Combination of Video Change Detection Algorithms by Genetic Programming
Within the field of computer vision, change detection algorithms aim at automatically detecting significant changes occurring in a scene by analyzing the sequence of frames in a video stream. In this paper we investigate how state-of-the-art change detection algorithms can be combined and used to cr...
Uložené v:
| Vydané v: | IEEE transactions on evolutionary computation Ročník 21; číslo 6; s. 914 - 928 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.12.2017
|
| Predmet: | |
| ISSN: | 1089-778X, 1941-0026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Within the field of computer vision, change detection algorithms aim at automatically detecting significant changes occurring in a scene by analyzing the sequence of frames in a video stream. In this paper we investigate how state-of-the-art change detection algorithms can be combined and used to create a more robust algorithm leveraging their individual peculiarities. We exploited genetic programming (GP) to automatically select the best algorithms, combine them in different ways, and perform the most suitable post-processing operations on the outputs of the algorithms. In particular, algorithms' combination and post-processing operations are achieved with unary, binary and n-ary functions embedded into the GP framework. Using different experimental settings for combining existing algorithms we obtained different GP solutions that we termed In Unity There Is Strength. These solutions are then compared against state-of-the-art change detection algorithms on the video sequences and ground truth annotations of the ChangeDetection.net 2014 challenge. Results demonstrate that using GP, our solutions are able to outperform all the considered single state-of-the-art change detection algorithms, as well as other combination strategies. The performance of our algorithm are significantly different from those of the other state-of-the-art algorithms. This fact is supported by the statistical significance analysis conducted with the Friedman test and Wilcoxon rank sum post-hoc tests. |
|---|---|
| AbstractList | Within the field of computer vision, change detection algorithms aim at automatically detecting significant changes occurring in a scene by analyzing the sequence of frames in a video stream. In this paper we investigate how state-of-the-art change detection algorithms can be combined and used to create a more robust algorithm leveraging their individual peculiarities. We exploited genetic programming (GP) to automatically select the best algorithms, combine them in different ways, and perform the most suitable post-processing operations on the outputs of the algorithms. In particular, algorithms' combination and post-processing operations are achieved with unary, binary and n-ary functions embedded into the GP framework. Using different experimental settings for combining existing algorithms we obtained different GP solutions that we termed In Unity There Is Strength. These solutions are then compared against state-of-the-art change detection algorithms on the video sequences and ground truth annotations of the ChangeDetection.net 2014 challenge. Results demonstrate that using GP, our solutions are able to outperform all the considered single state-of-the-art change detection algorithms, as well as other combination strategies. The performance of our algorithm are significantly different from those of the other state-of-the-art algorithms. This fact is supported by the statistical significance analysis conducted with the Friedman test and Wilcoxon rank sum post-hoc tests. |
