New Approaches to Direction-of-Arrival Estimation With Sensor Arrays in Unknown Nonuniform Noise
It is known that classical subspace-based direction-of-arrival (DOA) estimation algorithms are not straightforwardly applicable to scenarios with unknown spatially nonuniform noise. Among the state-of-the-art solutions, this problem is tackled by iterative subspace estimation algorithms to incorpora...
Uložené v:
| Vydané v: | IEEE sensors journal Ročník 16; číslo 24; s. 8982 - 8989 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
15.12.2016
|
| Predmet: | |
| ISSN: | 1530-437X, 1558-1748 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | It is known that classical subspace-based direction-of-arrival (DOA) estimation algorithms are not straightforwardly applicable to scenarios with unknown spatially nonuniform noise. Among the state-of-the-art solutions, this problem is tackled by iterative subspace estimation algorithms to incorporate subspace-based approaches or nonlinear optimization routines to bypass the direct identification of subspaces. In this paper, the problem of DOA estimation in nonuniform noise is revisited by devising two computationally efficient proposals. It is proved herein that, if the signals are uncorrelated, the signal and noise subspaces can be directly obtained from the eigendecomposition of a reduced array covariance matrix. On the other hand, when the signals are correlated, the estimation of the noise covariance matrix is formulated into a rank minimization problem which can be approximately solved by semidefinite programming. In both cases, the signal and noise subspaces are easy to compute without iterations. Consequently, classical subspace-based algorithms can be employed to determine the DOAs. Numerical examples are provided to demonstrate the performance and applicability of the proposed methods. |
|---|---|
| AbstractList | It is known that classical subspace-based direction-of-arrival (DOA) estimation algorithms are not straightforwardly applicable to scenarios with unknown spatially nonuniform noise. Among the state-of-the-art solutions, this problem is tackled by iterative subspace estimation algorithms to incorporate subspace-based approaches or nonlinear optimization routines to bypass the direct identification of subspaces. In this paper, the problem of DOA estimation in nonuniform noise is revisited by devising two computationally efficient proposals. It is proved herein that, if the signals are uncorrelated, the signal and noise subspaces can be directly obtained from the eigendecomposition of a reduced array covariance matrix. On the other hand, when the signals are correlated, the estimation of the noise covariance matrix is formulated into a rank minimization problem which can be approximately solved by semidefinite programming. In both cases, the signal and noise subspaces are easy to compute without iterations. Consequently, classical subspace-based algorithms can be employed to determine the DOAs. Numerical examples are provided to demonstrate the performance and applicability of the proposed methods. |
| Author | Hing Cheung So Lei Huang Chongtao Guo Bin Liao |
| Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0003-4636-4339 surname: Liao fullname: Liao, Bin – sequence: 2 givenname: Lei surname: Huang fullname: Huang, Lei – sequence: 3 givenname: Chongtao surname: Guo fullname: Guo, Chongtao – sequence: 4 givenname: Hing Cheung surname: So fullname: So, Hing Cheung |
| BookMark | eNp9kM1OwzAMgCM0JLbBAyAueYEOJ23-jtMYf5rGYUxwK2mbaoEtmZLCtLenZRMHDpxs2f4s-xugnvPOIHRJYEQIqOvHxXQ-okD4iHJKgIkT1CeMyYSITPa6PIUkS8XrGRrE-A5AlGCij97mZofH223wulyZiBuPb2wwZWO9S3ydjEOwX3qNp7GxG91V8YttVnhhXPQBt229j9g6vHQfzu8cnnv36Wztw6ZNbTTn6LTW62gujnGIlrfT58l9Mnu6e5iMZ0lJOWsSpSjRSnOidMFSyjMOlaqlAllBVWhZEq3rUrBKKcgog0oSIQEY5YXOjDTpEInD3jL4GIOp89I2Pwc3Qdt1TiDvROWdqLwTlR9FtST5Q25D-2vY_8tcHRhrjPmdF1zwNOPpN77bdqQ |
| CODEN | ISJEAZ |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104404 crossref_primary_10_1016_j_dsp_2023_104220 crossref_primary_10_1007_s00034_023_02428_w crossref_primary_10_1109_ACCESS_2019_2904208 crossref_primary_10_1016_j_dsp_2022_103898 crossref_primary_10_1007_s00034_020_01587_4 crossref_primary_10_1109_TVT_2021_3105673 crossref_primary_10_3390_s23104811 crossref_primary_10_1109_JSEN_2024_3363030 crossref_primary_10_1109_TIM_2022_3200088 crossref_primary_10_1155_2022_1648244 crossref_primary_10_1109_ACCESS_2018_2829537 crossref_primary_10_1109_TVT_2020_3018489 crossref_primary_10_1109_TIM_2025_3545500 crossref_primary_10_3390_electronics12102191 crossref_primary_10_3390_s19061398 crossref_primary_10_1109_LAWP_2024_3394610 crossref_primary_10_1016_j_dsp_2019_06_008 crossref_primary_10_1016_j_sigpro_2022_108879 crossref_primary_10_1007_s00034_019_01237_4 crossref_primary_10_1109_LSP_2019_2913452 crossref_primary_10_1016_j_apacoust_2023_109541 crossref_primary_10_1109_TSP_2020_3013419 crossref_primary_10_1121_10_0032395 crossref_primary_10_1155_2022_3892542 crossref_primary_10_1109_LCOMM_2018_2849724 crossref_primary_10_3390_app15031473 crossref_primary_10_1049_iet_rsn_2018_5440 crossref_primary_10_3390_s19204427 crossref_primary_10_1049_iet_rsn_2018_5386 crossref_primary_10_1109_TGRS_2023_3293866 crossref_primary_10_1016_j_aeue_2022_154453 crossref_primary_10_3390_rs16173140 crossref_primary_10_1155_2018_3084516 crossref_primary_10_1007_s00034_019_01093_2 crossref_primary_10_1016_j_dsp_2018_04_003 crossref_primary_10_1109_LSP_2019_2909587 crossref_primary_10_1016_j_apacoust_2023_109506 crossref_primary_10_1109_ACCESS_2018_2803050 crossref_primary_10_1109_TVT_2021_3132673 |
| Cites_doi | 10.1109/JSEN.2016.2517128 10.1109/TSP.2016.2537265 10.1109/TIT.2010.2044061 10.1109/JSEN.2014.2327633 10.1109/LSP.2014.2358084 10.1016/j.dsp.2014.02.013 10.1109/TAES.2011.6034684 10.1109/JSEN.2014.2371475 10.1016/S0165-1684(02)00337-7 10.1109/29.17564 10.1109/TAP.1986.1143830 10.1007/BF02293708 10.1007/s10208-009-9045-5 10.1109/JOE.2006.875270 10.1109/JSEN.2016.2580621 10.1109/JSEN.2016.2550664 10.1109/TSP.2004.838966 10.1109/ICASSP.2012.6288473 10.1109/ICASSP.2004.1326200 10.1109/ChinaSIP.2015.7230501 10.1137/1038003 10.1109/78.928686 10.1109/ICASSP.2015.7178479 10.1109/LSP.2005.843774 10.1109/JSEN.2014.2315895 10.1109/TSP.2008.917364 10.1109/TAES.2007.4383611 10.1109/JSEN.2014.2374182 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JSEN.2016.2621057 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 1558-1748 |
| EndPage | 8989 |
| ExternalDocumentID | 10_1109_JSEN_2016_2621057 7676346 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61401284; 61601307; 61601300 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of SZU grantid: 827-000071 – fundername: Foundation of Shenzhen grantid: JCYJ20140418091413566; JCYJ20160422102022017; JCYJ20150324140036835 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION |
| ID | FETCH-LOGICAL-c265t-9921a9a619ab5326460d9f8908d0dba8c1aafc75d9904250d817800526ba4e8e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000389053900043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-437X |
| IngestDate | Tue Nov 18 21:55:51 EST 2025 Sat Nov 29 05:42:39 EST 2025 Wed Aug 27 03:05:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c265t-9921a9a619ab5326460d9f8908d0dba8c1aafc75d9904250d817800526ba4e8e3 |
| ORCID | 0000-0003-4636-4339 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSEN_2016_2621057 ieee_primary_7676346 crossref_primary_10_1109_JSEN_2016_2621057 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-Dec.15,-15 2016-12-15 |
| PublicationDateYYYYMMDD | 2016-12-15 |
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-Dec.15,-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE sensors journal |
| PublicationTitleAbbrev | JSEN |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref11 doi: 10.1109/JSEN.2016.2517128 – ident: ref7 doi: 10.1109/TSP.2016.2537265 – ident: ref24 doi: 10.1109/TIT.2010.2044061 – ident: ref10 doi: 10.1109/JSEN.2014.2327633 – ident: ref22 doi: 10.1109/LSP.2014.2358084 – ident: ref21 doi: 10.1016/j.dsp.2014.02.013 – ident: ref5 doi: 10.1109/TAES.2011.6034684 – ident: ref3 doi: 10.1109/JSEN.2014.2371475 – ident: ref14 doi: 10.1016/S0165-1684(02)00337-7 – ident: ref9 doi: 10.1109/29.17564 – ident: ref8 doi: 10.1109/TAP.1986.1143830 – ident: ref25 doi: 10.1007/BF02293708 – ident: ref23 doi: 10.1007/s10208-009-9045-5 – ident: ref16 doi: 10.1109/JOE.2006.875270 – ident: ref4 doi: 10.1109/JSEN.2016.2580621 – ident: ref20 doi: 10.1109/JSEN.2016.2550664 – ident: ref12 doi: 10.1109/TSP.2004.838966 – ident: ref27 doi: 10.1109/ICASSP.2012.6288473 – ident: ref17 doi: 10.1109/ICASSP.2004.1326200 – ident: ref19 doi: 10.1109/ChinaSIP.2015.7230501 – ident: ref26 doi: 10.1137/1038003 – ident: ref6 doi: 10.1109/78.928686 – ident: ref18 doi: 10.1109/ICASSP.2015.7178479 – ident: ref15 doi: 10.1109/LSP.2005.843774 – ident: ref2 doi: 10.1109/JSEN.2014.2315895 – ident: ref13 doi: 10.1109/TSP.2008.917364 – ident: ref28 doi: 10.1109/TAES.2007.4383611 – ident: ref1 doi: 10.1109/JSEN.2014.2374182 |
| SSID | ssj0019757 |
| Score | 2.3749182 |
| Snippet | It is known that classical subspace-based direction-of-arrival (DOA) estimation algorithms are not straightforwardly applicable to scenarios with unknown... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 8982 |
| SubjectTerms | Covariance matrices Direction-of-arrival estimation Maximum likelihood estimation nonuniform noise semidefinite programming Sensor array processing Sensor arrays |
| Title | New Approaches to Direction-of-Arrival Estimation With Sensor Arrays in Unknown Nonuniform Noise |
| URI | https://ieeexplore.ieee.org/document/7676346 |
| Volume | 16 |
| WOSCitedRecordID | wos000389053900043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1748 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019757 issn: 1530-437X databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UBPXgaxXf5OBJjJt22zyOi6yIh0VYF_dW0yTFgqbS7Qr-e5NuXBRE8BZKQku_TGYmM_MNwLkWReGsYoHzQuY4KUQP50wlzkvpKSJjSYxQbbMJNhzyyUTcL8HlohbGGNMmn5krP2xj-bpSM39V1mXUSUNCl2GZMTqv1VpEDARrWT2dABOc9NgkRDAjIrp3o8HQJ3HRq5jGvq_tDx30ralKq1Nutv73NduwGWxH1J-DvQNLxu7CxjdGwV1YC03Nnz868OQOMNQPnOFmipoKhQOusrgqcL-uS7fP0MBJ-byAET2WzTMaOc-2qt1ravkxRaVFY-tv3iwaVnZmfSXXqxuWU7MH45vBw_UtDg0VsIpp2mAh4kgK6XwmmafObksocVhxQbgmOpdcRVIWiqXaqSgny0TziPGWESaXieGmtw8rtrLmABCPJRdc65Tl1DPScF4IP0sKh66g-hDI1y_OVGAb900vXrLW6yAi86hkHpUsoHIIF4slb3Oqjb8mdzwii4kBjKPfHx_Dul_s01Ci9ARWmnpmTmFVvTfltD5rN9InhWzF1g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB68QH3w2FW8zYNPYty02yN5XGTFswgq7ltNk5QtaCrdruC_N-nGRUEE30JJD_plMjOZmW8AjiTLc2MVM5zlPMNBzro4i0VgvJSuINznRDHRNJuIk4QOBuxuBk6mtTBKqSb5TJ3aYRPLl6UY26OyThwZaQiiWZgPg8Ank2qtacyAxQ2vpxFhgoNuPHAxTI-wztV9P7FpXNGpH_m2s-0PLfStrUqjVc5X__c9a7DirEfUm8C9DjNKt2D5G6dgCxZdW_PhRxuezRaGeo41XI1QXSK3xZUalznuVVVhVhrqGzmflDCip6Ieonvj25aVeU3FP0ao0OhR27M3jZJSj7Wt5Xo1w2KkNuDxvP9wdoFdSwUs_CisMWO-xxk3XhPPQmO5BRExaFFGqCQy41R4nOciDqVRUkaaiaReTBtOmIwHiqruJszpUqstQNTnlFEpwziLLCcNpTmzszgz-LJIbgP5-sWpcHzjtu3FS9r4HYSlFpXUopI6VLbheHrL24Rs46_JbYvIdKIDY-f3y4ewePFwe5PeXCbXu7BkH2STUrxwD-bqaqz2YUG818WoOmgW1Sf7zckd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Approaches+to+Direction-of-Arrival+Estimation+With+Sensor+Arrays+in+Unknown+Nonuniform+Noise&rft.jtitle=IEEE+sensors+journal&rft.au=Liao%2C+Bin&rft.au=Huang%2C+Lei&rft.au=Guo%2C+Chongtao&rft.au=So%2C+Hing+Cheung&rft.date=2016-12-15&rft.issn=1530-437X&rft.eissn=1558-1748&rft.volume=16&rft.issue=24&rft.spage=8982&rft.epage=8989&rft_id=info:doi/10.1109%2FJSEN.2016.2621057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSEN_2016_2621057 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |