Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions
Change detection is a vibrant area of research in remote sensing. Thanks to increases in the spatial resolution of remote sensing images, subtle changes at a finer geometrical scale can now be effectively detected. However, change detection from very-high-spatial-resolution (VHR) (≤5 m) remote sensi...
Saved in:
| Published in: | IEEE geoscience and remote sensing magazine Vol. 9; no. 4; pp. 68 - 101 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.12.2021
|
| Subjects: | |
| ISSN: | 2473-2397, 2168-6831 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Change detection is a vibrant area of research in remote sensing. Thanks to increases in the spatial resolution of remote sensing images, subtle changes at a finer geometrical scale can now be effectively detected. However, change detection from very-high-spatial-resolution (VHR) (≤5 m) remote sensing images is challenging due to limited spectral information, spectral variability, geometric distortion, and information loss. To address these challenges, many change detection algorithms have been developed. However, a comprehensive review of change detection in VHR images is lacking in the existing literature. This review aims to fill the gap and mainly includes three aspects: methods, applications, and future directions. |
|---|---|
| AbstractList | Change detection is a vibrant area of research in remote sensing. Thanks to increases in the spatial resolution of remote sensing images, subtle changes at a finer geometrical scale can now be effectively detected. However, change detection from very-high-spatial-resolution (VHR) (≤5 m) remote sensing images is challenging due to limited spectral information, spectral variability, geometric distortion, and information loss. To address these challenges, many change detection algorithms have been developed. However, a comprehensive review of change detection in VHR images is lacking in the existing literature. This review aims to fill the gap and mainly includes three aspects: methods, applications, and future directions. |
| Author | Huang, Xin Zhang, Anlu Wen, Dawei Ke, Xinli Benediktsson, Jon Atli Bovolo, Francesca Li, Jiayi |
| Author_xml | – sequence: 1 givenname: Dawei surname: Wen fullname: Wen, Dawei email: daweiwen@mail.hzau.edu.cn organization: College of Public Administration, Huazhong Agricultural University, Wuhan, China – sequence: 2 givenname: Xin surname: Huang fullname: Huang, Xin email: xhuang@whu.edu.cn organization: Luojia Distinguished Professor, Wuhan University, Wuhan, China – sequence: 3 givenname: Francesca surname: Bovolo fullname: Bovolo, Francesca email: bovolo@fbk.eu organization: Remote Sensing for Digital Earth unit, Fondazione Bruno Kessler, Trento, Italy – sequence: 4 givenname: Jiayi surname: Li fullname: Li, Jiayi email: zjjerica@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China – sequence: 5 givenname: Xinli surname: Ke fullname: Ke, Xinli email: kexl@mail.hzau.edu.cn organization: College of Public Administration, Huazhong Agricultural University, Wuhan, China – sequence: 6 givenname: Anlu surname: Zhang fullname: Zhang, Anlu email: zhanganlu@mail.hzau.edu.cn organization: Professor, Huazhong Agricultural University, Wuhan, China – sequence: 7 givenname: Jon Atli surname: Benediktsson fullname: Benediktsson, Jon Atli email: benedikt@hi.is organization: Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland |
| BookMark | eNp9kMtOwzAQRS1UJErpByA2_gBS7DhxbHao0IfUqlILbCM3GadGaRLZ7qIbvp2krViwYDYzI90zj3uLelVdAUL3lIwoJfJpOV1vRiEJ6YgRziIeX6F-SLkIuGC019ZRwoKQyeQGDZ37Im2ImEoq-uh7vFNVAfgVPGTe1BWe2HqPP8Eeg5kpdsGmUd6oMliDq8vDSbFqvMlUidewrz3gDVTOVAWe71UB7hkvwe_q3D1i1TRlK-yYrqtyrA_-YAHnxp6XuTt0rVXpYHjJA_QxeXsfz4LFajofvyyCLOSxD-JIahZv26tlKCIdShJzCgSoSESWRVpLSbecRzonNGOUSSZ4tAXZqnNBhWYDRM9zM1s7Z0GnjTV7ZY8pJWnnYdp5mHYephcPWyb5w2TGn77xVpnyX_LhTBoA-N0kmYxZTNgP9UmBig |
| CODEN | IGRSCZ |
| CitedBy_id | crossref_primary_10_1016_j_jag_2023_103402 crossref_primary_10_3390_rs15184609 crossref_primary_10_3390_rs14215622 crossref_primary_10_1080_01431161_2024_2305627 crossref_primary_10_1007_s12524_025_02268_y crossref_primary_10_1016_j_isprsjprs_2024_01_016 crossref_primary_10_1109_LGRS_2024_3404645 crossref_primary_10_1016_j_isprsjprs_2025_05_020 crossref_primary_10_3389_fbuil_2024_1468726 crossref_primary_10_1109_TNNLS_2023_3282935 crossref_primary_10_1109_JSTARS_2024_3413715 crossref_primary_10_1109_TGRS_2021_3130940 crossref_primary_10_1109_TNNLS_2024_3401696 crossref_primary_10_1109_JSTARS_2025_3582803 crossref_primary_10_1109_LGRS_2023_3266891 crossref_primary_10_1109_TGRS_2024_3369723 crossref_primary_10_1109_TGRS_2023_3241366 crossref_primary_10_1109_TGRS_2025_3566701 crossref_primary_10_1109_JPROC_2022_3219376 crossref_primary_10_1109_TGRS_2023_3344083 crossref_primary_10_3390_rs16091517 crossref_primary_10_1016_j_autcon_2024_105393 crossref_primary_10_1109_JSTARS_2024_3415171 crossref_primary_10_3390_rs15010087 crossref_primary_10_3390_rs15153793 crossref_primary_10_1016_j_autcon_2024_105955 crossref_primary_10_3390_rs16040729 crossref_primary_10_1109_TGRS_2024_3501303 crossref_primary_10_3390_geomatics2010002 crossref_primary_10_1016_j_scitotenv_2025_179582 crossref_primary_10_3390_rs17061080 crossref_primary_10_1109_JSTARS_2025_3534583 crossref_primary_10_3390_app13021037 crossref_primary_10_3390_land12051050 crossref_primary_10_1109_TGRS_2023_3296383 crossref_primary_10_1109_JSTARS_2025_3564008 crossref_primary_10_1109_TGRS_2023_3339291 crossref_primary_10_1111_tgis_13133 crossref_primary_10_3390_rs15092464 crossref_primary_10_1038_s41598_025_13236_4 crossref_primary_10_1109_JSTARS_2024_3402388 crossref_primary_10_1109_MGRS_2022_3145854 crossref_primary_10_1109_JSTARS_2025_3595585 crossref_primary_10_1109_TGRS_2024_3350573 crossref_primary_10_3390_rs16224223 crossref_primary_10_1016_j_isprsjprs_2022_07_016 crossref_primary_10_1109_JSTARS_2024_3487137 crossref_primary_10_3390_rs16030572 crossref_primary_10_1109_TGRS_2024_3362680 crossref_primary_10_1109_LGRS_2025_3568878 crossref_primary_10_3390_s24103211 crossref_primary_10_3390_rs16183424 crossref_primary_10_1109_TCSVT_2023_3344092 crossref_primary_10_1109_JSTARS_2024_3373039 crossref_primary_10_1038_s41598_025_98230_6 crossref_primary_10_1109_LGRS_2024_3398804 crossref_primary_10_1109_TGRS_2024_3362795 crossref_primary_10_1109_TGRS_2024_3439395 crossref_primary_10_3390_e26060445 crossref_primary_10_1080_10106049_2024_2322080 crossref_primary_10_1002_ps_8401 crossref_primary_10_1016_j_asr_2025_07_101 crossref_primary_10_1016_j_jag_2023_103258 crossref_primary_10_3390_rs15092433 crossref_primary_10_1109_MGRS_2023_3293459 crossref_primary_10_1109_TGRS_2024_3432749 crossref_primary_10_1109_TGRS_2024_3446628 crossref_primary_10_3390_rs16030560 crossref_primary_10_1109_TGRS_2022_3174276 crossref_primary_10_1109_JSTARS_2025_3554272 crossref_primary_10_1109_TGRS_2023_3290817 crossref_primary_10_1109_JSTARS_2023_3348572 crossref_primary_10_1007_s41651_024_00202_3 crossref_primary_10_1109_LGRS_2024_3415819 crossref_primary_10_1109_TGRS_2023_3342477 crossref_primary_10_1109_TGRS_2024_3383800 crossref_primary_10_1016_j_knosys_2024_112159 crossref_primary_10_1038_s41598_024_55482_y crossref_primary_10_1109_TGRS_2022_3221489 crossref_primary_10_1109_TGRS_2023_3281711 crossref_primary_10_1109_TGRS_2025_3600397 crossref_primary_10_3390_rs14030462 crossref_primary_10_1007_s41060_023_00459_9 crossref_primary_10_1016_j_isprsjprs_2025_09_003 crossref_primary_10_1109_JSTARS_2024_3414452 crossref_primary_10_1109_LGRS_2024_3432077 crossref_primary_10_1109_TGRS_2022_3197901 crossref_primary_10_1109_TGRS_2024_3368168 crossref_primary_10_1016_j_compenvurbsys_2025_102282 crossref_primary_10_3390_app15094619 crossref_primary_10_3390_app15116292 crossref_primary_10_1109_TGRS_2022_3157721 crossref_primary_10_1109_JSTARS_2024_3522910 crossref_primary_10_3390_rs17173026 crossref_primary_10_1016_j_compag_2025_109973 crossref_primary_10_3390_rs15112889 crossref_primary_10_1016_j_isprsjprs_2022_09_002 crossref_primary_10_1109_TGRS_2023_3332338 crossref_primary_10_3390_rs15020522 crossref_primary_10_3390_rs16203852 crossref_primary_10_1109_JSTARS_2024_3416183 crossref_primary_10_1109_TGRS_2025_3585489 crossref_primary_10_1117_1_JRS_17_034501 crossref_primary_10_1109_JSEN_2025_3526149 crossref_primary_10_1109_JSTARS_2025_3549471 crossref_primary_10_14358_PERS_23_00001R2 crossref_primary_10_1063_5_0270989 crossref_primary_10_3390_rs14235969 crossref_primary_10_1109_TGRS_2022_3171067 crossref_primary_10_1117_1_JRS_18_016503 crossref_primary_10_1080_10095020_2022_2128902 crossref_primary_10_1109_TGRS_2023_3334521 crossref_primary_10_1109_ACCESS_2023_3322205 crossref_primary_10_1109_JSTARS_2025_3555849 crossref_primary_10_1109_TGRS_2023_3294884 crossref_primary_10_1109_TGRS_2024_3369310 crossref_primary_10_1016_j_dsp_2024_104825 crossref_primary_10_1016_j_cities_2023_104644 crossref_primary_10_1109_TPAMI_2025_3543842 crossref_primary_10_3390_rs16183507 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_1109_TGRS_2023_3337816 crossref_primary_10_3390_rs15081990 crossref_primary_10_7717_peerj_cs_1855 crossref_primary_10_1016_j_jag_2023_103180 crossref_primary_10_3390_drones6120414 crossref_primary_10_3390_ijgi13070217 crossref_primary_10_1080_22797254_2021_2025153 crossref_primary_10_1016_j_nhres_2024_09_001 crossref_primary_10_1016_j_inffus_2025_103257 crossref_primary_10_3390_rs15235459 crossref_primary_10_1109_TGRS_2022_3204834 crossref_primary_10_1080_01431161_2024_2398226 crossref_primary_10_1109_TGRS_2023_3305334 crossref_primary_10_1080_01431161_2023_2225712 crossref_primary_10_3390_rs15020463 crossref_primary_10_1080_01431161_2022_2131479 crossref_primary_10_1109_TGRS_2025_3583569 crossref_primary_10_3390_rs14194895 crossref_primary_10_1109_TGRS_2025_3525811 crossref_primary_10_1016_j_jag_2024_104321 crossref_primary_10_3390_rs16132353 crossref_primary_10_1109_TGRS_2024_3469930 crossref_primary_10_1109_TIM_2025_3573363 crossref_primary_10_1109_TAES_2025_3558725 crossref_primary_10_1109_TGRS_2023_3319961 crossref_primary_10_3390_rs14184570 crossref_primary_10_3390_su15010140 crossref_primary_10_1109_TGRS_2023_3268038 crossref_primary_10_1016_j_rsase_2024_101167 |
| Cites_doi | 10.1016/j.isprsjprs.2019.06.005 10.1016/j.rse.2009.04.007 10.3390/rs11020164 10.1016/j.isprsjprs.2016.02.013 10.1109/CVPR.2017.243 10.1016/j.scib.2019.12.007 10.3390/s19061284 10.1109/LGRS.2016.2574940 10.1109/TSMC.1973.4309314 10.1016/0169-555X(93)90022-T 10.1080/15481603.2017.1417691 10.1109/JSTARS.2018.2804440 10.1016/j.jag.2014.03.004 10.14358/PERS.83.3.225 10.3390/rs70404753 10.1109/TGRS.2013.2262722 10.1016/j.isprsjprs.2019.04.010 10.1016/j.isprsjprs.2014.07.007 10.1016/j.sigpro.2015.09.020 10.1016/j.isprsjprs.2014.09.002 10.1016/0261-2194(93)90001-Y 10.1016/j.asr.2018.03.011 10.1145/3065386 10.1016/j.rse.2020.111802 10.1080/01431161.2017.1308033 10.3390/rs10020281 10.3390/rs11161902 10.1016/j.cviu.2019.07.003 10.1109/LGRS.2008.2007429 10.1016/j.isprsjprs.2016.01.018 10.1111/j.1477-9730.2011.00665.x 10.1109/TGRS.2014.2380779 10.1080/01431161.2016.1259673 10.1038/srep08732 10.1088/1748-9326/4/4/044003 10.1109/IGARSS.2015.7326158 10.1109/TPAMI.1983.4767341 10.1016/j.rse.2019.111458 10.1109/LGRS.2017.2762694 10.14358/PERS.76.2.137 10.1080/19479832.2016.1158211 10.1016/j.scib.2019.03.002 10.3390/rs6099086 10.1080/0143116031000139863 10.14358/PERS.77.7.721 10.1109/JSTARS.2020.3009116 10.1016/j.rse.2020.111949 10.1016/j.rse.2019.03.033 10.1109/TGRS.2016.2616585 10.3390/rs11111292 10.1016/j.rse.2017.08.036 10.1016/j.rse.2015.01.006 10.1109/MGRS.2017.2762307 10.1016/j.neucom.2014.08.080 10.1016/j.patcog.2017.01.002 10.3390/rs10101615 10.1109/JPROC.2015.2462751 10.1109/TIP.2002.999678 10.1007/s11430-019-9547-x 10.1016/j.isprsjprs.2017.11.017 10.1016/j.fcr.2013.11.012 10.1007/s11119-007-9036-y 10.1016/j.isprsjprs.2016.07.006 10.1109/TGRS.2013.2240692 10.1109/TGRS.2018.2886643 10.1109/JSTARS.2016.2542074 10.1109/LGRS.2017.2766840 10.1109/JSTARS.2016.2553170 10.1016/j.isprsjprs.2012.08.007 10.1109/IGARSS.2016.7729468 10.1016/j.isprsjprs.2013.09.004 10.1016/j.jag.2011.07.002 10.1109/TNNLS.2019.2910571 10.1016/j.isprsjprs.2013.02.017 10.1109/JSTARS.2013.2252423 10.1109/TGRS.2013.2249521 10.1109/LGRS.2017.2681198 10.1109/JSTARS.2018.2887108 10.1021/es300157u 10.1080/15481603.2016.1250328 10.1038/s41598-018-25823-9 10.1016/j.rse.2018.03.023 10.1109/LGRS.2019.2896385 10.1016/j.rse.2020.111706 10.1016/j.ecolecon.2009.11.009 10.1109/IGARSS.2017.8127028 10.1126/science.1244693 10.1016/j.rse.2009.08.016 10.1109/JSTARS.2019.2929514 10.14358/PERS.83.8.567 10.1080/01431161.2011.648285 10.1109/JSTARS.2016.2586582 10.1016/j.isprsjprs.2017.03.011 10.1016/j.isprsjprs.2015.02.006 10.1016/j.rsase.2019.100246 10.1016/j.isprsjprs.2017.09.007 10.1109/JSTARS.2016.2541678 10.1109/IGARSS.2014.6947066 10.1109/MGRS.2019.2898520 10.1109/ATSIP.2018.8364501 10.1109/LGRS.2017.2762424 10.1016/j.isprsjprs.2018.09.002 10.1016/j.jweia.2014.10.018 10.1016/j.isprsjprs.2013.09.014 10.1016/B978-0-12-818373-1.00002-0 10.3390/rs10010141 10.3390/rs9030287 10.1007/s10514-018-9734-5 10.1080/01431161.2019.1674463 10.1109/LGRS.2012.2228626 10.1109/JSTARS.2017.2696823 10.1007/s10021-004-0243-3 10.1109/TGRS.2016.2516402 10.1109/JSTARS.2016.2606514 10.3390/rs70201736 10.1080/01431161.2020.1734253 10.1016/j.isprsjprs.2015.04.010 10.1109/JSTARS.2019.2950721 10.3390/rs11030240 10.1117/1.JRS.13.024506 10.1109/TGRS.2020.2990640 10.1016/j.rse.2017.05.001 10.3390/s16091377 10.1109/LGRS.2018.2879492 10.1109/TGRS.2019.2907283 10.1016/j.compag.2019.01.042 10.1016/j.isprsjprs.2008.01.007 10.1016/j.isprsjprs.2020.06.003 10.1109/JSTARS.2015.2420713 10.5194/isprs-archives-XLII-3-1489-2018 10.1080/0143116031000101675 10.1109/TGRS.2008.2000741 10.3390/app8101785 10.14358/PERS.83.2.109 10.1109/JSTARS.2019.2892951 10.1109/TGRS.2020.2977248 10.1109/LGRS.2012.2222340 10.1016/j.rse.2016.07.028 10.1080/01431161.2019.1602792 10.1080/2150704X.2018.1492172 10.1109/TGRS.2018.2863224 10.1109/LGRS.2018.2889307 10.1016/j.rse.2019.111558 10.1016/j.rse.2010.02.018 10.1109/TII.2018.2873492 10.3390/rs11070763 10.1016/j.isprsjprs.2016.05.004 10.1109/JSTARS.2013.2271445 10.1016/j.patcog.2016.07.001 10.3390/rs12132098 10.1016/j.optlastec.2013.10.003 10.1109/CVPR.2016.90 10.3390/rs11111382 10.1016/j.isprsjprs.2013.01.012 10.1016/j.landusepol.2019.104266 10.1109/JSTARS.2016.2645798 10.1016/j.rse.2016.02.030 10.1021/acs.est.6b04260 10.1016/j.isprsjprs.2014.04.007 10.1109/LGRS.2019.2916601 10.1016/j.patcog.2019.106971 10.1109/Multi-Temp.2019.8866919 10.1109/LGRS.2019.2915320 10.3390/rs10020276 10.3390/app8101883 10.1109/TGRS.2019.2956756 10.1016/j.autcon.2016.05.008 10.1016/j.jag.2011.10.013 10.1109/TGRS.2006.876704 10.3390/rs11232753 10.1166/sl.2012.1865 10.1016/j.jag.2016.08.010 10.3390/rs10121955 10.1109/JSTARS.2017.2712119 10.3390/rs9121306 10.1109/TGRS.2016.2576978 10.3390/rs12050799 10.1109/TIP.2013.2259833 10.1016/j.rse.2020.111865 10.1109/TGRS.2011.2165548 10.1109/TGRS.2015.2463075 10.1016/S0034-4257(02)00196-7 10.3390/rs8060506 10.1080/01431161.2020.1723818 10.1016/j.jag.2018.05.005 10.3390/rs12152345 10.1109/TGRS.2020.2968098 10.1016/j.rse.2019.04.015 10.1109/JSTARS.2015.2458582 10.1117/1.JRS.13.026511 10.3390/rs8090768 10.3390/rs11070817 10.1109/LGRS.2019.2897652 10.1016/j.isprsjprs.2013.03.006 10.1109/JSTARS.2017.2737702 10.1109/TGRS.2017.2759663 10.1109/TIP.2018.2835143 10.1016/j.rse.2008.01.010 10.1016/j.rse.2019.111510 10.1080/19479832.2012.739577 10.1002/ldr.3337 10.1080/01431160801950162 10.3390/ijgi7100410 10.14358/PERS.85.6.415 10.1109/LGRS.2008.917726 10.1109/JSTARS.2015.2424275 10.1016/j.ecolind.2018.08.004 10.1109/LGRS.2019.2955309 10.3390/rs9121233 10.1080/13658816.2017.1324976 10.1016/j.rse.2012.05.027 10.1016/j.jag.2019.04.020 10.1080/2150704X.2014.963732 10.1127/1432-8364/2013/0200 10.1109/JPROC.2012.2197169 10.1016/j.isprsjprs.2015.10.004 10.1109/JSTARS.2010.2074186 10.1109/TGRS.2016.2627638 10.1109/MGRS.2015.2443494 10.1016/j.rse.2009.08.014 10.5194/isprsannals-I-7-141-2012 10.4319/lo.2006.51.5.2388 10.1080/01431160512331316810 10.1109/TGRS.2013.2295819 10.3390/rs9040365 10.1080/01431161.2017.1375616 10.1016/j.rse.2019.111223 10.3390/rs11131554 10.1038/nature20584 10.3390/rs8020088 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/MGRS.2021.3063465 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 2168-6831 |
| EndPage | 101 |
| ExternalDocumentID | 10_1109_MGRS_2021_3063465 9395350 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Chinese Academy of Sciences Interdisciplinary Innovation Team grantid: JCTD-2019-04 – fundername: National Natural Science Foundation of China grantid: 41901279; 41771360; 41971295 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c265t-549f35b0859284f290561e0e1878cc4ff991b664fd01c31393864be9928d818f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 175 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-2397 |
| IngestDate | Tue Nov 18 22:23:57 EST 2025 Sat Nov 29 05:56:56 EST 2025 Wed Aug 27 02:49:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c265t-549f35b0859284f290561e0e1878cc4ff991b664fd01c31393864be9928d818f3 |
| PageCount | 34 |
| ParticipantIDs | ieee_primary_9395350 crossref_primary_10_1109_MGRS_2021_3063465 crossref_citationtrail_10_1109_MGRS_2021_3063465 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Dec. 2021-12-00 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-Dec. |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE geoscience and remote sensing magazine |
| PublicationTitleAbbrev | GRSM |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref206 ref53 ref203 graña (ref236) 0 ref52 ref204 ref55 ref201 malinverni (ref181) 2012; 11 ref54 ref202 ref209 ref210 ref211 ref51 ref50 ref46 ref218 ref45 ref219 ref48 ref216 ref47 ref217 ref42 ref214 ref41 ref215 ref44 ref212 ref43 ref213 ref49 pesaresi (ref231) 2015 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref221 ref101 ref222 ref220 ref35 ref34 ref37 ref36 ref31 vincent (ref69) 2010; 11 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref200 ref128 ref129 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 ref93 ref133 ref92 ref95 ref131 ref94 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref87 ref136 ref144 ref81 ref145 ref84 ref142 ref83 ref143 simonyan (ref134) 2014 ref140 ref141 ref80 ref79 ref229 ref108 ref78 ref109 ref227 ref106 ref228 ref107 ref75 ref225 ref104 ref74 ref105 ref77 ref223 ref102 ref76 ref224 ref103 gupta (ref82) 0 ref71 ref232 ref111 ref70 ref233 ref112 ref73 ref230 ref72 ref110 (ref226) 0 ref68 ref67 ref238 ref117 ref239 ref118 ref64 ref115 ref63 ref237 ref116 ref66 ref234 ref113 ref65 ref235 ref114 saha (ref132) 2020 ref60 ref122 ref123 ref62 ref241 ref120 ref61 ref242 ref121 ref240 jacobsen (ref30) 2005; 2005 ref168 ref169 ref170 ref177 ref178 ref175 ref176 ref173 ref174 ref171 ref172 ref179 ref180 ref188 ref189 ref186 ref187 ref184 hall-beyer (ref40) 2007 ref185 ref182 ref148 ref149 ref146 ref147 rußwurm (ref119) 0 ref155 ref156 ref153 ref154 ref151 ref152 ref150 ref159 ref157 ref158 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref161 ref13 ref12 ref15 bendig (ref183) 2013; 2013 ref14 ref11 ref10 ref17 ref16 ref19 ref18 szegedy (ref135) 2016 ref2 ref1 ref191 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref193 ref194 |
| References_xml | – ident: ref164 doi: 10.1016/j.isprsjprs.2019.06.005 – year: 2014 ident: ref134 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref212 doi: 10.1016/j.rse.2009.04.007 – ident: ref176 doi: 10.3390/rs11020164 – ident: ref70 doi: 10.1016/j.isprsjprs.2016.02.013 – ident: ref137 doi: 10.1109/CVPR.2017.243 – ident: ref230 doi: 10.1016/j.scib.2019.12.007 – ident: ref178 doi: 10.3390/s19061284 – ident: ref61 doi: 10.1109/LGRS.2016.2574940 – ident: ref39 doi: 10.1109/TSMC.1973.4309314 – ident: ref55 doi: 10.1016/0169-555X(93)90022-T – ident: ref185 doi: 10.1080/15481603.2017.1417691 – ident: ref214 doi: 10.1109/JSTARS.2018.2804440 – ident: ref170 doi: 10.1016/j.jag.2014.03.004 – ident: ref83 doi: 10.14358/PERS.83.3.225 – ident: ref200 doi: 10.3390/rs70404753 – ident: ref37 doi: 10.1109/TGRS.2013.2262722 – ident: ref162 doi: 10.1016/j.isprsjprs.2019.04.010 – ident: ref157 doi: 10.1016/j.isprsjprs.2014.07.007 – ident: ref108 doi: 10.1016/j.sigpro.2015.09.020 – ident: ref228 doi: 10.1016/j.isprsjprs.2014.09.002 – ident: ref184 doi: 10.1016/0261-2194(93)90001-Y – ident: ref32 doi: 10.1016/j.asr.2018.03.011 – ident: ref133 doi: 10.1145/3065386 – ident: ref2 doi: 10.1016/j.rse.2020.111802 – start-page: 10 year: 0 ident: ref82 article-title: Creating xBD: A dataset for assessing building damage from satellite imagery publication-title: Proc of IEEE Conf Comp Vision and Pattern Recog – ident: ref45 doi: 10.1080/01431161.2017.1308033 – ident: ref93 doi: 10.3390/rs10020281 – ident: ref240 doi: 10.3390/rs11161902 – ident: ref81 doi: 10.1016/j.cviu.2019.07.003 – ident: ref89 doi: 10.1109/LGRS.2008.2007429 – ident: ref26 doi: 10.1016/j.isprsjprs.2016.01.018 – ident: ref13 doi: 10.1111/j.1477-9730.2011.00665.x – ident: ref148 doi: 10.1109/TGRS.2014.2380779 – ident: ref161 doi: 10.1080/01431161.2016.1259673 – ident: ref166 doi: 10.1038/srep08732 – ident: ref224 doi: 10.1088/1748-9326/4/4/044003 – ident: ref160 doi: 10.1109/IGARSS.2015.7326158 – ident: ref54 doi: 10.1109/TPAMI.1983.4767341 – ident: ref238 doi: 10.1016/j.rse.2019.111458 – ident: ref130 doi: 10.1109/LGRS.2017.2762694 – ident: ref87 doi: 10.14358/PERS.76.2.137 – ident: ref125 doi: 10.1080/19479832.2016.1158211 – ident: ref232 doi: 10.1016/j.scib.2019.03.002 – ident: ref95 doi: 10.3390/rs6099086 – ident: ref4 doi: 10.1080/0143116031000139863 – ident: ref36 doi: 10.14358/PERS.77.7.721 – ident: ref120 doi: 10.1109/JSTARS.2020.3009116 – ident: ref192 doi: 10.1016/j.rse.2020.111949 – ident: ref101 doi: 10.1016/j.rse.2019.03.033 – ident: ref79 doi: 10.1109/TGRS.2016.2616585 – ident: ref139 doi: 10.3390/rs11111292 – ident: ref210 doi: 10.1016/j.rse.2017.08.036 – ident: ref5 doi: 10.1016/j.rse.2015.01.006 – ident: ref74 doi: 10.1109/MGRS.2017.2762307 – ident: ref41 doi: 10.1016/j.neucom.2014.08.080 – year: 0 ident: ref226 publication-title: CCI-LC Product User Guide v2 4 – year: 2016 ident: ref135 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning – ident: ref71 doi: 10.1016/j.patcog.2017.01.002 – ident: ref216 doi: 10.3390/rs10101615 – ident: ref14 doi: 10.1109/JPROC.2015.2462751 – ident: ref57 doi: 10.1109/TIP.2002.999678 – ident: ref18 doi: 10.1007/s11430-019-9547-x – ident: ref97 doi: 10.1016/j.isprsjprs.2017.11.017 – ident: ref187 doi: 10.1016/j.fcr.2013.11.012 – ident: ref186 doi: 10.1007/s11119-007-9036-y – ident: ref34 doi: 10.1016/j.isprsjprs.2016.07.006 – ident: ref156 doi: 10.1109/TGRS.2013.2240692 – ident: ref67 doi: 10.1109/TGRS.2018.2886643 – ident: ref153 doi: 10.1109/JSTARS.2016.2542074 – ident: ref66 doi: 10.1109/LGRS.2017.2766840 – volume: 11 start-page: 3371 year: 2010 ident: ref69 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learning Res – ident: ref204 doi: 10.1109/JSTARS.2016.2553170 – ident: ref173 doi: 10.1016/j.isprsjprs.2012.08.007 – ident: ref222 doi: 10.1109/IGARSS.2016.7729468 – ident: ref159 doi: 10.1016/j.isprsjprs.2013.09.004 – ident: ref145 doi: 10.1016/j.jag.2011.07.002 – ident: ref122 doi: 10.1109/TNNLS.2019.2910571 – ident: ref99 doi: 10.1016/j.isprsjprs.2013.02.017 – ident: ref51 doi: 10.1109/JSTARS.2013.2252423 – ident: ref96 doi: 10.1109/TGRS.2013.2249521 – ident: ref63 doi: 10.1109/LGRS.2017.2681198 – ident: ref131 doi: 10.1109/JSTARS.2018.2887108 – ident: ref206 doi: 10.1021/es300157u – ident: ref146 doi: 10.1080/15481603.2016.1250328 – ident: ref201 doi: 10.1038/s41598-018-25823-9 – ident: ref141 doi: 10.1016/j.rse.2018.03.023 – ident: ref105 doi: 10.1109/LGRS.2019.2896385 – ident: ref197 doi: 10.1016/j.rse.2020.111706 – ident: ref205 doi: 10.1016/j.ecolecon.2009.11.009 – ident: ref128 doi: 10.1109/IGARSS.2017.8127028 – ident: ref227 doi: 10.1126/science.1244693 – ident: ref225 doi: 10.1016/j.rse.2009.08.016 – ident: ref1 doi: 10.1109/JSTARS.2019.2929514 – ident: ref151 doi: 10.14358/PERS.83.8.567 – ident: ref7 doi: 10.1080/01431161.2011.648285 – ident: ref207 doi: 10.1109/JSTARS.2016.2586582 – ident: ref174 doi: 10.1016/j.isprsjprs.2017.03.011 – ident: ref56 doi: 10.1016/j.isprsjprs.2015.02.006 – ident: ref211 doi: 10.1016/j.rsase.2019.100246 – ident: ref241 doi: 10.1016/j.isprsjprs.2017.09.007 – ident: ref43 doi: 10.1109/JSTARS.2016.2541678 – ident: ref143 doi: 10.1109/IGARSS.2014.6947066 – ident: ref8 doi: 10.1109/MGRS.2019.2898520 – ident: ref107 doi: 10.1109/ATSIP.2018.8364501 – ident: ref35 doi: 10.1109/LGRS.2017.2762424 – ident: ref68 doi: 10.1016/j.isprsjprs.2018.09.002 – year: 0 ident: ref236 publication-title: Hyperspectral Remote Sensing Scenes – ident: ref152 doi: 10.1016/j.jweia.2014.10.018 – ident: ref38 doi: 10.1016/j.isprsjprs.2013.09.014 – ident: ref188 doi: 10.1016/B978-0-12-818373-1.00002-0 – ident: ref100 doi: 10.3390/rs10010141 – ident: ref171 doi: 10.3390/rs9030287 – ident: ref126 doi: 10.1007/s10514-018-9734-5 – ident: ref10 doi: 10.1080/01431161.2019.1674463 – ident: ref52 doi: 10.1109/LGRS.2012.2228626 – ident: ref221 doi: 10.1109/JSTARS.2017.2696823 – ident: ref223 doi: 10.1007/s10021-004-0243-3 – ident: ref80 doi: 10.1109/TGRS.2016.2516402 – ident: ref235 doi: 10.1109/JSTARS.2016.2606514 – ident: ref218 doi: 10.3390/rs70201736 – ident: ref127 doi: 10.1080/01431161.2020.1734253 – ident: ref84 doi: 10.1016/j.isprsjprs.2015.04.010 – ident: ref175 doi: 10.1109/JSTARS.2019.2950721 – ident: ref116 doi: 10.3390/rs11030240 – ident: ref123 doi: 10.1117/1.JRS.13.024506 – ident: ref76 doi: 10.1109/TGRS.2020.2990640 – ident: ref21 doi: 10.1016/j.rse.2017.05.001 – ident: ref147 doi: 10.3390/s16091377 – ident: ref196 doi: 10.1109/LGRS.2018.2879492 – year: 2020 ident: ref132 article-title: Semisupervised change detection using graph convolutional network publication-title: IEEE Geosci Remote Sens Lett – volume: 2005 start-page: 487 year: 2005 ident: ref30 article-title: High resolution satellite imaging systems-an overview publication-title: Photogrammetrie - Fernerkundung - Geoinformation – ident: ref198 doi: 10.1109/TGRS.2019.2907283 – ident: ref182 doi: 10.1016/j.compag.2019.01.042 – ident: ref86 doi: 10.1016/j.isprsjprs.2008.01.007 – ident: ref113 doi: 10.1016/j.isprsjprs.2020.06.003 – ident: ref199 doi: 10.1109/JSTARS.2015.2420713 – volume: 11 start-page: 132 year: 2012 ident: ref181 article-title: Agricultural crop change detection by means of hybrid classification and high resolution images publication-title: EARSeL eProc – ident: ref208 doi: 10.5194/isprs-archives-XLII-3-1489-2018 – ident: ref3 doi: 10.1080/0143116031000101675 – ident: ref102 doi: 10.1109/TGRS.2008.2000741 – ident: ref115 doi: 10.3390/app8101785 – ident: ref65 doi: 10.14358/PERS.83.2.109 – ident: ref124 doi: 10.1109/JSTARS.2019.2892951 – ident: ref88 doi: 10.1109/TGRS.2020.2977248 – ident: ref49 doi: 10.1109/LGRS.2012.2222340 – ident: ref25 doi: 10.1016/j.rse.2016.07.028 – ident: ref64 doi: 10.1080/01431161.2019.1602792 – ident: ref77 doi: 10.1080/2150704X.2018.1492172 – ident: ref111 doi: 10.1109/TGRS.2018.2863224 – ident: ref114 doi: 10.1109/LGRS.2018.2889307 – ident: ref215 doi: 10.1016/j.rse.2019.111558 – ident: ref22 doi: 10.1016/j.rse.2010.02.018 – ident: ref73 doi: 10.1109/TII.2018.2873492 – ident: ref155 doi: 10.3390/rs11070763 – ident: ref33 doi: 10.1016/j.isprsjprs.2016.05.004 – ident: ref23 doi: 10.1109/JSTARS.2013.2271445 – ident: ref237 doi: 10.1016/j.patcog.2016.07.001 – ident: ref138 doi: 10.3390/rs12132098 – ident: ref59 doi: 10.1016/j.optlastec.2013.10.003 – ident: ref136 doi: 10.1109/CVPR.2016.90 – ident: ref110 doi: 10.3390/rs11111382 – ident: ref154 doi: 10.1016/j.isprsjprs.2013.01.012 – ident: ref180 doi: 10.1016/j.landusepol.2019.104266 – ident: ref179 doi: 10.1109/JSTARS.2016.2645798 – ident: ref92 doi: 10.1016/j.rse.2016.02.030 – ident: ref191 doi: 10.1021/acs.est.6b04260 – ident: ref28 doi: 10.1016/j.isprsjprs.2014.04.007 – ident: ref78 doi: 10.1109/LGRS.2019.2916601 – ident: ref72 doi: 10.1016/j.patcog.2019.106971 – ident: ref46 doi: 10.1109/Multi-Temp.2019.8866919 – ident: ref209 doi: 10.1109/LGRS.2019.2915320 – ident: ref142 doi: 10.3390/rs10020276 – ident: ref11 doi: 10.3390/app8101883 – ident: ref121 doi: 10.1109/TGRS.2019.2956756 – ident: ref220 doi: 10.1016/j.autcon.2016.05.008 – ident: ref16 doi: 10.1016/j.jag.2011.10.013 – ident: ref42 doi: 10.1109/TGRS.2006.876704 – year: 2015 ident: ref231 article-title: GHS built-up grid, derived from Landsat, multitemporal (1975, 1990, 2000, 2014) publication-title: European Commission Joint Res Centre JRC Data Catalogue – ident: ref103 doi: 10.3390/rs11232753 – ident: ref91 doi: 10.1166/sl.2012.1865 – ident: ref150 doi: 10.1016/j.jag.2016.08.010 – ident: ref190 doi: 10.3390/rs10121955 – ident: ref50 doi: 10.1109/JSTARS.2017.2712119 – ident: ref195 doi: 10.3390/rs9121306 – ident: ref90 doi: 10.1109/TGRS.2016.2576978 – ident: ref117 doi: 10.3390/rs12050799 – ident: ref58 doi: 10.1109/TIP.2013.2259833 – ident: ref169 doi: 10.1016/j.rse.2020.111865 – ident: ref27 doi: 10.1109/TGRS.2011.2165548 – ident: ref31 doi: 10.1109/TGRS.2015.2463075 – ident: ref203 doi: 10.1016/S0034-4257(02)00196-7 – ident: ref129 doi: 10.3390/rs8060506 – ident: ref109 doi: 10.1080/01431161.2020.1723818 – ident: ref177 doi: 10.1016/j.jag.2018.05.005 – ident: ref140 doi: 10.3390/rs12152345 – ident: ref75 doi: 10.1109/TGRS.2020.2968098 – ident: ref202 doi: 10.1016/j.rse.2019.04.015 – ident: ref149 doi: 10.1109/JSTARS.2015.2458582 – ident: ref219 doi: 10.1117/1.JRS.13.026511 – ident: ref233 doi: 10.3390/rs8090768 – ident: ref172 doi: 10.3390/rs11070817 – ident: ref118 doi: 10.1109/LGRS.2019.2897652 – ident: ref6 doi: 10.1016/j.isprsjprs.2013.03.006 – year: 2007 ident: ref40 publication-title: GLCM texture A tutorial version v3 0 – ident: ref239 doi: 10.1109/JSTARS.2017.2737702 – ident: ref104 doi: 10.1109/TGRS.2017.2759663 – ident: ref62 doi: 10.1109/TIP.2018.2835143 – ident: ref217 doi: 10.1016/j.rse.2008.01.010 – ident: ref229 doi: 10.1016/j.rse.2019.111510 – ident: ref98 doi: 10.1080/19479832.2012.739577 – ident: ref144 doi: 10.1002/ldr.3337 – ident: ref106 doi: 10.1080/01431160801950162 – ident: ref47 doi: 10.3390/ijgi7100410 – ident: ref165 doi: 10.14358/PERS.85.6.415 – ident: ref48 doi: 10.1109/LGRS.2008.917726 – ident: ref19 doi: 10.1109/JSTARS.2015.2424275 – ident: ref20 doi: 10.1016/j.ecolind.2018.08.004 – ident: ref112 doi: 10.1109/LGRS.2019.2955309 – ident: ref60 doi: 10.3390/rs9121233 – ident: ref242 doi: 10.1080/13658816.2017.1324976 – ident: ref17 doi: 10.1016/j.rse.2012.05.027 – ident: ref168 doi: 10.1016/j.jag.2019.04.020 – ident: ref53 doi: 10.1080/2150704X.2014.963732 – volume: 2013 start-page: 551 year: 2013 ident: ref183 article-title: UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability monitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern aus UAV-Befliegungen publication-title: Photogrammetrie - Fernerkundung - Geoinformation doi: 10.1127/1432-8364/2013/0200 – ident: ref24 doi: 10.1109/JPROC.2012.2197169 – ident: ref12 doi: 10.1016/j.isprsjprs.2015.10.004 – ident: ref213 doi: 10.1109/JSTARS.2010.2074186 – start-page: 200 year: 0 ident: ref119 article-title: Meta-learning for few-shot land cover classification publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops – ident: ref85 doi: 10.1109/TGRS.2016.2627638 – ident: ref9 doi: 10.1109/MGRS.2015.2443494 – ident: ref167 doi: 10.1016/j.rse.2009.08.014 – ident: ref158 doi: 10.5194/isprsannals-I-7-141-2012 – ident: ref194 doi: 10.4319/lo.2006.51.5.2388 – ident: ref163 doi: 10.1080/01431160512331316810 – ident: ref29 doi: 10.1109/TGRS.2013.2295819 – ident: ref94 doi: 10.3390/rs9040365 – ident: ref44 doi: 10.1080/01431161.2017.1375616 – ident: ref234 doi: 10.1016/j.rse.2019.111223 – ident: ref189 doi: 10.3390/rs11131554 – ident: ref193 doi: 10.1038/nature20584 – ident: ref15 doi: 10.3390/rs8020088 |
| SSID | ssj0000851918 |
| Score | 2.5639699 |
| Snippet | Change detection is a vibrant area of research in remote sensing. Thanks to increases in the spatial resolution of remote sensing images, subtle changes at a... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 68 |
| SubjectTerms | Detection algorithms Feature extraction Image resolution Image sensors Remote sensing Satellites Sensors Spatial resolution |
| Title | Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions |
| URI | https://ieeexplore.ieee.org/document/9395350 |
| Volume | 9 |
| WOSCitedRecordID | wos000733245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-6831 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000851918 issn: 2473-2397 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qUfTiq4pv9uBJujXJbh7rTdSq4Iv6wFtoN7sq2LS0UejF3-7Mbgw9iOAtCbMQ8k12HjszHyH73Yz7JgTPDcwzBCh-FLIEHA3WFaAgErdMx1pyFd_cJM_P8q5GmlUvjNbaFp_pFl7as_xsoD4wVXYouQw5BugzcRy7Xq0qn4Kug7TpvEDEnAVgZ8tDTN-Th9fnnXsIBgO_BS4yF2hKpszQFK-KNSvtpf-90DJZLN1HeuzwXiE1na-S-ZLJ_HWySubOLVXvpEG-XOMAPdWFLbfKaXs06NMnPZowrO5gyEYM2scwg-_0j94ObWqbdjQgqOk9VrfnL_SyD7vO-IheW7rpcZNOH3vDXZ5RN5uEOguJj9fIY_vs4eSClWwLTAVRWDAIFA0PezjwDEyWCSTGFtrTfhInSgljwJPsRZEwmecrDnjyJBI9LUE6A6tv-Dqp54NcbxAK8ibC_h-uMxGIrkwU_OaZMCJSJpRik3g_Hz9V5ShyZMR4T21I4skU8UoRr7TEa5McVEuGbg7HX8INxKoSLGHa-v3xNlnAxa5GZYfUi9GH3iWz6rN4G4_2rJZ9A9UTzQ8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0hFsGFHVFWHzghDEnspDE3BBQQbUFs4ha1jg1IkKK2IPXCtzNjh6oHhMQtsRwrypt4Fs_MA9hp5SK0MVpuqJ7RQQmTmKdoaPCWRAFRtGV61pJ6tdlMHx_V9RjsDWthjDEu-czs06U7y887-oNCZQdKqFiQgz4R41Khr9YaRlTIeFAuoBfJquARatryGDMM1EHj7OYW3cEo3EcjWUhSJiOKaIRZxSmW2tz_XmkeZksDkh15xBdgzBSLMF1ymT8PFmHqzJH1Dpbgy5cOsBPTdwlXBat1O2_swXQHnPI7OPERo_xxiuF7CWRX7y64zW4MYmjYLeW3F0_s4g33nd4hazjC6d4eGz34xrsiZ747CfM6koaX4b52end8zku-Ba6jJO5zdBWtiNvU8gyVlo0UeRcmMGFaTbWW1qIt2U4SafMg1AIRFWki20bh7Bz1vhUrMF50CrMKDOfbhCqAhMllJFsq1fij59LKRNtYyQoEPx8_02UzcuLEeM2cUxKojPDKCK-sxKsCu8NH3n0njr8mLxFWw4klTGu_D2_D9Pldo57VL5qX6zBDC_mMlQ0Y73c_zCZM6s_-S6-75STuG6jg0FY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change+Detection+From+Very-High-Spatial-Resolution+Optical+Remote+Sensing+Images%3A+Methods%2C+applications%2C+and+future+directions&rft.jtitle=IEEE+geoscience+and+remote+sensing+magazine&rft.au=Wen%2C+Dawei&rft.au=Huang%2C+Xin&rft.au=Bovolo%2C+Francesca&rft.au=Li%2C+Jiayi&rft.date=2021-12-01&rft.issn=2473-2397&rft.eissn=2168-6831&rft.volume=9&rft.issue=4&rft.spage=68&rft.epage=101&rft_id=info:doi/10.1109%2FMGRS.2021.3063465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_MGRS_2021_3063465 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2397&client=summon |