| Author | Bianco, Simone Schettini, Raimondo Ciocca, Gianluigi |
| Author_xml | – sequence: 1 givenname: Simone surname: Bianco fullname: Bianco, Simone email: bianco@disco.unimib.it organization: Dept. of Informatic Syst. & Commun., Univ. of Milano-Bicocca, Milan, Italy – sequence: 2 givenname: Gianluigi surname: Ciocca fullname: Ciocca, Gianluigi email: ciocca@disco.unimib.it organization: Dept. of Informatic Syst. & Commun., Univ. of Milano-Bicocca, Milan, Italy – sequence: 3 givenname: Raimondo surname: Schettini fullname: Schettini, Raimondo email: schettini@disco.unimib.it organization: Dept. of Informatic Syst. & Commun., Univ. of Milano-Bicocca, Milan, Italy |
| BookMark | eNp9kM9OwzAMhyM0JLbBAyAufYEOJ02a5DiVsSFNgsOYuFVpcLqgtUFpL3t7uj_iwIGTf7L12fI3IaM2tEjIPYUZpaAfN4ttMWNA5YzlmtMcrsiYDiEFYPloyKB0KqX6uCGTrvsCoFxQPSbLIjSVb03vQ5sEl2z9J4ak2Jm2xuQJe7SnyXxfh-j7XdMl1SFZYou9t8lbDHU0TePb-pZcO7Pv8O5Sp-T9ebEpVun6dflSzNepZbnoU22sYxUDo6VjwglZVQKGXkY5EzZjVoEFgEwg04rn3DoHunI8QyWAC8ymhJ732hi6LqIrv6NvTDyUFMqjifJoojyaKC8mBkb-YazvTx_30fj9v-TDmfSI-HtJKq0U49kPeT9toA |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1111_coin_12459 crossref_primary_10_1007_s10710_023_09464_0 crossref_primary_10_1007_s11760_021_01920_7 crossref_primary_10_1109_ACCESS_2019_2919802 crossref_primary_10_1109_TCYB_2020_2964566 crossref_primary_10_1109_TIE_2020_3013747 crossref_primary_10_1007_s00371_021_02286_0 crossref_primary_10_3390_mca30020025 crossref_primary_10_1109_TCSVT_2018_2851440 crossref_primary_10_1016_j_engappai_2020_103819 crossref_primary_10_1109_ACCESS_2019_2950162 crossref_primary_10_1109_TETCI_2024_3367809 crossref_primary_10_1109_JSEN_2020_3010563 crossref_primary_10_1007_s13369_021_06306_y crossref_primary_10_1007_s10489_018_1346_4 crossref_primary_10_1016_j_cviu_2022_103501 crossref_primary_10_1016_j_inffus_2019_12_007 crossref_primary_10_1109_ACCESS_2019_2925913 crossref_primary_10_1109_TCSVT_2021_3055539 crossref_primary_10_3390_s19235142 crossref_primary_10_1109_TITS_2025_3559144 crossref_primary_10_1016_j_cviu_2022_103584 crossref_primary_10_1109_ACCESS_2019_2937402 crossref_primary_10_1080_09540091_2020_1807465 crossref_primary_10_1109_TITS_2023_3257484 crossref_primary_10_1109_ACCESS_2022_3199753 crossref_primary_10_1109_TITS_2018_2880096 crossref_primary_10_1016_j_aej_2025_05_082 crossref_primary_10_1109_TGRS_2022_3224293 crossref_primary_10_1109_ACCESS_2025_3578943 crossref_primary_10_1109_ACCESS_2019_2927255 crossref_primary_10_1016_j_imavis_2024_105021 crossref_primary_10_1109_TITS_2019_2940547 crossref_primary_10_1109_TIP_2020_3037472 crossref_primary_10_1109_TCI_2022_3203889 crossref_primary_10_1007_s11042_024_18843_3 crossref_primary_10_1007_s00371_020_01890_w crossref_primary_10_1016_j_patcog_2021_108350 crossref_primary_10_3390_jimaging4070090 crossref_primary_10_1109_JSEN_2021_3054940 crossref_primary_10_1007_s00371_022_02417_1 crossref_primary_10_1016_j_neucom_2022_06_104 crossref_primary_10_1007_s13735_023_00270_z crossref_primary_10_1109_TMM_2021_3058770 crossref_primary_10_2118_223099_PA crossref_primary_10_1007_s10710_019_09345_5 crossref_primary_10_1007_s11042_018_6972_7 crossref_primary_10_1109_TGRS_2022_3167745 crossref_primary_10_2118_224399_PA crossref_primary_10_1007_s12652_021_03662_3 crossref_primary_10_1016_j_imavis_2021_104248 crossref_primary_10_3390_s19132965 crossref_primary_10_1016_j_ins_2021_01_044 crossref_primary_10_3390_rs13050870 crossref_primary_10_1109_ACCESS_2022_3211987 crossref_primary_10_1109_LSP_2019_2952253 crossref_primary_10_1007_s42452_025_07433_z crossref_primary_10_1016_j_eswa_2022_117947 crossref_primary_10_1109_TIFS_2024_3447237 crossref_primary_10_1007_s12555_018_0234_3 crossref_primary_10_1016_j_procs_2018_08_228 crossref_primary_10_1049_ipr2_12135 crossref_primary_10_3390_jimaging4100122 crossref_primary_10_1016_j_eswa_2018_11_013 crossref_primary_10_1109_JSTARS_2025_3588154 crossref_primary_10_1007_s10851_020_00967_4 crossref_primary_10_1007_s11042_021_11640_2 crossref_primary_10_1109_TII_2020_3017078 crossref_primary_10_1007_s11760_023_02645_5 crossref_primary_10_1016_j_dsp_2021_102988 crossref_primary_10_1109_TEVC_2022_3220747 crossref_primary_10_1016_j_engappai_2024_108873 crossref_primary_10_3390_jimaging6060050 crossref_primary_10_1109_TITS_2020_3030801 crossref_primary_10_1007_s11042_020_08935_1 crossref_primary_10_1109_JSEN_2021_3121582 crossref_primary_10_1049_iet_ipr_2017_1055 crossref_primary_10_1007_s00530_022_01014_5 crossref_primary_10_1109_TAI_2023_3299903 crossref_primary_10_1109_TITS_2021_3077883 crossref_primary_10_1016_j_engappai_2019_06_017 crossref_primary_10_1016_j_cviu_2020_103032 crossref_primary_10_1007_s11554_020_01058_8 crossref_primary_10_1109_TPAMI_2020_3042093 crossref_primary_10_1109_TVT_2020_3043575 crossref_primary_10_3390_sym16121620 crossref_primary_10_1007_s11554_021_01184_x crossref_primary_10_1109_TIP_2020_3031173 crossref_primary_10_1109_ACCESS_2024_3381612 crossref_primary_10_1109_TGRS_2021_3071347 crossref_primary_10_1007_s11633_022_1378_4 crossref_primary_10_1109_ACCESS_2021_3123975 crossref_primary_10_32604_cmc_2022_021719 crossref_primary_10_1109_TCSVT_2020_3042559 crossref_primary_10_1109_MSMC_2019_2913168 crossref_primary_10_1155_2022_7432615 crossref_primary_10_1109_ACCESS_2023_3345842 crossref_primary_10_1016_j_patcog_2025_111792 crossref_primary_10_1109_TITS_2019_2900426 |
| Cites_doi | 10.1109/ISCC.2008.4625766 10.1109/4235.910462 10.1109/TIP.2014.2346013 10.1016/j.patcog.2008.09.002 10.1162/evco.1993.1.1.1 10.1109/34.868684 10.1109/TNN.2007.896861 10.1007/BF01215814 10.1162/EVCO_a_00025 10.1007/3-540-45786-0_37 10.1109/CVPRW.2014.126 10.1109/AVSS.2008.19 10.1016/j.patcog.2003.11.010 10.1016/j.inffus.2004.04.008 10.1155/2010/343057 10.1109/CVPRW.2012.6238922 10.1117/12.526886 10.1016/j.inffus.2010.06.010 10.1109/TIP.2010.2044965 10.1109/AVSS.2013.6636617 10.1109/CVPRW.2014.66 10.1145/2463372.2463507 10.1007/s10710-014-9236-y 10.1007/3-540-61723-X_1004 10.1109/AVSS.2005.1577343 10.1007/s00521-009-0285-8 10.1007/978-3-319-03680-9_13 10.1109/TEVC.2004.825567 10.1109/CEC.2009.4983255 10.1109/TIP.2004.836169 10.1109/4235.752917 10.1007/978-3-319-25903-1_12 10.1016/j.cviu.2013.12.005 10.1109/TIP.2014.2378053 10.1109/CVPRW.2014.67 10.1109/ICIP.2014.7025661 10.1109/TEVC.2017.2657556 10.1017/CBO9780511921803 10.1016/j.neucom.2015.04.118 10.1016/j.patrec.2005.11.005 10.1002/0471660264 10.1109/TMI.2004.828354 10.1109/TIP.2008.920761 10.1109/CEC.2011.5949659 10.1201/b17223-30 10.3141/1944-11 10.1109/TSMC.2013.2280121 10.2307/3001968 10.1109/TEVC.2016.2515660 10.1109/ICCV.1999.791228 10.1162/EVCO_a_00115 10.1162/evco.2008.16.4.483 10.1109/RIVF.2010.5634007 10.2174/1874479610801010032 10.1109/TEVC.2006.887351 10.1109/TEVC.2010.2041061 10.1007/978-3-642-10439-8_17 10.1117/1.2779022 10.1109/TEVC.2015.2504420 10.1162/EVCO_a_00146 10.1109/TIP.2004.838698 10.1109/CVPRW.2014.65 10.1109/TPAMI.2003.1233909 10.1109/TPAMI.2011.243 10.1109/CVPR.1999.784637 10.1109/TIP.2008.916989 10.1007/978-3-319-14231-9_3 10.1016/j.knosys.2014.07.021 10.1109/34.868688 10.1109/TMI.2004.830803 10.1109/TIP.2010.2101613 10.1109/TCYB.2015.2399172 10.1109/34.598236 10.1109/ICPR.2004.1333992 10.1109/WACV.2015.137 10.1109/AVSS.2007.4425366 10.1016/j.dss.2006.12.011 10.1109/TPAMI.2005.213 10.1162/evco.2008.16.4.461 10.1109/ICSMC.2004.1400815 10.1109/CVPR.2005.384 10.1109/CVPRW.2012.6238920 10.1109/ICIP.2015.7351664 10.1109/CVPRW.2014.64 10.3233/ICA-130429 10.1145/1569901.1570052 10.1109/34.667881 10.1109/4235.735432 10.1007/978-3-540-24653-4_38 10.1109/PCSPA.2010.79 10.1007/3-540-45053-X_48 10.1016/j.eswa.2012.02.123 10.1109/TIP.2010.2087764 10.1109/CVPRW.2012.6238919 10.1007/s11554-012-0310-5 10.1016/j.trit.2016.03.005 10.1109/TSP.2009.2014810 10.1109/TEVC.2017.2685639 10.1007/978-3-642-33786-4_10 10.1109/IWSSIP.2015.7314229 10.1016/S0167-8655(01)00128-3 10.1109/JPROC.2002.801448 10.1007/978-3-642-22170-5_57 10.1109/CVPRW.2014.68 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2017.2694160 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 928 |
| ExternalDocumentID | 10_1109_TEVC_2017_2694160 7898824 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c265t-9acf2b20a97f25f57bb50acf31425c32c80c00035e298464cff09bf43e85045e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 139 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417647500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sat Nov 29 03:13:47 EST 2025 Tue Nov 18 21:27:20 EST 2025 Tue Aug 26 16:43:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c265t-9acf2b20a97f25f57bb50acf31425c32c80c00035e298464cff09bf43e85045e3 |
| ORCID | 0000-0002-7070-1545 |
| PageCount | 15 |
| ParticipantIDs | ieee_primary_7898824 crossref_primary_10_1109_TEVC_2017_2694160 crossref_citationtrail_10_1109_TEVC_2017_2694160 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Dec. 2017-12-00 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref56 ref59 ref58 ref53 ref55 ref54 benezeth (ref21) 2010; 19 al-sahaf (ref95) 2017; 21 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 bouwmans (ref20) 2011; 4 ref43 chen (ref112) 2015 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ross (ref12) 2002 ref5 ref100 liang (ref119) 2014 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref32 ref39 ref38 koza (ref16) 1992; 1 paulinas (ref77) 2007; 36 ref24 ref23 ref22 allili (ref33) 2008; 17 ruta (ref61) 2000; 7 pedrino (ref84) 2013; 20 ref28 ref27 ref29 demšar (ref103) 2006; 7 ref13 ref15 ref14 ref97 ref96 ref99 ref11 ref98 ref10 ref17 ref19 ref18 elgammal (ref101) 2000 ref93 ref92 ref94 ref91 han (ref52) 2012; 34 ref90 karman (ref25) 1990; 2 ref89 ref86 ref85 poli (ref83) 1997 ref88 ref87 allebosch (ref113) 2015 ridder (ref26) 1995 ref82 ref81 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref76 ref2 ref1 ref71 ref111 ref70 ref73 ref110 ref68 davis (ref102) 1989 ref67 ref117 ref69 ref118 ref64 ref115 ref116 ref66 ref65 ref114 ref60 fister (ref72) 2013 ref62 ref120 ref121 wang (ref63) 2011 |
| References_xml | – ident: ref65 doi: 10.1109/ISCC.2008.4625766 – ident: ref106 doi: 10.1109/4235.910462 – ident: ref4 doi: 10.1109/TIP.2014.2346013 – ident: ref49 doi: 10.1016/j.patcog.2008.09.002 – start-page: 942 year: 2002 ident: ref12 article-title: Hyper-heuristics: Learning to combine simple heuristics in bin-packing problems publication-title: Proc GECCO – ident: ref73 doi: 10.1162/evco.1993.1.1.1 – ident: ref47 doi: 10.1109/34.868684 – ident: ref53 doi: 10.1109/TNN.2007.896861 – ident: ref22 doi: 10.1007/BF01215814 – start-page: 269 year: 1997 ident: ref83 article-title: Genetic programming with user-driven selection: Experiments on the evolution of algorithms for image enhancement publication-title: Proc Gen Program – ident: ref110 doi: 10.1162/EVCO_a_00025 – ident: ref66 doi: 10.1007/3-540-45786-0_37 – ident: ref7 doi: 10.1109/CVPRW.2014.126 – volume: 2 start-page: 297 year: 1990 ident: ref25 article-title: Moving object recognition using an adaptive background memory publication-title: Time-Varying Image Processing and Moving Object Recognition – ident: ref6 doi: 10.1109/AVSS.2008.19 – start-page: 230 year: 2011 ident: ref63 article-title: Multiple binary classifiers fusion using induced intuitionistic fuzzy ordered weighted average operator publication-title: Proc IEEE Int Conf Inf Autom (ICIA) – ident: ref48 doi: 10.1016/j.patcog.2003.11.010 – ident: ref62 doi: 10.1016/j.inffus.2004.04.008 – year: 2013 ident: ref72 article-title: A brief review of nature-inspired algorithms for optimization publication-title: arXiv preprint arXiv 1307 4186 – start-page: 1 year: 2015 ident: ref112 article-title: Learning sharable models for robust background subtraction publication-title: Proc IEEE Int Conf Multimedia Expo (ICME) – ident: ref19 doi: 10.1155/2010/343057 – ident: ref54 doi: 10.1109/CVPRW.2012.6238922 – ident: ref27 doi: 10.1117/12.526886 – ident: ref64 doi: 10.1016/j.inffus.2010.06.010 – ident: ref69 doi: 10.1109/TIP.2010.2044965 – ident: ref100 doi: 10.1109/AVSS.2013.6636617 – ident: ref56 doi: 10.1109/CVPRW.2014.66 – ident: ref94 doi: 10.1145/2463372.2463507 – ident: ref74 doi: 10.1007/s10710-014-9236-y – ident: ref108 doi: 10.1007/3-540-61723-X_1004 – ident: ref1 doi: 10.1109/AVSS.2005.1577343 – volume: 7 start-page: 1 year: 2006 ident: ref103 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J Mach Learn Res – ident: ref118 doi: 10.1007/s00521-009-0285-8 – volume: 1 year: 1992 ident: ref16 publication-title: Genetic Programming On the Programming of Computers by Means of Natural Selection – ident: ref89 doi: 10.1007/978-3-319-03680-9_13 – ident: ref87 doi: 10.1109/TEVC.2004.825567 – ident: ref93 doi: 10.1109/CEC.2009.4983255 – ident: ref36 doi: 10.1109/TIP.2004.836169 – ident: ref76 doi: 10.1109/4235.752917 – ident: ref115 doi: 10.1007/978-3-319-25903-1_12 – ident: ref3 doi: 10.1016/j.cviu.2013.12.005 – ident: ref45 doi: 10.1109/TIP.2014.2378053 – ident: ref44 doi: 10.1109/CVPRW.2014.67 – ident: ref121 doi: 10.1109/ICIP.2014.7025661 – ident: ref96 doi: 10.1109/TEVC.2017.2657556 – ident: ref104 doi: 10.1017/CBO9780511921803 – ident: ref116 doi: 10.1016/j.neucom.2015.04.118 – ident: ref40 doi: 10.1016/j.patrec.2005.11.005 – ident: ref60 doi: 10.1002/0471660264 – volume: 4 start-page: 147 year: 2011 ident: ref20 article-title: Recent advanced statistical background modeling for foreground detection-A systematic survey publication-title: Recent Patents Comput Sci – ident: ref67 doi: 10.1109/TMI.2004.828354 – ident: ref70 doi: 10.1109/TIP.2008.920761 – ident: ref98 doi: 10.1109/CEC.2011.5949659 – ident: ref58 doi: 10.1201/b17223-30 – ident: ref29 doi: 10.3141/1944-11 – ident: ref55 doi: 10.1109/TSMC.2013.2280121 – ident: ref105 doi: 10.2307/3001968 – ident: ref15 doi: 10.1109/TEVC.2016.2515660 – ident: ref28 doi: 10.1109/ICCV.1999.791228 – ident: ref81 doi: 10.1162/EVCO_a_00115 – ident: ref92 doi: 10.1162/evco.2008.16.4.483 – ident: ref9 doi: 10.1109/RIVF.2010.5634007 – ident: ref18 doi: 10.2174/1874479610801010032 – ident: ref91 doi: 10.1109/TEVC.2006.887351 – volume: 19 year: 2010 ident: ref21 article-title: Comparative study of background subtraction algorithms publication-title: J Electron Imag – ident: ref13 doi: 10.1109/TEVC.2010.2041061 – ident: ref97 doi: 10.1007/978-3-642-10439-8_17 – ident: ref32 doi: 10.1117/1.2779022 – ident: ref75 doi: 10.1109/TEVC.2015.2504420 – ident: ref90 doi: 10.1162/EVCO_a_00146 – ident: ref17 doi: 10.1109/TIP.2004.838698 – ident: ref57 doi: 10.1109/CVPRW.2014.65 – ident: ref23 doi: 10.1109/TPAMI.2003.1233909 – volume: 34 start-page: 1017 year: 2012 ident: ref52 article-title: Density-based multifeature background subtraction with support vector machine publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2011.243 – ident: ref31 doi: 10.1109/CVPR.1999.784637 – ident: ref37 doi: 10.1109/TIP.2008.916989 – ident: ref14 doi: 10.1007/978-3-319-14231-9_3 – ident: ref71 doi: 10.1016/j.knosys.2014.07.021 – ident: ref82 doi: 10.1109/34.868688 – ident: ref68 doi: 10.1109/TMI.2004.830803 – volume: 7 start-page: 1 year: 2000 ident: ref61 article-title: An overview of classifier fusion methods publication-title: Comput Inf Syst – ident: ref43 doi: 10.1109/TIP.2010.2101613 – ident: ref99 doi: 10.1109/TCYB.2015.2399172 – ident: ref30 doi: 10.1109/34.598236 – ident: ref120 doi: 10.1109/ICPR.2004.1333992 – ident: ref111 doi: 10.1109/WACV.2015.137 – ident: ref41 doi: 10.1109/AVSS.2007.4425366 – start-page: 193 year: 1995 ident: ref26 article-title: Adaptive background estimation and foreground detection using Kalman-filtering publication-title: Proc Int Conf Recent Advances Mechatronics – ident: ref107 doi: 10.1016/j.dss.2006.12.011 – ident: ref34 doi: 10.1109/TPAMI.2005.213 – ident: ref79 doi: 10.1162/evco.2008.16.4.461 – ident: ref2 doi: 10.1109/ICSMC.2004.1400815 – start-page: 61 year: 1989 ident: ref102 article-title: Adapting operator probabilities in genetic algorithms publication-title: Proc 7th Int Conf Genetic Algorithms – start-page: 433 year: 2015 ident: ref113 article-title: C-EFIC: Color and edge based foreground background segmentation with interior classification publication-title: Proc Int Joint Conf Comput Vis Imag Comput Graphics – ident: ref35 doi: 10.1109/CVPR.2005.384 – ident: ref42 doi: 10.1109/CVPRW.2012.6238920 – volume: 36 start-page: 278 year: 2007 ident: ref77 article-title: A survey of genetic algorithms applications for image enhancement and segmentation publication-title: Inf Technol Control – ident: ref114 doi: 10.1109/ICIP.2015.7351664 – ident: ref46 doi: 10.1109/CVPRW.2014.64 – volume: 20 start-page: 275 year: 2013 ident: ref84 article-title: A genetic programming based system for the automatic construction of image filters publication-title: Integr Comput -Aided Eng doi: 10.3233/ICA-130429 – ident: ref80 doi: 10.1145/1569901.1570052 – ident: ref59 doi: 10.1109/34.667881 – volume: 17 year: 2008 ident: ref33 article-title: Finite general Gaussian mixture modeling and application to image and video foreground segmentation publication-title: J Electron Imag – ident: ref109 doi: 10.1109/4235.735432 – ident: ref86 doi: 10.1007/978-3-540-24653-4_38 – ident: ref24 doi: 10.1109/PCSPA.2010.79 – start-page: 751 year: 2000 ident: ref101 article-title: Non-parametric model for background subtraction publication-title: Computer Vision ECCV 2000 doi: 10.1007/3-540-45053-X_48 – ident: ref88 doi: 10.1016/j.eswa.2012.02.123 – ident: ref10 doi: 10.1109/TIP.2010.2087764 – ident: ref8 doi: 10.1109/CVPRW.2012.6238919 – ident: ref11 doi: 10.1007/s11554-012-0310-5 – ident: ref5 doi: 10.1016/j.trit.2016.03.005 – ident: ref51 doi: 10.1109/TSP.2009.2014810 – volume: 21 start-page: 83 year: 2017 ident: ref95 article-title: Automatically evolving rotation-invariant texture image descriptors by genetic programming publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2017.2685639 – ident: ref50 doi: 10.1007/978-3-642-33786-4_10 – ident: ref117 doi: 10.1109/IWSSIP.2015.7314229 – ident: ref85 doi: 10.1016/S0167-8655(01)00128-3 – year: 2014 ident: ref119 article-title: Improvements and experiments of a compact statistical background model publication-title: arXiv preprint arXiv 1405 6275 – ident: ref39 doi: 10.1109/JPROC.2002.801448 – ident: ref78 doi: 10.1007/978-3-642-22170-5_57 – ident: ref38 doi: 10.1109/CVPRW.2014.68 |
| SSID | ssj0014519 |
| Score | 2.5731463 |
| Snippet | Within the field of computer vision, change detection algorithms aim at automatically detecting significant changes occurring in a scene by analyzing the... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 914 |
| SubjectTerms | Algorithm combining and selection Algorithm design and analysis change detection Change detection algorithms ChangeDetection.net (CDNET) Detection algorithms Evolutionary computation Genetic programming genetic programming (GP) Robustness Streaming media |
| Title | Combination of Video Change Detection Algorithms by Genetic Programming |
| URI | https://ieeexplore.ieee.org/document/7898824 |
| Volume | 21 |
| WOSCitedRecordID | wos000417647500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4B4kEPoqARf6UHT8ZBWVe6HgmKnggHJNyWtWuVBDYDw8T_3rYbyMGYeFua1255r03f2_ve9wDuwpiyhCSxxxmnXtCTwuNYxJ7ZHQrbhoWMatdsgo1G4WzGxxV42NXCKKUc-Ey17aPL5SeZ3NhfZR0WcuMQBlWoMsaKWq1dxsDSpBRgem48xnBWZjC7mHcmT9OBBXGxtivbdGyUP3fQXlMVd6cM6__7mhM4Ln1H1C-MfQoVlTagvu3LgMpj2oCjPZLBJjwbARP-OgugTKPpPFEZKqoK0KPKHRYrRf3FW7aa5-_LNRJfyLJRm7egcQHfWpqVzuB1-DQZvHhl-wRP-j2aezyW2hc-jjnTPtWUCUGxGSNdc04l8WWIpcskKp8bLySQWmMudEBUSI2jp8g51NIsVReAVECSHnG-kAnngq4IGA-J9LXixqQJbQHeKjSSJbe4bXGxiFyMgXlkbRBZG0SlDVpwv5vyURBr_CXctPrfCZaqv_x9-AoO7eQCdHINtXy1UTdwID_z-Xp167bNN53kviQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gmqgPfqERP_vgk3FQtpauj0RBjEh4QMPbsnWtksBmYJj439t2E3kwJr4tzbVb7tr0bve73wFc-SFlsReHDmecOqQpIofjKHT07pDYNCxkVNlmE6zf90cjPijBzbIWRkppwWeyZh5tLj9OxcL8Kqszn2uHkKzBOiXEbeTVWsucgSFKyeH0XPuM_qjIYTYwrw_bL7cGxsVqtnDT8lH-3EIrbVXsrdLZ_d_37MFO4T2iVm7ufSjJ5AB2vzszoOKgHsD2Cs1gBe61gA6ArQ1QqtDLOJYpyusK0J3MLBorQa3JazobZ2_TOYo-keGj1m9BgxzANdUrHcJzpz287TpFAwVHuE2aOTwUyo1cHHKmXKooiyKK9ZjX0CdVeK7wsbC5ROly7YcQoRTmkSKe9Kl29aR3BOUkTeQxIEm8uOlZb0gHdKQREcZ9T7hKcm3UmFYBfys0EAW7uGlyMQlslIF5YGwQGBsEhQ2qcL2c8p5Ta_wlXDH6XwoWqj_5ffgSNrvDp17Qe-g_nsKWWSiHoJxBOZst5DlsiI9sPJ9d2C30Ba_xwWs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+Video+Change+Detection+Algorithms+by+Genetic+Programming&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Bianco%2C+Simone&rft.au=Ciocca%2C+Gianluigi&rft.au=Schettini%2C+Raimondo&rft.date=2017-12-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=21&rft.issue=6&rft.spage=914&rft.epage=928&rft_id=info:doi/10.1109%2FTEVC.2017.2694160&rft.externalDocID=7898824 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |