New Approaches to Direction-of-Arrival Estimation With Sensor Arrays in Unknown Nonuniform Noise

It is known that classical subspace-based direction-of-arrival (DOA) estimation algorithms are not straightforwardly applicable to scenarios with unknown spatially nonuniform noise. Among the state-of-the-art solutions, this problem is tackled by iterative subspace estimation algorithms to incorpora...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE sensors journal Ročník 16; číslo 24; s. 8982 - 8989
Hlavní autoři: Liao, Bin, Huang, Lei, Guo, Chongtao, So, Hing Cheung
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 15.12.2016
Témata:
ISSN:1530-437X, 1558-1748
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is known that classical subspace-based direction-of-arrival (DOA) estimation algorithms are not straightforwardly applicable to scenarios with unknown spatially nonuniform noise. Among the state-of-the-art solutions, this problem is tackled by iterative subspace estimation algorithms to incorporate subspace-based approaches or nonlinear optimization routines to bypass the direct identification of subspaces. In this paper, the problem of DOA estimation in nonuniform noise is revisited by devising two computationally efficient proposals. It is proved herein that, if the signals are uncorrelated, the signal and noise subspaces can be directly obtained from the eigendecomposition of a reduced array covariance matrix. On the other hand, when the signals are correlated, the estimation of the noise covariance matrix is formulated into a rank minimization problem which can be approximately solved by semidefinite programming. In both cases, the signal and noise subspaces are easy to compute without iterations. Consequently, classical subspace-based algorithms can be employed to determine the DOAs. Numerical examples are provided to demonstrate the performance and applicability of the proposed methods.
AbstractList It is known that classical subspace-based direction-of-arrival (DOA) estimation algorithms are not straightforwardly applicable to scenarios with unknown spatially nonuniform noise. Among the state-of-the-art solutions, this problem is tackled by iterative subspace estimation algorithms to incorporate subspace-based approaches or nonlinear optimization routines to bypass the direct identification of subspaces. In this paper, the problem of DOA estimation in nonuniform noise is revisited by devising two computationally efficient proposals. It is proved herein that, if the signals are uncorrelated, the signal and noise subspaces can be directly obtained from the eigendecomposition of a reduced array covariance matrix. On the other hand, when the signals are correlated, the estimation of the noise covariance matrix is formulated into a rank minimization problem which can be approximately solved by semidefinite programming. In both cases, the signal and noise subspaces are easy to compute without iterations. Consequently, classical subspace-based algorithms can be employed to determine the DOAs. Numerical examples are provided to demonstrate the performance and applicability of the proposed methods.
Author Hing Cheung So
Lei Huang
Chongtao Guo
Bin Liao
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0003-4636-4339
  surname: Liao
  fullname: Liao, Bin
– sequence: 2
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
– sequence: 3
  givenname: Chongtao
  surname: Guo
  fullname: Guo, Chongtao
– sequence: 4
  givenname: Hing Cheung
  surname: So
  fullname: So, Hing Cheung
BookMark eNp9kM1OwzAMgCM0JLbBAyAueYEOJ23-jtMYf5rGYUxwK2mbaoEtmZLCtLenZRMHDpxs2f4s-xugnvPOIHRJYEQIqOvHxXQ-okD4iHJKgIkT1CeMyYSITPa6PIUkS8XrGRrE-A5AlGCij97mZofH223wulyZiBuPb2wwZWO9S3ydjEOwX3qNp7GxG91V8YttVnhhXPQBt229j9g6vHQfzu8cnnv36Wztw6ZNbTTn6LTW62gujnGIlrfT58l9Mnu6e5iMZ0lJOWsSpSjRSnOidMFSyjMOlaqlAllBVWhZEq3rUrBKKcgog0oSIQEY5YXOjDTpEInD3jL4GIOp89I2Pwc3Qdt1TiDvROWdqLwTlR9FtST5Q25D-2vY_8tcHRhrjPmdF1zwNOPpN77bdqQ
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104404
crossref_primary_10_1016_j_dsp_2023_104220
crossref_primary_10_1007_s00034_023_02428_w
crossref_primary_10_1109_ACCESS_2019_2904208
crossref_primary_10_1016_j_dsp_2022_103898
crossref_primary_10_1007_s00034_020_01587_4
crossref_primary_10_1109_TVT_2021_3105673
crossref_primary_10_3390_s23104811
crossref_primary_10_1109_JSEN_2024_3363030
crossref_primary_10_1109_TIM_2022_3200088
crossref_primary_10_1155_2022_1648244
crossref_primary_10_1109_ACCESS_2018_2829537
crossref_primary_10_1109_TVT_2020_3018489
crossref_primary_10_1109_TIM_2025_3545500
crossref_primary_10_3390_electronics12102191
crossref_primary_10_3390_s19061398
crossref_primary_10_1109_LAWP_2024_3394610
crossref_primary_10_1016_j_dsp_2019_06_008
crossref_primary_10_1016_j_sigpro_2022_108879
crossref_primary_10_1007_s00034_019_01237_4
crossref_primary_10_1109_LSP_2019_2913452
crossref_primary_10_1016_j_apacoust_2023_109541
crossref_primary_10_1109_TSP_2020_3013419
crossref_primary_10_1121_10_0032395
crossref_primary_10_1155_2022_3892542
crossref_primary_10_1109_LCOMM_2018_2849724
crossref_primary_10_3390_app15031473
crossref_primary_10_1049_iet_rsn_2018_5440
crossref_primary_10_3390_s19204427
crossref_primary_10_1049_iet_rsn_2018_5386
crossref_primary_10_1109_TGRS_2023_3293866
crossref_primary_10_1016_j_aeue_2022_154453
crossref_primary_10_3390_rs16173140
crossref_primary_10_1155_2018_3084516
crossref_primary_10_1007_s00034_019_01093_2
crossref_primary_10_1016_j_dsp_2018_04_003
crossref_primary_10_1109_LSP_2019_2909587
crossref_primary_10_1016_j_apacoust_2023_109506
crossref_primary_10_1109_ACCESS_2018_2803050
crossref_primary_10_1109_TVT_2021_3132673
Cites_doi 10.1109/JSEN.2016.2517128
10.1109/TSP.2016.2537265
10.1109/TIT.2010.2044061
10.1109/JSEN.2014.2327633
10.1109/LSP.2014.2358084
10.1016/j.dsp.2014.02.013
10.1109/TAES.2011.6034684
10.1109/JSEN.2014.2371475
10.1016/S0165-1684(02)00337-7
10.1109/29.17564
10.1109/TAP.1986.1143830
10.1007/BF02293708
10.1007/s10208-009-9045-5
10.1109/JOE.2006.875270
10.1109/JSEN.2016.2580621
10.1109/JSEN.2016.2550664
10.1109/TSP.2004.838966
10.1109/ICASSP.2012.6288473
10.1109/ICASSP.2004.1326200
10.1109/ChinaSIP.2015.7230501
10.1137/1038003
10.1109/78.928686
10.1109/ICASSP.2015.7178479
10.1109/LSP.2005.843774
10.1109/JSEN.2014.2315895
10.1109/TSP.2008.917364
10.1109/TAES.2007.4383611
10.1109/JSEN.2014.2374182
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSEN.2016.2621057
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 8989
ExternalDocumentID 10_1109_JSEN_2016_2621057
7676346
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61401284; 61601307; 61601300
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of SZU
  grantid: 827-000071
– fundername: Foundation of Shenzhen
  grantid: JCYJ20140418091413566; JCYJ20160422102022017; JCYJ20150324140036835
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-9921a9a619ab5326460d9f8908d0dba8c1aafc75d9904250d817800526ba4e8e3
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389053900043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-437X
IngestDate Tue Nov 18 21:55:51 EST 2025
Sat Nov 29 05:42:39 EST 2025
Wed Aug 27 03:05:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-9921a9a619ab5326460d9f8908d0dba8c1aafc75d9904250d817800526ba4e8e3
ORCID 0000-0003-4636-4339
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JSEN_2016_2621057
ieee_primary_7676346
crossref_primary_10_1109_JSEN_2016_2621057
PublicationCentury 2000
PublicationDate 2016-Dec.15,-15
2016-12-15
PublicationDateYYYYMMDD 2016-12-15
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.15,-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref11
  doi: 10.1109/JSEN.2016.2517128
– ident: ref7
  doi: 10.1109/TSP.2016.2537265
– ident: ref24
  doi: 10.1109/TIT.2010.2044061
– ident: ref10
  doi: 10.1109/JSEN.2014.2327633
– ident: ref22
  doi: 10.1109/LSP.2014.2358084
– ident: ref21
  doi: 10.1016/j.dsp.2014.02.013
– ident: ref5
  doi: 10.1109/TAES.2011.6034684
– ident: ref3
  doi: 10.1109/JSEN.2014.2371475
– ident: ref14
  doi: 10.1016/S0165-1684(02)00337-7
– ident: ref9
  doi: 10.1109/29.17564
– ident: ref8
  doi: 10.1109/TAP.1986.1143830
– ident: ref25
  doi: 10.1007/BF02293708
– ident: ref23
  doi: 10.1007/s10208-009-9045-5
– ident: ref16
  doi: 10.1109/JOE.2006.875270
– ident: ref4
  doi: 10.1109/JSEN.2016.2580621
– ident: ref20
  doi: 10.1109/JSEN.2016.2550664
– ident: ref12
  doi: 10.1109/TSP.2004.838966
– ident: ref27
  doi: 10.1109/ICASSP.2012.6288473
– ident: ref17
  doi: 10.1109/ICASSP.2004.1326200
– ident: ref19
  doi: 10.1109/ChinaSIP.2015.7230501
– ident: ref26
  doi: 10.1137/1038003
– ident: ref6
  doi: 10.1109/78.928686
– ident: ref18
  doi: 10.1109/ICASSP.2015.7178479
– ident: ref15
  doi: 10.1109/LSP.2005.843774
– ident: ref2
  doi: 10.1109/JSEN.2014.2315895
– ident: ref13
  doi: 10.1109/TSP.2008.917364
– ident: ref28
  doi: 10.1109/TAES.2007.4383611
– ident: ref1
  doi: 10.1109/JSEN.2014.2374182
SSID ssj0019757
Score 2.3749182
Snippet It is known that classical subspace-based direction-of-arrival (DOA) estimation algorithms are not straightforwardly applicable to scenarios with unknown...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 8982
SubjectTerms Covariance matrices
Direction-of-arrival estimation
Maximum likelihood estimation
nonuniform noise
semidefinite programming
Sensor array processing
Sensor arrays
Title New Approaches to Direction-of-Arrival Estimation With Sensor Arrays in Unknown Nonuniform Noise
URI https://ieeexplore.ieee.org/document/7676346
Volume 16
WOSCitedRecordID wos000389053900043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-1748
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019757
  issn: 1530-437X
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SUGhyaJpsStI80CGnUmVlr_U6LmVDyGEpbJfuzdHLxJDIxesN5N9H8ipLAqXQmzASNv40MxrN4wO4tJRWllqBmdA6UpgRrJ0ssKgM5cpljmnbk03w6VQsFvLnFnzf1MI45_rkM3cVh30s3zZmFa_KhpwFaSjYNmxzzta1WpuIgeR9V88gwAQXI75IEcyMyOHtbDKNSVzsKmd55LV9Z4PekKr0NuV6__--5jN8SmdHNF6DfQBbzh_C3puOgofwMZGa3z8P4C4oMDROPcPdEnUNSgqu8bip8Lht67DP0CRI-bqAEf2uu3s0C55t04bXtOp5iWqP5j7evHk0bfzKx0quxzCsl-4I5teTXz9ucCJUwCZntMNS5pmSKvhMStNwbisYsbISkghLrFbCZEpVhlMbTFSQZWJFxkXfEUarwgk3-gI7vvHuGJCiVVQFbKSDi-gKowVzRGpd6DwzlcxOgLz-4tKkbuOR9OKh7L0OIsuIShlRKRMqJ_Bts-TPutXGvyYPIiKbiQmMr39_fAq7cXFMQ8noGex07cqdwwfz1NXL9qLfSC_Pi8YX
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSxwxFD5YLdg-aKsWL7XNQ59Ko5nZJJM8LrKirR0KKt23aW6DA21GZmcL_nuT2bhYKIJvYchcmC_nnJycywfwyTJWW2YF5kLrSGFGsHaSYlEbViiXOa7tQDZRlKWYTuWPFfiyrIVxzg3JZ-4oDodYvm3NPB6VHRc8SAPlL2CNUZqTRbXWMmYgi6GvZxBhgumomKYYZkbk8dfLSRnTuPhRzvPIbPuPFXpEqzJYldPN533PG9hIu0c0XsD9Flac34LXj3oKbsF6ojW_uduGX0GFoXHqGu5mqG9RUnGtx22Nx13XhJWGJkHOFyWM6GfT36DL4Nu2XXhNp-5mqPHo2sezN4_K1s99rOX6E4bNzO3A9enk6uQMJ0oFbHLOeixlnimpgtekNAs7N8qJlbWQRFhitRImU6o2BbPBSAVpJlZkhRh6wmhFnXCjd7DqW-92ASlWR2XARzo4iY4aLbgjUmuq88zUMtsD8vCLK5P6jUfai9_V4HcQWUVUqohKlVDZg8_LW24XzTaemrwdEVlOTGDs___yR1g_u_p-UV2cl98O4FV8UExKydh7WO27uTuEl-Zv38y6D8OiugdJKcle
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Approaches+to+Direction-of-Arrival+Estimation+With+Sensor+Arrays+in+Unknown+Nonuniform+Noise&rft.jtitle=IEEE+sensors+journal&rft.au=Liao%2C+Bin&rft.au=Huang%2C+Lei&rft.au=Guo%2C+Chongtao&rft.au=So%2C+Hing+Cheung&rft.date=2016-12-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=16&rft.issue=24&rft.spage=8982&rft.epage=8989&rft_id=info:doi/10.1109%2FJSEN.2016.2621057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2016_2621057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon