
– ident: ref141
  doi: 10.1080/15481603.2015.1075180
– ident: ref111
  doi: 10.1109/TGRS.2014.2326655
– ident: ref30
  doi: 10.1109/TGRS.2015.2450759
– volume: 37
  start-page: 447
  year: 2008
  ident: ref94
  article-title: A novel band selection method for hyperspectral data analysis
  publication-title: Int Arch Photogramm Remote Sens Spat Inf Sci
– ident: ref97
  doi: 10.1109/LGRS.2012.2233711
– ident: ref45
  doi: 10.1109/LGRS.2008.2000619
– ident: ref88
  doi: 10.1109/LGRS.2017.2681118
– ident: ref39
  doi: 10.1109/LGRS.2003.822879
– ident: ref139
  doi: 10.1109/TNNLS.2015.2477537
– start-page: 98801w
  year: 0
  ident: ref28
  article-title: Dimensionality reduction of hyperspectral data: Band selection using curve fitting
  publication-title: Proc SPIE Asia-Pacific Remote Sens Symp
– ident: ref73
  doi: 10.1109/TIP.2017.2676344
– ident: ref31
  doi: 10.1109/TGRS.2011.2158319
– ident: ref7
  doi: 10.1109/MSP.2013.2278992
– ident: ref140
  doi: 10.1016/j.knosys.2010.07.003
– start-page: 374
  year: 0
  ident: ref44
  article-title: Band selection and its impact on target detection and classification in hyperspectral image analysis
  publication-title: Proceedings of IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data
– start-page: 1
  year: 0
  ident: ref103
  article-title: Band selection for hyperspectral images based on self-tuning spectral clustering
  publication-title: Proc 21st European Signal Processing Conf (EUSIPCO)
– ident: ref72
  doi: 10.21307/ijssis-2017-948
– ident: ref35
  doi: 10.1109/TGRS.2016.2636850
– ident: ref96
  doi: 10.1049/iet-cvi.2009.0034
– ident: ref47
  doi: 10.1109/LGRS.2006.887142
– ident: ref36
  doi: 10.1109/TGRS.2007.901051
– ident: ref121
  doi: 10.1109/ICIP.2013.6738664
– year: 2018
  ident: ref134
  article-title: Band selection from hyperspectral images using attention-based convolutional neural networks
– ident: ref109
  doi: 10.1007/s12145-014-0201-3
– ident: ref70
  doi: 10.1109/TII.2012.2205397
– ident: ref52
  doi: 10.1109/TGRS.2013.2263510
– ident: ref60
  doi: 10.1109/LGRS.2005.848511
– ident: ref78
  doi: 10.1007/s00500-014-1508-1
– ident: ref132
  doi: 10.1109/LGRS.2017.2765339
– ident: ref128
  doi: 10.1109/LGRS.2008.915930
– ident: ref8
  doi: 10.1109/79.974724
– ident: ref143
  doi: 10.1109/5254.708428
– ident: ref117
  doi: 10.3390/rs8030238
– volume: 9
  start-page: 181
  year: 2012
  ident: ref43
  article-title: Spatial entropy based mutual information in hyperspectral band selection for supervised classification
  publication-title: Int J Numer Anal Model
– year: 2016
  ident: ref126
  publication-title: Hyperspectral CNN for Image classification & band selection with application to face recognition
– ident: ref136
  doi: 10.1109/SOPO.2010.5504325
– ident: ref115
  doi: 10.1109/JSTARS.2017.2737400
– ident: ref24
  doi: 10.1117/1.OE.56.5.053101
– ident: ref79
  doi: 10.1016/j.asoc.2015.09.045
– ident: ref107
  doi: 10.1109/LGRS.2012.2236819
– ident: ref15
  doi: 10.1109/36.298007
– ident: ref104
  doi: 10.1109/TIP.2016.2617462
– ident: ref65
  doi: 10.1117/1.JRS.8.085094
– ident: ref86
  doi: 10.1080/01431161.2013.871392
– ident: ref74
  doi: 10.1109/TGRS.2013.2279591
– volume: 73
  start-page: 1005
  year: 2007
  ident: ref17
  article-title: Detection of yellow star thistle through band selection and feature extraction from hyperspectral imagery
  publication-title: Photogramm Eng Remote Sens
– ident: ref135
  doi: 10.1007/978-3-030-03341-5_33
– ident: ref102
  doi: 10.1016/j.engappai.2013.07.010
– ident: ref95
  doi: 10.1109/LGRS.2011.2158185
– ident: ref34
  doi: 10.1080/01431160701802471
– ident: ref110
  doi: 10.1109/ICIP.2011.6116223
– ident: ref87
  doi: 10.1109/LGRS.2010.2091673
– ident: ref33
  doi: 10.1109/LGRS.2005.844658
– ident: ref55
  doi: 10.1109/TGRS.2017.2681278
– ident: ref53
  doi: 10.1109/TGRS.2015.2424236
– ident: ref138
  doi: 10.1117/1.JRS.8.084798
– ident: ref46
  doi: 10.1109/JSTSP.2015.2405902
– ident: ref131
  doi: 10.1080/2150704X.2014.993482
– ident: ref83
  doi: 10.1080/01431161.2014.968686
– ident: ref22
  doi: 10.1109/TGRS.2013.2257604
– ident: ref67
  doi: 10.1016/j.patcog.2015.08.018
– ident: ref71
  doi: 10.1109/JSTARS.2014.2312539
– ident: ref49
  doi: 10.1109/LGRS.2010.2053516
– ident: ref23
  doi: 10.1109/36.803411
– ident: ref54
  doi: 10.1364/AO.55.000462
– ident: ref116
  doi: 10.1109/JSTARS.2016.2539981
– ident: ref127
  doi: 10.1007/BF00048682
– ident: ref108
  doi: 10.1631/jzus.C1000304
– ident: ref26
  doi: 10.1109/IGARSS.2016.7730606
– ident: ref59
  doi: 10.1109/TGRS.2006.886177
– ident: ref106
  doi: 10.1109/TGRS.2015.2453362
– volume: 37
  start-page: 279
  year: 2008
  ident: ref27
  article-title: A new band selection algorithm for hyperspectral data based on fractal dimension
  publication-title: Int Arch Photogramm Remote Sens Spat Inf Sci
– year: 2014
  ident: ref9
  publication-title: NASA 2014 The hyperspectral infrared imager (HyspIRI)-science impact of deploying instruments on separate platforms
– start-page: 93
  year: 0
  ident: ref37
  article-title: Band selection using independent component analysis for hyperspectral image processing
  publication-title: Proc Applied Imagery Pattern Recognition Workshop
– volume: 3
  start-page: 606
  year: 2011
  ident: ref90
  article-title: A new statistical approach for band clustering and band selection using K-means clustering
  publication-title: IACSIT Int J Eng Technol
– ident: ref112
  doi: 10.1109/IGARSS.2012.6350781
– ident: ref98
  doi: 10.3390/rs9080782
– ident: ref77
  doi: 10.1109/TGRS.2014.2367010
– ident: ref50
  doi: 10.1109/JSTARS.2015.2441771
– volume: 12
  start-page: 329
  year: 2015
  ident: ref120
  article-title: A new sparsity-based band selection method for target detection of hyperspectral image
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2014.2337957
– ident: ref124
  doi: 10.1080/01431160802609718
– ident: ref122
  doi: 10.1109/JSTARS.2015.2443047
– ident: ref129
  doi: 10.1109/LGRS.2014.2301864
– ident: ref76
  doi: 10.1109/TGRS.2013.2258351
– ident: ref18
  doi: 10.1016/j.isprsjprs.2013.12.003
– ident: ref123
  doi: 10.1109/LGRS.2007.905116
– ident: ref82
  doi: 10.1109/TGRS.2014.2307880
– ident: ref6
  doi: 10.1109/MSP.2013.2279179
– ident: ref75
  doi: 10.1109/TGRS.2014.2367022
– ident: ref25
  doi: 10.1109/TGRS.2006.864389
– ident: ref1
  doi: 10.1016/j.rse.2007.12.014
SSID ssj0000851918
Score 2.5903106
SecondaryResourceType review_article
Snippet A hyperspectral imaging sensor collects detailed spectral responses from ground objects using hundreds of narrow bands; this technology is used in many...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 118
SubjectTerms Classification algorithms
Clustering algorithms
Feature extraction
Hyperspectral imaging
Principal component analysis
Title Hyperspectral Band Selection: A Review
URI https://ieeexplore.ieee.org/document/8738051
Volume 7
WOSCitedRecordID wos000472581700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-6831
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000851918
  issn: 2473-2397
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qUfTiR6tYv9iDeBDTprvbJvFWxbYHLWIVeluyyQQF2Upthf57k-y69CCCt2XJwPJmw8ybzOQBnKcqVCakmqioS0mc0pgIg0i4YdJmSTaASu_pezYa8clEPFbgqpyFQUTffIZN9-jP8vVULVyprMVZxKmbl15jjOWzWmU9xaUOwpfzwphFJLRxtjjEbFPRehg8jV0fl2iGbne7ebaVMLSiq-LDSn_nfx-0C9tF-hj0cn_vQQWzGmwWSuavyxpsDLxU77IOF0NLMfNJypk1uZGZDsZe9ca64jroBfmxwD689O-eb4ekUEUgKux25kRohdySHGU4k1QymxJFMkTqJJM4qg6NDI0ZcqMF06ns2i3MhYpUjI7M2eh9ANVsmuEhBDZZM-3Ucmud6lhGKU85UqUshdGWurK4AfQHpEQVV4Y75Yr3xFMHKhKHa-JwTQpcG3BZmnzk92X8tbjuMC0XFnAe_f76GLaccd6ndQLV-WyBp7CuvuZvn7Mz_zd8A9MOrwI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1KVerFj1axfu5BPIhp02zaJN6q2FZsi9gKvS3ZJIuCbKW2Qv-9SXYtHkTwtizJsrxJmHmTmTyA81gRlRCskQpbGNEYUyQSYxBPmLRRknWg0lu6z4ZDPpmIxwJcrXphjDG--MzU3KM_y9dTtXCpsjpnIceuX3qtSSlpZN1aq4yKCx6ET-gRykJErKfNjzEbWNQH3aeRq-QSNeL2t-to--GIfiireMfS2f7fL-3AVh5ABu3M4rtQMGkZSrmW-cuyDBtdL9a7rMBFz5LMrJdyZqfcyFQHI697Y41xHbSD7GBgD547d-PbHsp1EZAireYcCa0MtzRHJZxJLJkNikJJDHaiSdyoJg4TTJnhiRZMx7JlNzEXKlTUODpn_fc-FNNpag4gsOFa0ogtu9axpjKMecwNVsqSGG3JK6NVwN8gRSq_NNxpV7xFnjxgETlcI4drlONahcvVlPfsxoy_BlccpquBOZyHv78-g1JvPOhH_fvhwxFsug9lVVvHUJzPFuYE1tXn_PVjdupXxhchgLJJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+Band+Selection%3A+A+Review&rft.jtitle=IEEE+geoscience+and+remote+sensing+magazine&rft.au=Sun%2C+Weiwei&rft.au=Du%2C+Qian&rft.date=2019-06-01&rft.pub=IEEE&rft.issn=2473-2397&rft.volume=7&rft.issue=2&rft.spage=118&rft.epage=139&rft_id=info:doi/10.1109%2FMGRS.2019.2911100&rft.externalDocID=8738051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2397&client=summon