Combination of Video Change Detection Algorithms by Genetic Programming

Within the field of computer vision, change detection algorithms aim at automatically detecting significant changes occurring in a scene by analyzing the sequence of frames in a video stream. In this paper we investigate how state-of-the-art change detection algorithms can be combined and used to cr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 21; číslo 6; s. 914 - 928
Hlavní autori: Bianco, Simone, Ciocca, Gianluigi, Schettini, Raimondo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2017
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Within the field of computer vision, change detection algorithms aim at automatically detecting significant changes occurring in a scene by analyzing the sequence of frames in a video stream. In this paper we investigate how state-of-the-art change detection algorithms can be combined and used to create a more robust algorithm leveraging their individual peculiarities. We exploited genetic programming (GP) to automatically select the best algorithms, combine them in different ways, and perform the most suitable post-processing operations on the outputs of the algorithms. In particular, algorithms' combination and post-processing operations are achieved with unary, binary and n-ary functions embedded into the GP framework. Using different experimental settings for combining existing algorithms we obtained different GP solutions that we termed In Unity There Is Strength. These solutions are then compared against state-of-the-art change detection algorithms on the video sequences and ground truth annotations of the ChangeDetection.net 2014 challenge. Results demonstrate that using GP, our solutions are able to outperform all the considered single state-of-the-art change detection algorithms, as well as other combination strategies. The performance of our algorithm are significantly different from those of the other state-of-the-art algorithms. This fact is supported by the statistical significance analysis conducted with the Friedman test and Wilcoxon rank sum post-hoc tests.
AbstractList Within the field of computer vision, change detection algorithms aim at automatically detecting significant changes occurring in a scene by analyzing the sequence of frames in a video stream. In this paper we investigate how state-of-the-art change detection algorithms can be combined and used to create a more robust algorithm leveraging their individual peculiarities. We exploited genetic programming (GP) to automatically select the best algorithms, combine them in different ways, and perform the most suitable post-processing operations on the outputs of the algorithms. In particular, algorithms' combination and post-processing operations are achieved with unary, binary and n-ary functions embedded into the GP framework. Using different experimental settings for combining existing algorithms we obtained different GP solutions that we termed In Unity There Is Strength. These solutions are then compared against state-of-the-art change detection algorithms on the video sequences and ground truth annotations of the ChangeDetection.net 2014 challenge. Results demonstrate that using GP, our solutions are able to outperform all the considered single state-of-the-art change detection algorithms, as well as other combination strategies. The performance of our algorithm are significantly different from those of the other state-of-the-art algorithms. This fact is supported by the statistical significance analysis conducted with the Friedman test and Wilcoxon rank sum post-hoc tests.
Author Bianco, Simone
Schettini, Raimondo
Ciocca, Gianluigi
Author_xml – sequence: 1
  givenname: Simone
  surname: Bianco
  fullname: Bianco, Simone
  email: bianco@disco.unimib.it
  organization: Dept. of Informatic Syst. & Commun., Univ. of Milano-Bicocca, Milan, Italy
– sequence: 2
  givenname: Gianluigi
  surname: Ciocca
  fullname: Ciocca, Gianluigi
  email: ciocca@disco.unimib.it
  organization: Dept. of Informatic Syst. & Commun., Univ. of Milano-Bicocca, Milan, Italy
– sequence: 3
  givenname: Raimondo
  surname: Schettini
  fullname: Schettini, Raimondo
  email: schettini@disco.unimib.it
  organization: Dept. of Informatic Syst. & Commun., Univ. of Milano-Bicocca, Milan, Italy
BookMark eNp9kM9OwzAMhyM0JLbBAyAufYEOJ02a5DiVsSFNgsOYuFVpcLqgtUFpL3t7uj_iwIGTf7L12fI3IaM2tEjIPYUZpaAfN4ttMWNA5YzlmtMcrsiYDiEFYPloyKB0KqX6uCGTrvsCoFxQPSbLIjSVb03vQ5sEl2z9J4ak2Jm2xuQJe7SnyXxfh-j7XdMl1SFZYou9t8lbDHU0TePb-pZcO7Pv8O5Sp-T9ebEpVun6dflSzNepZbnoU22sYxUDo6VjwglZVQKGXkY5EzZjVoEFgEwg04rn3DoHunI8QyWAC8ymhJ732hi6LqIrv6NvTDyUFMqjifJoojyaKC8mBkb-YazvTx_30fj9v-TDmfSI-HtJKq0U49kPeT9toA
CODEN ITEVF5
CitedBy_id crossref_primary_10_1111_coin_12459
crossref_primary_10_1007_s10710_023_09464_0
crossref_primary_10_1007_s11760_021_01920_7
crossref_primary_10_1109_ACCESS_2019_2919802
crossref_primary_10_1109_TCYB_2020_2964566
crossref_primary_10_1109_TIE_2020_3013747
crossref_primary_10_1007_s00371_021_02286_0
crossref_primary_10_3390_mca30020025
crossref_primary_10_1109_TCSVT_2018_2851440
crossref_primary_10_1016_j_engappai_2020_103819
crossref_primary_10_1109_ACCESS_2019_2950162
crossref_primary_10_1109_TETCI_2024_3367809
crossref_primary_10_1109_JSEN_2020_3010563
crossref_primary_10_1007_s13369_021_06306_y
crossref_primary_10_1007_s10489_018_1346_4
crossref_primary_10_1016_j_cviu_2022_103501
crossref_primary_10_1016_j_inffus_2019_12_007
crossref_primary_10_1109_ACCESS_2019_2925913
crossref_primary_10_1109_TCSVT_2021_3055539
crossref_primary_10_3390_s19235142
crossref_primary_10_1109_TITS_2025_3559144
crossref_primary_10_1016_j_cviu_2022_103584
crossref_primary_10_1109_ACCESS_2019_2937402
crossref_primary_10_1080_09540091_2020_1807465
crossref_primary_10_1109_TITS_2023_3257484
crossref_primary_10_1109_ACCESS_2022_3199753
crossref_primary_10_1109_TITS_2018_2880096
crossref_primary_10_1016_j_aej_2025_05_082
crossref_primary_10_1109_TGRS_2022_3224293
crossref_primary_10_1109_ACCESS_2025_3578943
crossref_primary_10_1109_ACCESS_2019_2927255
crossref_primary_10_1016_j_imavis_2024_105021
crossref_primary_10_1109_TITS_2019_2940547
crossref_primary_10_1109_TIP_2020_3037472
crossref_primary_10_1109_TCI_2022_3203889
crossref_primary_10_1007_s11042_024_18843_3
crossref_primary_10_1007_s00371_020_01890_w
crossref_primary_10_1016_j_patcog_2021_108350
crossref_primary_10_3390_jimaging4070090
crossref_primary_10_1109_JSEN_2021_3054940
crossref_primary_10_1007_s00371_022_02417_1
crossref_primary_10_1016_j_neucom_2022_06_104
crossref_primary_10_1007_s13735_023_00270_z
crossref_primary_10_1109_TMM_2021_3058770
crossref_primary_10_2118_223099_PA
crossref_primary_10_1007_s10710_019_09345_5
crossref_primary_10_1007_s11042_018_6972_7
crossref_primary_10_1109_TGRS_2022_3167745
crossref_primary_10_2118_224399_PA
crossref_primary_10_1007_s12652_021_03662_3
crossref_primary_10_1016_j_imavis_2021_104248
crossref_primary_10_3390_s19132965
crossref_primary_10_1016_j_ins_2021_01_044
crossref_primary_10_3390_rs13050870
crossref_primary_10_1109_ACCESS_2022_3211987
crossref_primary_10_1109_LSP_2019_2952253
crossref_primary_10_1007_s42452_025_07433_z
crossref_primary_10_1016_j_eswa_2022_117947
crossref_primary_10_1109_TIFS_2024_3447237
crossref_primary_10_1007_s12555_018_0234_3
crossref_primary_10_1016_j_procs_2018_08_228
crossref_primary_10_1049_ipr2_12135
crossref_primary_10_3390_jimaging4100122
crossref_primary_10_1016_j_eswa_2018_11_013
crossref_primary_10_1109_JSTARS_2025_3588154
crossref_primary_10_1007_s10851_020_00967_4
crossref_primary_10_1007_s11042_021_11640_2
crossref_primary_10_1109_TII_2020_3017078
crossref_primary_10_1007_s11760_023_02645_5
crossref_primary_10_1016_j_dsp_2021_102988
crossref_primary_10_1109_TEVC_2022_3220747
crossref_primary_10_1016_j_engappai_2024_108873
crossref_primary_10_3390_jimaging6060050
crossref_primary_10_1109_TITS_2020_3030801
crossref_primary_10_1007_s11042_020_08935_1
crossref_primary_10_1109_JSEN_2021_3121582
crossref_primary_10_1049_iet_ipr_2017_1055
crossref_primary_10_1007_s00530_022_01014_5
crossref_primary_10_1109_TAI_2023_3299903
crossref_primary_10_1109_TITS_2021_3077883
crossref_primary_10_1016_j_engappai_2019_06_017
crossref_primary_10_1016_j_cviu_2020_103032
crossref_primary_10_1007_s11554_020_01058_8
crossref_primary_10_1109_TPAMI_2020_3042093
crossref_primary_10_1109_TVT_2020_3043575
crossref_primary_10_3390_sym16121620
crossref_primary_10_1007_s11554_021_01184_x
crossref_primary_10_1109_TIP_2020_3031173
crossref_primary_10_1109_ACCESS_2024_3381612
crossref_primary_10_1109_TGRS_2021_3071347
crossref_primary_10_1007_s11633_022_1378_4
crossref_primary_10_1109_ACCESS_2021_3123975
crossref_primary_10_32604_cmc_2022_021719
crossref_primary_10_1109_TCSVT_2020_3042559
crossref_primary_10_1109_MSMC_2019_2913168
crossref_primary_10_1155_2022_7432615
crossref_primary_10_1109_ACCESS_2023_3345842
crossref_primary_10_1016_j_patcog_2025_111792
crossref_primary_10_1109_TITS_2019_2900426
Cites_doi 10.1109/ISCC.2008.4625766
10.1109/4235.910462
10.1109/TIP.2014.2346013
10.1016/j.patcog.2008.09.002
10.1162/evco.1993.1.1.1
10.1109/34.868684
10.1109/TNN.2007.896861
10.1007/BF01215814
10.1162/EVCO_a_00025
10.1007/3-540-45786-0_37
10.1109/CVPRW.2014.126
10.1109/AVSS.2008.19
10.1016/j.patcog.2003.11.010
10.1016/j.inffus.2004.04.008
10.1155/2010/343057
10.1109/CVPRW.2012.6238922
10.1117/12.526886
10.1016/j.inffus.2010.06.010
10.1109/TIP.2010.2044965
10.1109/AVSS.2013.6636617
10.1109/CVPRW.2014.66
10.1145/2463372.2463507
10.1007/s10710-014-9236-y
10.1007/3-540-61723-X_1004
10.1109/AVSS.2005.1577343
10.1007/s00521-009-0285-8
10.1007/978-3-319-03680-9_13
10.1109/TEVC.2004.825567
10.1109/CEC.2009.4983255
10.1109/TIP.2004.836169
10.1109/4235.752917
10.1007/978-3-319-25903-1_12
10.1016/j.cviu.2013.12.005
10.1109/TIP.2014.2378053
10.1109/CVPRW.2014.67
10.1109/ICIP.2014.7025661
10.1109/TEVC.2017.2657556
10.1017/CBO9780511921803
10.1016/j.neucom.2015.04.118
10.1016/j.patrec.2005.11.005
10.1002/0471660264
10.1109/TMI.2004.828354
10.1109/TIP.2008.920761
10.1109/CEC.2011.5949659
10.1201/b17223-30
10.3141/1944-11
10.1109/TSMC.2013.2280121
10.2307/3001968
10.1109/TEVC.2016.2515660
10.1109/ICCV.1999.791228
10.1162/EVCO_a_00115
10.1162/evco.2008.16.4.483
10.1109/RIVF.2010.5634007
10.2174/1874479610801010032
10.1109/TEVC.2006.887351
10.1109/TEVC.2010.2041061
10.1007/978-3-642-10439-8_17
10.1117/1.2779022
10.1109/TEVC.2015.2504420
10.1162/EVCO_a_00146
10.1109/TIP.2004.838698
10.1109/CVPRW.2014.65
10.1109/TPAMI.2003.1233909
10.1109/TPAMI.2011.243
10.1109/CVPR.1999.784637
10.1109/TIP.2008.916989
10.1007/978-3-319-14231-9_3
10.1016/j.knosys.2014.07.021
10.1109/34.868688
10.1109/TMI.2004.830803
10.1109/TIP.2010.2101613
10.1109/TCYB.2015.2399172
10.1109/34.598236
10.1109/ICPR.2004.1333992
10.1109/WACV.2015.137
10.1109/AVSS.2007.4425366
10.1016/j.dss.2006.12.011
10.1109/TPAMI.2005.213
10.1162/evco.2008.16.4.461
10.1109/ICSMC.2004.1400815
10.1109/CVPR.2005.384
10.1109/CVPRW.2012.6238920
10.1109/ICIP.2015.7351664
10.1109/CVPRW.2014.64
10.3233/ICA-130429
10.1145/1569901.1570052
10.1109/34.667881
10.1109/4235.735432
10.1007/978-3-540-24653-4_38
10.1109/PCSPA.2010.79
10.1007/3-540-45053-X_48
10.1016/j.eswa.2012.02.123
10.1109/TIP.2010.2087764
10.1109/CVPRW.2012.6238919
10.1007/s11554-012-0310-5
10.1016/j.trit.2016.03.005
10.1109/TSP.2009.2014810
10.1109/TEVC.2017.2685639
10.1007/978-3-642-33786-4_10
10.1109/IWSSIP.2015.7314229
10.1016/S0167-8655(01)00128-3
10.1109/JPROC.2002.801448
10.1007/978-3-642-22170-5_57
10.1109/CVPRW.2014.68
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2017.2694160
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 928
ExternalDocumentID 10_1109_TEVC_2017_2694160
7898824
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-9acf2b20a97f25f57bb50acf31425c32c80c00035e298464cff09bf43e85045e3
IEDL.DBID RIE
ISICitedReferencesCount 139
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417647500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 21:27:20 EST 2025
Tue Aug 26 16:43:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-9acf2b20a97f25f57bb50acf31425c32c80c00035e298464cff09bf43e85045e3
ORCID 0000-0002-7070-1545
PageCount 15
ParticipantIDs ieee_primary_7898824
crossref_primary_10_1109_TEVC_2017_2694160
crossref_citationtrail_10_1109_TEVC_2017_2694160
PublicationCentury 2000
PublicationDate 2017-Dec.
2017-12-00
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref56
ref59
ref58
ref53
ref55
ref54
benezeth (ref21) 2010; 19
al-sahaf (ref95) 2017; 21
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
bouwmans (ref20) 2011; 4
ref43
chen (ref112) 2015
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ross (ref12) 2002
ref5
ref100
liang (ref119) 2014
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref32
ref39
ref38
koza (ref16) 1992; 1
paulinas (ref77) 2007; 36
ref24
ref23
ref22
allili (ref33) 2008; 17
ruta (ref61) 2000; 7
pedrino (ref84) 2013; 20
ref28
ref27
ref29
demšar (ref103) 2006; 7
ref13
ref15
ref14
ref97
ref96
ref99
ref11
ref98
ref10
ref17
ref19
ref18
elgammal (ref101) 2000
ref93
ref92
ref94
ref91
han (ref52) 2012; 34
ref90
karman (ref25) 1990; 2
ref89
ref86
ref85
poli (ref83) 1997
ref88
ref87
allebosch (ref113) 2015
ridder (ref26) 1995
ref82
ref81
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref76
ref2
ref1
ref71
ref111
ref70
ref73
ref110
ref68
davis (ref102) 1989
ref67
ref117
ref69
ref118
ref64
ref115
ref116
ref66
ref65
ref114
ref60
fister (ref72) 2013
ref62
ref120
ref121
wang (ref63) 2011
References_xml – ident: ref65
  doi: 10.1109/ISCC.2008.4625766
– ident: ref106
  doi: 10.1109/4235.910462
– ident: ref4
  doi: 10.1109/TIP.2014.2346013
– ident: ref49
  doi: 10.1016/j.patcog.2008.09.002
– start-page: 942
  year: 2002
  ident: ref12
  article-title: Hyper-heuristics: Learning to combine simple heuristics in bin-packing problems
  publication-title: Proc GECCO
– ident: ref73
  doi: 10.1162/evco.1993.1.1.1
– ident: ref47
  doi: 10.1109/34.868684
– ident: ref53
  doi: 10.1109/TNN.2007.896861
– ident: ref22
  doi: 10.1007/BF01215814
– start-page: 269
  year: 1997
  ident: ref83
  article-title: Genetic programming with user-driven selection: Experiments on the evolution of algorithms for image enhancement
  publication-title: Proc Gen Program
– ident: ref110
  doi: 10.1162/EVCO_a_00025
– ident: ref66
  doi: 10.1007/3-540-45786-0_37
– ident: ref7
  doi: 10.1109/CVPRW.2014.126
– volume: 2
  start-page: 297
  year: 1990
  ident: ref25
  article-title: Moving object recognition using an adaptive background memory
  publication-title: Time-Varying Image Processing and Moving Object Recognition
– ident: ref6
  doi: 10.1109/AVSS.2008.19
– start-page: 230
  year: 2011
  ident: ref63
  article-title: Multiple binary classifiers fusion using induced intuitionistic fuzzy ordered weighted average operator
  publication-title: Proc IEEE Int Conf Inf Autom (ICIA)
– ident: ref48
  doi: 10.1016/j.patcog.2003.11.010
– ident: ref62
  doi: 10.1016/j.inffus.2004.04.008
– year: 2013
  ident: ref72
  article-title: A brief review of nature-inspired algorithms for optimization
  publication-title: arXiv preprint arXiv 1307 4186
– start-page: 1
  year: 2015
  ident: ref112
  article-title: Learning sharable models for robust background subtraction
  publication-title: Proc IEEE Int Conf Multimedia Expo (ICME)
– ident: ref19
  doi: 10.1155/2010/343057
– ident: ref54
  doi: 10.1109/CVPRW.2012.6238922
– ident: ref27
  doi: 10.1117/12.526886
– ident: ref64
  doi: 10.1016/j.inffus.2010.06.010
– ident: ref69
  doi: 10.1109/TIP.2010.2044965
– ident: ref100
  doi: 10.1109/AVSS.2013.6636617
– ident: ref56
  doi: 10.1109/CVPRW.2014.66
– ident: ref94
  doi: 10.1145/2463372.2463507
– ident: ref74
  doi: 10.1007/s10710-014-9236-y
– ident: ref108
  doi: 10.1007/3-540-61723-X_1004
– ident: ref1
  doi: 10.1109/AVSS.2005.1577343
– volume: 7
  start-page: 1
  year: 2006
  ident: ref103
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J Mach Learn Res
– ident: ref118
  doi: 10.1007/s00521-009-0285-8
– volume: 1
  year: 1992
  ident: ref16
  publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection
– ident: ref89
  doi: 10.1007/978-3-319-03680-9_13
– ident: ref87
  doi: 10.1109/TEVC.2004.825567
– ident: ref93
  doi: 10.1109/CEC.2009.4983255
– ident: ref36
  doi: 10.1109/TIP.2004.836169
– ident: ref76
  doi: 10.1109/4235.752917
– ident: ref115
  doi: 10.1007/978-3-319-25903-1_12
– ident: ref3
  doi: 10.1016/j.cviu.2013.12.005
– ident: ref45
  doi: 10.1109/TIP.2014.2378053
– ident: ref44
  doi: 10.1109/CVPRW.2014.67
– ident: ref121
  doi: 10.1109/ICIP.2014.7025661
– ident: ref96
  doi: 10.1109/TEVC.2017.2657556
– ident: ref104
  doi: 10.1017/CBO9780511921803
– ident: ref116
  doi: 10.1016/j.neucom.2015.04.118
– ident: ref40
  doi: 10.1016/j.patrec.2005.11.005
– ident: ref60
  doi: 10.1002/0471660264
– volume: 4
  start-page: 147
  year: 2011
  ident: ref20
  article-title: Recent advanced statistical background modeling for foreground detection-A systematic survey
  publication-title: Recent Patents Comput Sci
– ident: ref67
  doi: 10.1109/TMI.2004.828354
– ident: ref70
  doi: 10.1109/TIP.2008.920761
– ident: ref98
  doi: 10.1109/CEC.2011.5949659
– ident: ref58
  doi: 10.1201/b17223-30
– ident: ref29
  doi: 10.3141/1944-11
– ident: ref55
  doi: 10.1109/TSMC.2013.2280121
– ident: ref105
  doi: 10.2307/3001968
– ident: ref15
  doi: 10.1109/TEVC.2016.2515660
– ident: ref28
  doi: 10.1109/ICCV.1999.791228
– ident: ref81
  doi: 10.1162/EVCO_a_00115
– ident: ref92
  doi: 10.1162/evco.2008.16.4.483
– ident: ref9
  doi: 10.1109/RIVF.2010.5634007
– ident: ref18
  doi: 10.2174/1874479610801010032
– ident: ref91
  doi: 10.1109/TEVC.2006.887351
– volume: 19
  year: 2010
  ident: ref21
  article-title: Comparative study of background subtraction algorithms
  publication-title: J Electron Imag
– ident: ref13
  doi: 10.1109/TEVC.2010.2041061
– ident: ref97
  doi: 10.1007/978-3-642-10439-8_17
– ident: ref32
  doi: 10.1117/1.2779022
– ident: ref75
  doi: 10.1109/TEVC.2015.2504420
– ident: ref90
  doi: 10.1162/EVCO_a_00146
– ident: ref17
  doi: 10.1109/TIP.2004.838698
– ident: ref57
  doi: 10.1109/CVPRW.2014.65
– ident: ref23
  doi: 10.1109/TPAMI.2003.1233909
– volume: 34
  start-page: 1017
  year: 2012
  ident: ref52
  article-title: Density-based multifeature background subtraction with support vector machine
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.243
– ident: ref31
  doi: 10.1109/CVPR.1999.784637
– ident: ref37
  doi: 10.1109/TIP.2008.916989
– ident: ref14
  doi: 10.1007/978-3-319-14231-9_3
– ident: ref71
  doi: 10.1016/j.knosys.2014.07.021
– ident: ref82
  doi: 10.1109/34.868688
– ident: ref68
  doi: 10.1109/TMI.2004.830803
– volume: 7
  start-page: 1
  year: 2000
  ident: ref61
  article-title: An overview of classifier fusion methods
  publication-title: Comput Inf Syst
– ident: ref43
  doi: 10.1109/TIP.2010.2101613
– ident: ref99
  doi: 10.1109/TCYB.2015.2399172
– ident: ref30
  doi: 10.1109/34.598236
– ident: ref120
  doi: 10.1109/ICPR.2004.1333992
– ident: ref111
  doi: 10.1109/WACV.2015.137
– ident: ref41
  doi: 10.1109/AVSS.2007.4425366
– start-page: 193
  year: 1995
  ident: ref26
  article-title: Adaptive background estimation and foreground detection using Kalman-filtering
  publication-title: Proc Int Conf Recent Advances Mechatronics
– ident: ref107
  doi: 10.1016/j.dss.2006.12.011
– ident: ref34
  doi: 10.1109/TPAMI.2005.213
– ident: ref79
  doi: 10.1162/evco.2008.16.4.461
– ident: ref2
  doi: 10.1109/ICSMC.2004.1400815
– start-page: 61
  year: 1989
  ident: ref102
  article-title: Adapting operator probabilities in genetic algorithms
  publication-title: Proc 7th Int Conf Genetic Algorithms
– start-page: 433
  year: 2015
  ident: ref113
  article-title: C-EFIC: Color and edge based foreground background segmentation with interior classification
  publication-title: Proc Int Joint Conf Comput Vis Imag Comput Graphics
– ident: ref35
  doi: 10.1109/CVPR.2005.384
– ident: ref42
  doi: 10.1109/CVPRW.2012.6238920
– volume: 36
  start-page: 278
  year: 2007
  ident: ref77
  article-title: A survey of genetic algorithms applications for image enhancement and segmentation
  publication-title: Inf Technol Control
– ident: ref114
  doi: 10.1109/ICIP.2015.7351664
– ident: ref46
  doi: 10.1109/CVPRW.2014.64
– volume: 20
  start-page: 275
  year: 2013
  ident: ref84
  article-title: A genetic programming based system for the automatic construction of image filters
  publication-title: Integr Comput -Aided Eng
  doi: 10.3233/ICA-130429
– ident: ref80
  doi: 10.1145/1569901.1570052
– ident: ref59
  doi: 10.1109/34.667881
– volume: 17
  year: 2008
  ident: ref33
  article-title: Finite general Gaussian mixture modeling and application to image and video foreground segmentation
  publication-title: J Electron Imag
– ident: ref109
  doi: 10.1109/4235.735432
– ident: ref86
  doi: 10.1007/978-3-540-24653-4_38
– ident: ref24
  doi: 10.1109/PCSPA.2010.79
– start-page: 751
  year: 2000
  ident: ref101
  article-title: Non-parametric model for background subtraction
  publication-title: Computer Vision ECCV 2000
  doi: 10.1007/3-540-45053-X_48
– ident: ref88
  doi: 10.1016/j.eswa.2012.02.123
– ident: ref10
  doi: 10.1109/TIP.2010.2087764
– ident: ref8
  doi: 10.1109/CVPRW.2012.6238919
– ident: ref11
  doi: 10.1007/s11554-012-0310-5
– ident: ref5
  doi: 10.1016/j.trit.2016.03.005
– ident: ref51
  doi: 10.1109/TSP.2009.2014810
– volume: 21
  start-page: 83
  year: 2017
  ident: ref95
  article-title: Automatically evolving rotation-invariant texture image descriptors by genetic programming
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2017.2685639
– ident: ref50
  doi: 10.1007/978-3-642-33786-4_10
– ident: ref117
  doi: 10.1109/IWSSIP.2015.7314229
– ident: ref85
  doi: 10.1016/S0167-8655(01)00128-3
– year: 2014
  ident: ref119
  article-title: Improvements and experiments of a compact statistical background model
  publication-title: arXiv preprint arXiv 1405 6275
– ident: ref39
  doi: 10.1109/JPROC.2002.801448
– ident: ref78
  doi: 10.1007/978-3-642-22170-5_57
– ident: ref38
  doi: 10.1109/CVPRW.2014.68
SSID ssj0014519
Score 2.5731463
Snippet Within the field of computer vision, change detection algorithms aim at automatically detecting significant changes occurring in a scene by analyzing the...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 914
SubjectTerms Algorithm combining and selection
Algorithm design and analysis
change detection
Change detection algorithms
ChangeDetection.net (CDNET)
Detection algorithms
Evolutionary computation
Genetic programming
genetic programming (GP)
Robustness
Streaming media
Title Combination of Video Change Detection Algorithms by Genetic Programming
URI https://ieeexplore.ieee.org/document/7898824
Volume 21
WOSCitedRecordID wos000417647500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4B4kEPoqARf6UHT8ZBWVe6HgmKnggHJNyWtWuVBDYDw8T_3rYbyMGYeFua1255r03f2_ve9wDuwpiyhCSxxxmnXtCTwuNYxJ7ZHQrbhoWMatdsgo1G4WzGxxV42NXCKKUc-Ey17aPL5SeZ3NhfZR0WcuMQBlWoMsaKWq1dxsDSpBRgem48xnBWZjC7mHcmT9OBBXGxtivbdGyUP3fQXlMVd6cM6__7mhM4Ln1H1C-MfQoVlTagvu3LgMpj2oCjPZLBJjwbARP-OgugTKPpPFEZKqoK0KPKHRYrRf3FW7aa5-_LNRJfyLJRm7egcQHfWpqVzuB1-DQZvHhl-wRP-j2aezyW2hc-jjnTPtWUCUGxGSNdc04l8WWIpcskKp8bLySQWmMudEBUSI2jp8g51NIsVReAVECSHnG-kAnngq4IGA-J9LXixqQJbQHeKjSSJbe4bXGxiFyMgXlkbRBZG0SlDVpwv5vyURBr_CXctPrfCZaqv_x9-AoO7eQCdHINtXy1UTdwID_z-Xp167bNN53kviQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gmqgPfqERP_vgk3FQtpauj0RBjEh4QMPbsnWtksBmYJj439t2E3kwJr4tzbVb7tr0bve73wFc-SFlsReHDmecOqQpIofjKHT07pDYNCxkVNlmE6zf90cjPijBzbIWRkppwWeyZh5tLj9OxcL8Kqszn2uHkKzBOiXEbeTVWsucgSFKyeH0XPuM_qjIYTYwrw_bL7cGxsVqtnDT8lH-3EIrbVXsrdLZ_d_37MFO4T2iVm7ufSjJ5AB2vzszoOKgHsD2Cs1gBe61gA6ArQ1QqtDLOJYpyusK0J3MLBorQa3JazobZ2_TOYo-keGj1m9BgxzANdUrHcJzpz287TpFAwVHuE2aOTwUyo1cHHKmXKooiyKK9ZjX0CdVeK7wsbC5ROly7YcQoRTmkSKe9Kl29aR3BOUkTeQxIEm8uOlZb0gHdKQREcZ9T7hKcm3UmFYBfys0EAW7uGlyMQlslIF5YGwQGBsEhQ2qcL2c8p5Ta_wlXDH6XwoWqj_5ffgSNrvDp17Qe-g_nsKWWSiHoJxBOZst5DlsiI9sPJ9d2C30Ba_xwWs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+Video+Change+Detection+Algorithms+by+Genetic+Programming&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Bianco%2C+Simone&rft.au=Ciocca%2C+Gianluigi&rft.au=Schettini%2C+Raimondo&rft.date=2017-12-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=21&rft.issue=6&rft.spage=914&rft.epage=928&rft_id=info:doi/10.1109%2FTEVC.2017.2694160&rft.externalDocID=7898824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon