Hyperspectral Band Selection: A Review

A hyperspectral imaging sensor collects detailed spectral responses from ground objects using hundreds of narrow bands; this technology is used in many real-world applications. Band selection aims to select a small subset of hyperspectral bands to remove spectral redundancy and reduce computational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing magazine Jg. 7; H. 2; S. 118 - 139
Hauptverfasser: Sun, Weiwei, Du, Qian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.06.2019
Schlagworte:
ISSN:2473-2397, 2168-6831
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hyperspectral imaging sensor collects detailed spectral responses from ground objects using hundreds of narrow bands; this technology is used in many real-world applications. Band selection aims to select a small subset of hyperspectral bands to remove spectral redundancy and reduce computational costs while preserving the significant spectral information of ground objects. In this article, we review current hyperspectral band selection methods, which can be classified into six main categories: ranking based, searching based, clustering based, sparsity based, embedding-learning based, and hybrid-scheme based. With two widely used hyperspectral data sets, we illustrate the classification performances of several popular band selection methods. The challenges and research directions of hyperspectral band selection are also discussed.
ISSN:2473-2397
2168-6831
DOI:10.1109/MGRS.2019.2911100