Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions

Change detection is a vibrant area of research in remote sensing. Thanks to increases in the spatial resolution of remote sensing images, subtle changes at a finer geometrical scale can now be effectively detected. However, change detection from very-high-spatial-resolution (VHR) (≤5 m) remote sensi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing magazine Vol. 9; no. 4; pp. 68 - 101
Main Authors: Wen, Dawei, Huang, Xin, Bovolo, Francesca, Li, Jiayi, Ke, Xinli, Zhang, Anlu, Benediktsson, Jon Atli
Format: Journal Article
Language:English
Published: IEEE 01.12.2021
Subjects:
ISSN:2473-2397, 2168-6831
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Change detection is a vibrant area of research in remote sensing. Thanks to increases in the spatial resolution of remote sensing images, subtle changes at a finer geometrical scale can now be effectively detected. However, change detection from very-high-spatial-resolution (VHR) (≤5 m) remote sensing images is challenging due to limited spectral information, spectral variability, geometric distortion, and information loss. To address these challenges, many change detection algorithms have been developed. However, a comprehensive review of change detection in VHR images is lacking in the existing literature. This review aims to fill the gap and mainly includes three aspects: methods, applications, and future directions.
AbstractList Change detection is a vibrant area of research in remote sensing. Thanks to increases in the spatial resolution of remote sensing images, subtle changes at a finer geometrical scale can now be effectively detected. However, change detection from very-high-spatial-resolution (VHR) (≤5 m) remote sensing images is challenging due to limited spectral information, spectral variability, geometric distortion, and information loss. To address these challenges, many change detection algorithms have been developed. However, a comprehensive review of change detection in VHR images is lacking in the existing literature. This review aims to fill the gap and mainly includes three aspects: methods, applications, and future directions.
Author Huang, Xin
Zhang, Anlu
Wen, Dawei
Ke, Xinli
Benediktsson, Jon Atli
Bovolo, Francesca
Li, Jiayi
Author_xml – sequence: 1
  givenname: Dawei
  surname: Wen
  fullname: Wen, Dawei
  email: daweiwen@mail.hzau.edu.cn
  organization: College of Public Administration, Huazhong Agricultural University, Wuhan, China
– sequence: 2
  givenname: Xin
  surname: Huang
  fullname: Huang, Xin
  email: xhuang@whu.edu.cn
  organization: Luojia Distinguished Professor, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Francesca
  surname: Bovolo
  fullname: Bovolo, Francesca
  email: bovolo@fbk.eu
  organization: Remote Sensing for Digital Earth unit, Fondazione Bruno Kessler, Trento, Italy
– sequence: 4
  givenname: Jiayi
  surname: Li
  fullname: Li, Jiayi
  email: zjjerica@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
– sequence: 5
  givenname: Xinli
  surname: Ke
  fullname: Ke, Xinli
  email: kexl@mail.hzau.edu.cn
  organization: College of Public Administration, Huazhong Agricultural University, Wuhan, China
– sequence: 6
  givenname: Anlu
  surname: Zhang
  fullname: Zhang, Anlu
  email: zhanganlu@mail.hzau.edu.cn
  organization: Professor, Huazhong Agricultural University, Wuhan, China
– sequence: 7
  givenname: Jon Atli
  surname: Benediktsson
  fullname: Benediktsson, Jon Atli
  email: benedikt@hi.is
  organization: Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
BookMark eNp9kMtOwzAQRS1UJErpByA2_gBS7DhxbHao0IfUqlILbCM3GadGaRLZ7qIbvp2krViwYDYzI90zj3uLelVdAUL3lIwoJfJpOV1vRiEJ6YgRziIeX6F-SLkIuGC019ZRwoKQyeQGDZ37Im2ImEoq-uh7vFNVAfgVPGTe1BWe2HqPP8Eeg5kpdsGmUd6oMliDq8vDSbFqvMlUidewrz3gDVTOVAWe71UB7hkvwe_q3D1i1TRlK-yYrqtyrA_-YAHnxp6XuTt0rVXpYHjJA_QxeXsfz4LFajofvyyCLOSxD-JIahZv26tlKCIdShJzCgSoSESWRVpLSbecRzonNGOUSSZ4tAXZqnNBhWYDRM9zM1s7Z0GnjTV7ZY8pJWnnYdp5mHYephcPWyb5w2TGn77xVpnyX_LhTBoA-N0kmYxZTNgP9UmBig
CODEN IGRSCZ
CitedBy_id crossref_primary_10_1016_j_jag_2023_103402
crossref_primary_10_3390_rs15184609
crossref_primary_10_3390_rs14215622
crossref_primary_10_1080_01431161_2024_2305627
crossref_primary_10_1007_s12524_025_02268_y
crossref_primary_10_1016_j_isprsjprs_2024_01_016
crossref_primary_10_1109_LGRS_2024_3404645
crossref_primary_10_1016_j_isprsjprs_2025_05_020
crossref_primary_10_3389_fbuil_2024_1468726
crossref_primary_10_1109_TNNLS_2023_3282935
crossref_primary_10_1109_JSTARS_2024_3413715
crossref_primary_10_1109_TGRS_2021_3130940
crossref_primary_10_1109_TNNLS_2024_3401696
crossref_primary_10_1109_JSTARS_2025_3582803
crossref_primary_10_1109_LGRS_2023_3266891
crossref_primary_10_1109_TGRS_2024_3369723
crossref_primary_10_1109_TGRS_2023_3241366
crossref_primary_10_1109_TGRS_2025_3566701
crossref_primary_10_1109_JPROC_2022_3219376
crossref_primary_10_1109_TGRS_2023_3344083
crossref_primary_10_3390_rs16091517
crossref_primary_10_1016_j_autcon_2024_105393
crossref_primary_10_1109_JSTARS_2024_3415171
crossref_primary_10_3390_rs15010087
crossref_primary_10_3390_rs15153793
crossref_primary_10_1016_j_autcon_2024_105955
crossref_primary_10_3390_rs16040729
crossref_primary_10_1109_TGRS_2024_3501303
crossref_primary_10_3390_geomatics2010002
crossref_primary_10_1016_j_scitotenv_2025_179582
crossref_primary_10_3390_rs17061080
crossref_primary_10_1109_JSTARS_2025_3534583
crossref_primary_10_3390_app13021037
crossref_primary_10_3390_land12051050
crossref_primary_10_1109_TGRS_2023_3296383
crossref_primary_10_1109_JSTARS_2025_3564008
crossref_primary_10_1109_TGRS_2023_3339291
crossref_primary_10_1111_tgis_13133
crossref_primary_10_3390_rs15092464
crossref_primary_10_1038_s41598_025_13236_4
crossref_primary_10_1109_JSTARS_2024_3402388
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_1109_JSTARS_2025_3595585
crossref_primary_10_1109_TGRS_2024_3350573
crossref_primary_10_3390_rs16224223
crossref_primary_10_1016_j_isprsjprs_2022_07_016
crossref_primary_10_1109_JSTARS_2024_3487137
crossref_primary_10_3390_rs16030572
crossref_primary_10_1109_TGRS_2024_3362680
crossref_primary_10_1109_LGRS_2025_3568878
crossref_primary_10_3390_s24103211
crossref_primary_10_3390_rs16183424
crossref_primary_10_1109_TCSVT_2023_3344092
crossref_primary_10_1109_JSTARS_2024_3373039
crossref_primary_10_1038_s41598_025_98230_6
crossref_primary_10_1109_LGRS_2024_3398804
crossref_primary_10_1109_TGRS_2024_3362795
crossref_primary_10_1109_TGRS_2024_3439395
crossref_primary_10_3390_e26060445
crossref_primary_10_1080_10106049_2024_2322080
crossref_primary_10_1002_ps_8401
crossref_primary_10_1016_j_asr_2025_07_101
crossref_primary_10_1016_j_jag_2023_103258
crossref_primary_10_3390_rs15092433
crossref_primary_10_1109_MGRS_2023_3293459
crossref_primary_10_1109_TGRS_2024_3432749
crossref_primary_10_1109_TGRS_2024_3446628
crossref_primary_10_3390_rs16030560
crossref_primary_10_1109_TGRS_2022_3174276
crossref_primary_10_1109_JSTARS_2025_3554272
crossref_primary_10_1109_TGRS_2023_3290817
crossref_primary_10_1109_JSTARS_2023_3348572
crossref_primary_10_1007_s41651_024_00202_3
crossref_primary_10_1109_LGRS_2024_3415819
crossref_primary_10_1109_TGRS_2023_3342477
crossref_primary_10_1109_TGRS_2024_3383800
crossref_primary_10_1016_j_knosys_2024_112159
crossref_primary_10_1038_s41598_024_55482_y
crossref_primary_10_1109_TGRS_2022_3221489
crossref_primary_10_1109_TGRS_2023_3281711
crossref_primary_10_1109_TGRS_2025_3600397
crossref_primary_10_3390_rs14030462
crossref_primary_10_1007_s41060_023_00459_9
crossref_primary_10_1016_j_isprsjprs_2025_09_003
crossref_primary_10_1109_JSTARS_2024_3414452
crossref_primary_10_1109_LGRS_2024_3432077
crossref_primary_10_1109_TGRS_2022_3197901
crossref_primary_10_1109_TGRS_2024_3368168
crossref_primary_10_1016_j_compenvurbsys_2025_102282
crossref_primary_10_3390_app15094619
crossref_primary_10_3390_app15116292
crossref_primary_10_1109_TGRS_2022_3157721
crossref_primary_10_1109_JSTARS_2024_3522910
crossref_primary_10_3390_rs17173026
crossref_primary_10_1016_j_compag_2025_109973
crossref_primary_10_3390_rs15112889
crossref_primary_10_1016_j_isprsjprs_2022_09_002
crossref_primary_10_1109_TGRS_2023_3332338
crossref_primary_10_3390_rs15020522
crossref_primary_10_3390_rs16203852
crossref_primary_10_1109_JSTARS_2024_3416183
crossref_primary_10_1109_TGRS_2025_3585489
crossref_primary_10_1117_1_JRS_17_034501
crossref_primary_10_1109_JSEN_2025_3526149
crossref_primary_10_1109_JSTARS_2025_3549471
crossref_primary_10_14358_PERS_23_00001R2
crossref_primary_10_1063_5_0270989
crossref_primary_10_3390_rs14235969
crossref_primary_10_1109_TGRS_2022_3171067
crossref_primary_10_1117_1_JRS_18_016503
crossref_primary_10_1080_10095020_2022_2128902
crossref_primary_10_1109_TGRS_2023_3334521
crossref_primary_10_1109_ACCESS_2023_3322205
crossref_primary_10_1109_JSTARS_2025_3555849
crossref_primary_10_1109_TGRS_2023_3294884
crossref_primary_10_1109_TGRS_2024_3369310
crossref_primary_10_1016_j_dsp_2024_104825
crossref_primary_10_1016_j_cities_2023_104644
crossref_primary_10_1109_TPAMI_2025_3543842
crossref_primary_10_3390_rs16183507
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1109_TGRS_2023_3337816
crossref_primary_10_3390_rs15081990
crossref_primary_10_7717_peerj_cs_1855
crossref_primary_10_1016_j_jag_2023_103180
crossref_primary_10_3390_drones6120414
crossref_primary_10_3390_ijgi13070217
crossref_primary_10_1080_22797254_2021_2025153
crossref_primary_10_1016_j_nhres_2024_09_001
crossref_primary_10_1016_j_inffus_2025_103257
crossref_primary_10_3390_rs15235459
crossref_primary_10_1109_TGRS_2022_3204834
crossref_primary_10_1080_01431161_2024_2398226
crossref_primary_10_1109_TGRS_2023_3305334
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_3390_rs15020463
crossref_primary_10_1080_01431161_2022_2131479
crossref_primary_10_1109_TGRS_2025_3583569
crossref_primary_10_3390_rs14194895
crossref_primary_10_1109_TGRS_2025_3525811
crossref_primary_10_1016_j_jag_2024_104321
crossref_primary_10_3390_rs16132353
crossref_primary_10_1109_TGRS_2024_3469930
crossref_primary_10_1109_TIM_2025_3573363
crossref_primary_10_1109_TAES_2025_3558725
crossref_primary_10_1109_TGRS_2023_3319961
crossref_primary_10_3390_rs14184570
crossref_primary_10_3390_su15010140
crossref_primary_10_1109_TGRS_2023_3268038
crossref_primary_10_1016_j_rsase_2024_101167
Cites_doi 10.1016/j.isprsjprs.2019.06.005
10.1016/j.rse.2009.04.007
10.3390/rs11020164
10.1016/j.isprsjprs.2016.02.013
10.1109/CVPR.2017.243
10.1016/j.scib.2019.12.007
10.3390/s19061284
10.1109/LGRS.2016.2574940
10.1109/TSMC.1973.4309314
10.1016/0169-555X(93)90022-T
10.1080/15481603.2017.1417691
10.1109/JSTARS.2018.2804440
10.1016/j.jag.2014.03.004
10.14358/PERS.83.3.225
10.3390/rs70404753
10.1109/TGRS.2013.2262722
10.1016/j.isprsjprs.2019.04.010
10.1016/j.isprsjprs.2014.07.007
10.1016/j.sigpro.2015.09.020
10.1016/j.isprsjprs.2014.09.002
10.1016/0261-2194(93)90001-Y
10.1016/j.asr.2018.03.011
10.1145/3065386
10.1016/j.rse.2020.111802
10.1080/01431161.2017.1308033
10.3390/rs10020281
10.3390/rs11161902
10.1016/j.cviu.2019.07.003
10.1109/LGRS.2008.2007429
10.1016/j.isprsjprs.2016.01.018
10.1111/j.1477-9730.2011.00665.x
10.1109/TGRS.2014.2380779
10.1080/01431161.2016.1259673
10.1038/srep08732
10.1088/1748-9326/4/4/044003
10.1109/IGARSS.2015.7326158
10.1109/TPAMI.1983.4767341
10.1016/j.rse.2019.111458
10.1109/LGRS.2017.2762694
10.14358/PERS.76.2.137
10.1080/19479832.2016.1158211
10.1016/j.scib.2019.03.002
10.3390/rs6099086
10.1080/0143116031000139863
10.14358/PERS.77.7.721
10.1109/JSTARS.2020.3009116
10.1016/j.rse.2020.111949
10.1016/j.rse.2019.03.033
10.1109/TGRS.2016.2616585
10.3390/rs11111292
10.1016/j.rse.2017.08.036
10.1016/j.rse.2015.01.006
10.1109/MGRS.2017.2762307
10.1016/j.neucom.2014.08.080
10.1016/j.patcog.2017.01.002
10.3390/rs10101615
10.1109/JPROC.2015.2462751
10.1109/TIP.2002.999678
10.1007/s11430-019-9547-x
10.1016/j.isprsjprs.2017.11.017
10.1016/j.fcr.2013.11.012
10.1007/s11119-007-9036-y
10.1016/j.isprsjprs.2016.07.006
10.1109/TGRS.2013.2240692
10.1109/TGRS.2018.2886643
10.1109/JSTARS.2016.2542074
10.1109/LGRS.2017.2766840
10.1109/JSTARS.2016.2553170
10.1016/j.isprsjprs.2012.08.007
10.1109/IGARSS.2016.7729468
10.1016/j.isprsjprs.2013.09.004
10.1016/j.jag.2011.07.002
10.1109/TNNLS.2019.2910571
10.1016/j.isprsjprs.2013.02.017
10.1109/JSTARS.2013.2252423
10.1109/TGRS.2013.2249521
10.1109/LGRS.2017.2681198
10.1109/JSTARS.2018.2887108
10.1021/es300157u
10.1080/15481603.2016.1250328
10.1038/s41598-018-25823-9
10.1016/j.rse.2018.03.023
10.1109/LGRS.2019.2896385
10.1016/j.rse.2020.111706
10.1016/j.ecolecon.2009.11.009
10.1109/IGARSS.2017.8127028
10.1126/science.1244693
10.1016/j.rse.2009.08.016
10.1109/JSTARS.2019.2929514
10.14358/PERS.83.8.567
10.1080/01431161.2011.648285
10.1109/JSTARS.2016.2586582
10.1016/j.isprsjprs.2017.03.011
10.1016/j.isprsjprs.2015.02.006
10.1016/j.rsase.2019.100246
10.1016/j.isprsjprs.2017.09.007
10.1109/JSTARS.2016.2541678
10.1109/IGARSS.2014.6947066
10.1109/MGRS.2019.2898520
10.1109/ATSIP.2018.8364501
10.1109/LGRS.2017.2762424
10.1016/j.isprsjprs.2018.09.002
10.1016/j.jweia.2014.10.018
10.1016/j.isprsjprs.2013.09.014
10.1016/B978-0-12-818373-1.00002-0
10.3390/rs10010141
10.3390/rs9030287
10.1007/s10514-018-9734-5
10.1080/01431161.2019.1674463
10.1109/LGRS.2012.2228626
10.1109/JSTARS.2017.2696823
10.1007/s10021-004-0243-3
10.1109/TGRS.2016.2516402
10.1109/JSTARS.2016.2606514
10.3390/rs70201736
10.1080/01431161.2020.1734253
10.1016/j.isprsjprs.2015.04.010
10.1109/JSTARS.2019.2950721
10.3390/rs11030240
10.1117/1.JRS.13.024506
10.1109/TGRS.2020.2990640
10.1016/j.rse.2017.05.001
10.3390/s16091377
10.1109/LGRS.2018.2879492
10.1109/TGRS.2019.2907283
10.1016/j.compag.2019.01.042
10.1016/j.isprsjprs.2008.01.007
10.1016/j.isprsjprs.2020.06.003
10.1109/JSTARS.2015.2420713
10.5194/isprs-archives-XLII-3-1489-2018
10.1080/0143116031000101675
10.1109/TGRS.2008.2000741
10.3390/app8101785
10.14358/PERS.83.2.109
10.1109/JSTARS.2019.2892951
10.1109/TGRS.2020.2977248
10.1109/LGRS.2012.2222340
10.1016/j.rse.2016.07.028
10.1080/01431161.2019.1602792
10.1080/2150704X.2018.1492172
10.1109/TGRS.2018.2863224
10.1109/LGRS.2018.2889307
10.1016/j.rse.2019.111558
10.1016/j.rse.2010.02.018
10.1109/TII.2018.2873492
10.3390/rs11070763
10.1016/j.isprsjprs.2016.05.004
10.1109/JSTARS.2013.2271445
10.1016/j.patcog.2016.07.001
10.3390/rs12132098
10.1016/j.optlastec.2013.10.003
10.1109/CVPR.2016.90
10.3390/rs11111382
10.1016/j.isprsjprs.2013.01.012
10.1016/j.landusepol.2019.104266
10.1109/JSTARS.2016.2645798
10.1016/j.rse.2016.02.030
10.1021/acs.est.6b04260
10.1016/j.isprsjprs.2014.04.007
10.1109/LGRS.2019.2916601
10.1016/j.patcog.2019.106971
10.1109/Multi-Temp.2019.8866919
10.1109/LGRS.2019.2915320
10.3390/rs10020276
10.3390/app8101883
10.1109/TGRS.2019.2956756
10.1016/j.autcon.2016.05.008
10.1016/j.jag.2011.10.013
10.1109/TGRS.2006.876704
10.3390/rs11232753
10.1166/sl.2012.1865
10.1016/j.jag.2016.08.010
10.3390/rs10121955
10.1109/JSTARS.2017.2712119
10.3390/rs9121306
10.1109/TGRS.2016.2576978
10.3390/rs12050799
10.1109/TIP.2013.2259833
10.1016/j.rse.2020.111865
10.1109/TGRS.2011.2165548
10.1109/TGRS.2015.2463075
10.1016/S0034-4257(02)00196-7
10.3390/rs8060506
10.1080/01431161.2020.1723818
10.1016/j.jag.2018.05.005
10.3390/rs12152345
10.1109/TGRS.2020.2968098
10.1016/j.rse.2019.04.015
10.1109/JSTARS.2015.2458582
10.1117/1.JRS.13.026511
10.3390/rs8090768
10.3390/rs11070817
10.1109/LGRS.2019.2897652
10.1016/j.isprsjprs.2013.03.006
10.1109/JSTARS.2017.2737702
10.1109/TGRS.2017.2759663
10.1109/TIP.2018.2835143
10.1016/j.rse.2008.01.010
10.1016/j.rse.2019.111510
10.1080/19479832.2012.739577
10.1002/ldr.3337
10.1080/01431160801950162
10.3390/ijgi7100410
10.14358/PERS.85.6.415
10.1109/LGRS.2008.917726
10.1109/JSTARS.2015.2424275
10.1016/j.ecolind.2018.08.004
10.1109/LGRS.2019.2955309
10.3390/rs9121233
10.1080/13658816.2017.1324976
10.1016/j.rse.2012.05.027
10.1016/j.jag.2019.04.020
10.1080/2150704X.2014.963732
10.1127/1432-8364/2013/0200
10.1109/JPROC.2012.2197169
10.1016/j.isprsjprs.2015.10.004
10.1109/JSTARS.2010.2074186
10.1109/TGRS.2016.2627638
10.1109/MGRS.2015.2443494
10.1016/j.rse.2009.08.014
10.5194/isprsannals-I-7-141-2012
10.4319/lo.2006.51.5.2388
10.1080/01431160512331316810
10.1109/TGRS.2013.2295819
10.3390/rs9040365
10.1080/01431161.2017.1375616
10.1016/j.rse.2019.111223
10.3390/rs11131554
10.1038/nature20584
10.3390/rs8020088
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/MGRS.2021.3063465
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 2168-6831
EndPage 101
ExternalDocumentID 10_1109_MGRS_2021_3063465
9395350
Genre orig-research
GrantInformation_xml – fundername: Chinese Academy of Sciences Interdisciplinary Innovation Team
  grantid: JCTD-2019-04
– fundername: National Natural Science Foundation of China
  grantid: 41901279; 41771360; 41971295
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-549f35b0859284f290561e0e1878cc4ff991b664fd01c31393864be9928d818f3
IEDL.DBID RIE
ISICitedReferencesCount 175
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000733245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-2397
IngestDate Tue Nov 18 22:23:57 EST 2025
Sat Nov 29 05:56:56 EST 2025
Wed Aug 27 02:49:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-549f35b0859284f290561e0e1878cc4ff991b664fd01c31393864be9928d818f3
PageCount 34
ParticipantIDs ieee_primary_9395350
crossref_primary_10_1109_MGRS_2021_3063465
crossref_citationtrail_10_1109_MGRS_2021_3063465
PublicationCentury 2000
PublicationDate 2021-Dec.
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.
PublicationDecade 2020
PublicationTitle IEEE geoscience and remote sensing magazine
PublicationTitleAbbrev GRSM
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref207
ref56
ref208
ref59
ref205
ref58
ref206
ref53
ref203
graña (ref236) 0
ref52
ref204
ref55
ref201
malinverni (ref181) 2012; 11
ref54
ref202
ref209
ref210
ref211
ref51
ref50
ref46
ref218
ref45
ref219
ref48
ref216
ref47
ref217
ref42
ref214
ref41
ref215
ref44
ref212
ref43
ref213
ref49
pesaresi (ref231) 2015
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref221
ref101
ref222
ref220
ref35
ref34
ref37
ref36
ref31
vincent (ref69) 2010; 11
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref200
ref128
ref129
ref97
ref126
ref96
ref127
ref99
ref124
ref98
ref125
ref93
ref133
ref92
ref95
ref131
ref94
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref87
ref136
ref144
ref81
ref145
ref84
ref142
ref83
ref143
simonyan (ref134) 2014
ref140
ref141
ref80
ref79
ref229
ref108
ref78
ref109
ref227
ref106
ref228
ref107
ref75
ref225
ref104
ref74
ref105
ref77
ref223
ref102
ref76
ref224
ref103
gupta (ref82) 0
ref71
ref232
ref111
ref70
ref233
ref112
ref73
ref230
ref72
ref110
(ref226) 0
ref68
ref67
ref238
ref117
ref239
ref118
ref64
ref115
ref63
ref237
ref116
ref66
ref234
ref113
ref65
ref235
ref114
saha (ref132) 2020
ref60
ref122
ref123
ref62
ref241
ref120
ref61
ref242
ref121
ref240
jacobsen (ref30) 2005; 2005
ref168
ref169
ref170
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
ref179
ref180
ref188
ref189
ref186
ref187
ref184
hall-beyer (ref40) 2007
ref185
ref182
ref148
ref149
ref146
ref147
rußwurm (ref119) 0
ref155
ref156
ref153
ref154
ref151
ref152
ref150
ref159
ref157
ref158
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref15
bendig (ref183) 2013; 2013
ref14
ref11
ref10
ref17
ref16
ref19
ref18
szegedy (ref135) 2016
ref2
ref1
ref191
ref192
ref190
ref199
ref197
ref198
ref195
ref196
ref193
ref194
References_xml – ident: ref164
  doi: 10.1016/j.isprsjprs.2019.06.005
– year: 2014
  ident: ref134
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref212
  doi: 10.1016/j.rse.2009.04.007
– ident: ref176
  doi: 10.3390/rs11020164
– ident: ref70
  doi: 10.1016/j.isprsjprs.2016.02.013
– ident: ref137
  doi: 10.1109/CVPR.2017.243
– ident: ref230
  doi: 10.1016/j.scib.2019.12.007
– ident: ref178
  doi: 10.3390/s19061284
– ident: ref61
  doi: 10.1109/LGRS.2016.2574940
– ident: ref39
  doi: 10.1109/TSMC.1973.4309314
– ident: ref55
  doi: 10.1016/0169-555X(93)90022-T
– ident: ref185
  doi: 10.1080/15481603.2017.1417691
– ident: ref214
  doi: 10.1109/JSTARS.2018.2804440
– ident: ref170
  doi: 10.1016/j.jag.2014.03.004
– ident: ref83
  doi: 10.14358/PERS.83.3.225
– ident: ref200
  doi: 10.3390/rs70404753
– ident: ref37
  doi: 10.1109/TGRS.2013.2262722
– ident: ref162
  doi: 10.1016/j.isprsjprs.2019.04.010
– ident: ref157
  doi: 10.1016/j.isprsjprs.2014.07.007
– ident: ref108
  doi: 10.1016/j.sigpro.2015.09.020
– ident: ref228
  doi: 10.1016/j.isprsjprs.2014.09.002
– ident: ref184
  doi: 10.1016/0261-2194(93)90001-Y
– ident: ref32
  doi: 10.1016/j.asr.2018.03.011
– ident: ref133
  doi: 10.1145/3065386
– ident: ref2
  doi: 10.1016/j.rse.2020.111802
– start-page: 10
  year: 0
  ident: ref82
  article-title: Creating xBD: A dataset for assessing building damage from satellite imagery
  publication-title: Proc of IEEE Conf Comp Vision and Pattern Recog
– ident: ref45
  doi: 10.1080/01431161.2017.1308033
– ident: ref93
  doi: 10.3390/rs10020281
– ident: ref240
  doi: 10.3390/rs11161902
– ident: ref81
  doi: 10.1016/j.cviu.2019.07.003
– ident: ref89
  doi: 10.1109/LGRS.2008.2007429
– ident: ref26
  doi: 10.1016/j.isprsjprs.2016.01.018
– ident: ref13
  doi: 10.1111/j.1477-9730.2011.00665.x
– ident: ref148
  doi: 10.1109/TGRS.2014.2380779
– ident: ref161
  doi: 10.1080/01431161.2016.1259673
– ident: ref166
  doi: 10.1038/srep08732
– ident: ref224
  doi: 10.1088/1748-9326/4/4/044003
– ident: ref160
  doi: 10.1109/IGARSS.2015.7326158
– ident: ref54
  doi: 10.1109/TPAMI.1983.4767341
– ident: ref238
  doi: 10.1016/j.rse.2019.111458
– ident: ref130
  doi: 10.1109/LGRS.2017.2762694
– ident: ref87
  doi: 10.14358/PERS.76.2.137
– ident: ref125
  doi: 10.1080/19479832.2016.1158211
– ident: ref232
  doi: 10.1016/j.scib.2019.03.002
– ident: ref95
  doi: 10.3390/rs6099086
– ident: ref4
  doi: 10.1080/0143116031000139863
– ident: ref36
  doi: 10.14358/PERS.77.7.721
– ident: ref120
  doi: 10.1109/JSTARS.2020.3009116
– ident: ref192
  doi: 10.1016/j.rse.2020.111949
– ident: ref101
  doi: 10.1016/j.rse.2019.03.033
– ident: ref79
  doi: 10.1109/TGRS.2016.2616585
– ident: ref139
  doi: 10.3390/rs11111292
– ident: ref210
  doi: 10.1016/j.rse.2017.08.036
– ident: ref5
  doi: 10.1016/j.rse.2015.01.006
– ident: ref74
  doi: 10.1109/MGRS.2017.2762307
– ident: ref41
  doi: 10.1016/j.neucom.2014.08.080
– year: 0
  ident: ref226
  publication-title: CCI-LC Product User Guide v2 4
– year: 2016
  ident: ref135
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
– ident: ref71
  doi: 10.1016/j.patcog.2017.01.002
– ident: ref216
  doi: 10.3390/rs10101615
– ident: ref14
  doi: 10.1109/JPROC.2015.2462751
– ident: ref57
  doi: 10.1109/TIP.2002.999678
– ident: ref18
  doi: 10.1007/s11430-019-9547-x
– ident: ref97
  doi: 10.1016/j.isprsjprs.2017.11.017
– ident: ref187
  doi: 10.1016/j.fcr.2013.11.012
– ident: ref186
  doi: 10.1007/s11119-007-9036-y
– ident: ref34
  doi: 10.1016/j.isprsjprs.2016.07.006
– ident: ref156
  doi: 10.1109/TGRS.2013.2240692
– ident: ref67
  doi: 10.1109/TGRS.2018.2886643
– ident: ref153
  doi: 10.1109/JSTARS.2016.2542074
– ident: ref66
  doi: 10.1109/LGRS.2017.2766840
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref69
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learning Res
– ident: ref204
  doi: 10.1109/JSTARS.2016.2553170
– ident: ref173
  doi: 10.1016/j.isprsjprs.2012.08.007
– ident: ref222
  doi: 10.1109/IGARSS.2016.7729468
– ident: ref159
  doi: 10.1016/j.isprsjprs.2013.09.004
– ident: ref145
  doi: 10.1016/j.jag.2011.07.002
– ident: ref122
  doi: 10.1109/TNNLS.2019.2910571
– ident: ref99
  doi: 10.1016/j.isprsjprs.2013.02.017
– ident: ref51
  doi: 10.1109/JSTARS.2013.2252423
– ident: ref96
  doi: 10.1109/TGRS.2013.2249521
– ident: ref63
  doi: 10.1109/LGRS.2017.2681198
– ident: ref131
  doi: 10.1109/JSTARS.2018.2887108
– ident: ref206
  doi: 10.1021/es300157u
– ident: ref146
  doi: 10.1080/15481603.2016.1250328
– ident: ref201
  doi: 10.1038/s41598-018-25823-9
– ident: ref141
  doi: 10.1016/j.rse.2018.03.023
– ident: ref105
  doi: 10.1109/LGRS.2019.2896385
– ident: ref197
  doi: 10.1016/j.rse.2020.111706
– ident: ref205
  doi: 10.1016/j.ecolecon.2009.11.009
– ident: ref128
  doi: 10.1109/IGARSS.2017.8127028
– ident: ref227
  doi: 10.1126/science.1244693
– ident: ref225
  doi: 10.1016/j.rse.2009.08.016
– ident: ref1
  doi: 10.1109/JSTARS.2019.2929514
– ident: ref151
  doi: 10.14358/PERS.83.8.567
– ident: ref7
  doi: 10.1080/01431161.2011.648285
– ident: ref207
  doi: 10.1109/JSTARS.2016.2586582
– ident: ref174
  doi: 10.1016/j.isprsjprs.2017.03.011
– ident: ref56
  doi: 10.1016/j.isprsjprs.2015.02.006
– ident: ref211
  doi: 10.1016/j.rsase.2019.100246
– ident: ref241
  doi: 10.1016/j.isprsjprs.2017.09.007
– ident: ref43
  doi: 10.1109/JSTARS.2016.2541678
– ident: ref143
  doi: 10.1109/IGARSS.2014.6947066
– ident: ref8
  doi: 10.1109/MGRS.2019.2898520
– ident: ref107
  doi: 10.1109/ATSIP.2018.8364501
– ident: ref35
  doi: 10.1109/LGRS.2017.2762424
– ident: ref68
  doi: 10.1016/j.isprsjprs.2018.09.002
– year: 0
  ident: ref236
  publication-title: Hyperspectral Remote Sensing Scenes
– ident: ref152
  doi: 10.1016/j.jweia.2014.10.018
– ident: ref38
  doi: 10.1016/j.isprsjprs.2013.09.014
– ident: ref188
  doi: 10.1016/B978-0-12-818373-1.00002-0
– ident: ref100
  doi: 10.3390/rs10010141
– ident: ref171
  doi: 10.3390/rs9030287
– ident: ref126
  doi: 10.1007/s10514-018-9734-5
– ident: ref10
  doi: 10.1080/01431161.2019.1674463
– ident: ref52
  doi: 10.1109/LGRS.2012.2228626
– ident: ref221
  doi: 10.1109/JSTARS.2017.2696823
– ident: ref223
  doi: 10.1007/s10021-004-0243-3
– ident: ref80
  doi: 10.1109/TGRS.2016.2516402
– ident: ref235
  doi: 10.1109/JSTARS.2016.2606514
– ident: ref218
  doi: 10.3390/rs70201736
– ident: ref127
  doi: 10.1080/01431161.2020.1734253
– ident: ref84
  doi: 10.1016/j.isprsjprs.2015.04.010
– ident: ref175
  doi: 10.1109/JSTARS.2019.2950721
– ident: ref116
  doi: 10.3390/rs11030240
– ident: ref123
  doi: 10.1117/1.JRS.13.024506
– ident: ref76
  doi: 10.1109/TGRS.2020.2990640
– ident: ref21
  doi: 10.1016/j.rse.2017.05.001
– ident: ref147
  doi: 10.3390/s16091377
– ident: ref196
  doi: 10.1109/LGRS.2018.2879492
– year: 2020
  ident: ref132
  article-title: Semisupervised change detection using graph convolutional network
  publication-title: IEEE Geosci Remote Sens Lett
– volume: 2005
  start-page: 487
  year: 2005
  ident: ref30
  article-title: High resolution satellite imaging systems-an overview
  publication-title: Photogrammetrie - Fernerkundung - Geoinformation
– ident: ref198
  doi: 10.1109/TGRS.2019.2907283
– ident: ref182
  doi: 10.1016/j.compag.2019.01.042
– ident: ref86
  doi: 10.1016/j.isprsjprs.2008.01.007
– ident: ref113
  doi: 10.1016/j.isprsjprs.2020.06.003
– ident: ref199
  doi: 10.1109/JSTARS.2015.2420713
– volume: 11
  start-page: 132
  year: 2012
  ident: ref181
  article-title: Agricultural crop change detection by means of hybrid classification and high resolution images
  publication-title: EARSeL eProc
– ident: ref208
  doi: 10.5194/isprs-archives-XLII-3-1489-2018
– ident: ref3
  doi: 10.1080/0143116031000101675
– ident: ref102
  doi: 10.1109/TGRS.2008.2000741
– ident: ref115
  doi: 10.3390/app8101785
– ident: ref65
  doi: 10.14358/PERS.83.2.109
– ident: ref124
  doi: 10.1109/JSTARS.2019.2892951
– ident: ref88
  doi: 10.1109/TGRS.2020.2977248
– ident: ref49
  doi: 10.1109/LGRS.2012.2222340
– ident: ref25
  doi: 10.1016/j.rse.2016.07.028
– ident: ref64
  doi: 10.1080/01431161.2019.1602792
– ident: ref77
  doi: 10.1080/2150704X.2018.1492172
– ident: ref111
  doi: 10.1109/TGRS.2018.2863224
– ident: ref114
  doi: 10.1109/LGRS.2018.2889307
– ident: ref215
  doi: 10.1016/j.rse.2019.111558
– ident: ref22
  doi: 10.1016/j.rse.2010.02.018
– ident: ref73
  doi: 10.1109/TII.2018.2873492
– ident: ref155
  doi: 10.3390/rs11070763
– ident: ref33
  doi: 10.1016/j.isprsjprs.2016.05.004
– ident: ref23
  doi: 10.1109/JSTARS.2013.2271445
– ident: ref237
  doi: 10.1016/j.patcog.2016.07.001
– ident: ref138
  doi: 10.3390/rs12132098
– ident: ref59
  doi: 10.1016/j.optlastec.2013.10.003
– ident: ref136
  doi: 10.1109/CVPR.2016.90
– ident: ref110
  doi: 10.3390/rs11111382
– ident: ref154
  doi: 10.1016/j.isprsjprs.2013.01.012
– ident: ref180
  doi: 10.1016/j.landusepol.2019.104266
– ident: ref179
  doi: 10.1109/JSTARS.2016.2645798
– ident: ref92
  doi: 10.1016/j.rse.2016.02.030
– ident: ref191
  doi: 10.1021/acs.est.6b04260
– ident: ref28
  doi: 10.1016/j.isprsjprs.2014.04.007
– ident: ref78
  doi: 10.1109/LGRS.2019.2916601
– ident: ref72
  doi: 10.1016/j.patcog.2019.106971
– ident: ref46
  doi: 10.1109/Multi-Temp.2019.8866919
– ident: ref209
  doi: 10.1109/LGRS.2019.2915320
– ident: ref142
  doi: 10.3390/rs10020276
– ident: ref11
  doi: 10.3390/app8101883
– ident: ref121
  doi: 10.1109/TGRS.2019.2956756
– ident: ref220
  doi: 10.1016/j.autcon.2016.05.008
– ident: ref16
  doi: 10.1016/j.jag.2011.10.013
– ident: ref42
  doi: 10.1109/TGRS.2006.876704
– year: 2015
  ident: ref231
  article-title: GHS built-up grid, derived from Landsat, multitemporal (1975, 1990, 2000, 2014)
  publication-title: European Commission Joint Res Centre JRC Data Catalogue
– ident: ref103
  doi: 10.3390/rs11232753
– ident: ref91
  doi: 10.1166/sl.2012.1865
– ident: ref150
  doi: 10.1016/j.jag.2016.08.010
– ident: ref190
  doi: 10.3390/rs10121955
– ident: ref50
  doi: 10.1109/JSTARS.2017.2712119
– ident: ref195
  doi: 10.3390/rs9121306
– ident: ref90
  doi: 10.1109/TGRS.2016.2576978
– ident: ref117
  doi: 10.3390/rs12050799
– ident: ref58
  doi: 10.1109/TIP.2013.2259833
– ident: ref169
  doi: 10.1016/j.rse.2020.111865
– ident: ref27
  doi: 10.1109/TGRS.2011.2165548
– ident: ref31
  doi: 10.1109/TGRS.2015.2463075
– ident: ref203
  doi: 10.1016/S0034-4257(02)00196-7
– ident: ref129
  doi: 10.3390/rs8060506
– ident: ref109
  doi: 10.1080/01431161.2020.1723818
– ident: ref177
  doi: 10.1016/j.jag.2018.05.005
– ident: ref140
  doi: 10.3390/rs12152345
– ident: ref75
  doi: 10.1109/TGRS.2020.2968098
– ident: ref202
  doi: 10.1016/j.rse.2019.04.015
– ident: ref149
  doi: 10.1109/JSTARS.2015.2458582
– ident: ref219
  doi: 10.1117/1.JRS.13.026511
– ident: ref233
  doi: 10.3390/rs8090768
– ident: ref172
  doi: 10.3390/rs11070817
– ident: ref118
  doi: 10.1109/LGRS.2019.2897652
– ident: ref6
  doi: 10.1016/j.isprsjprs.2013.03.006
– year: 2007
  ident: ref40
  publication-title: GLCM texture A tutorial version v3 0
– ident: ref239
  doi: 10.1109/JSTARS.2017.2737702
– ident: ref104
  doi: 10.1109/TGRS.2017.2759663
– ident: ref62
  doi: 10.1109/TIP.2018.2835143
– ident: ref217
  doi: 10.1016/j.rse.2008.01.010
– ident: ref229
  doi: 10.1016/j.rse.2019.111510
– ident: ref98
  doi: 10.1080/19479832.2012.739577
– ident: ref144
  doi: 10.1002/ldr.3337
– ident: ref106
  doi: 10.1080/01431160801950162
– ident: ref47
  doi: 10.3390/ijgi7100410
– ident: ref165
  doi: 10.14358/PERS.85.6.415
– ident: ref48
  doi: 10.1109/LGRS.2008.917726
– ident: ref19
  doi: 10.1109/JSTARS.2015.2424275
– ident: ref20
  doi: 10.1016/j.ecolind.2018.08.004
– ident: ref112
  doi: 10.1109/LGRS.2019.2955309
– ident: ref60
  doi: 10.3390/rs9121233
– ident: ref242
  doi: 10.1080/13658816.2017.1324976
– ident: ref17
  doi: 10.1016/j.rse.2012.05.027
– ident: ref168
  doi: 10.1016/j.jag.2019.04.020
– ident: ref53
  doi: 10.1080/2150704X.2014.963732
– volume: 2013
  start-page: 551
  year: 2013
  ident: ref183
  article-title: UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability monitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern aus UAV-Befliegungen
  publication-title: Photogrammetrie - Fernerkundung - Geoinformation
  doi: 10.1127/1432-8364/2013/0200
– ident: ref24
  doi: 10.1109/JPROC.2012.2197169
– ident: ref12
  doi: 10.1016/j.isprsjprs.2015.10.004
– ident: ref213
  doi: 10.1109/JSTARS.2010.2074186
– start-page: 200
  year: 0
  ident: ref119
  article-title: Meta-learning for few-shot land cover classification
  publication-title: Proc IEEE/CVF Conf Comput Vision Pattern Recogn Workshops
– ident: ref85
  doi: 10.1109/TGRS.2016.2627638
– ident: ref9
  doi: 10.1109/MGRS.2015.2443494
– ident: ref167
  doi: 10.1016/j.rse.2009.08.014
– ident: ref158
  doi: 10.5194/isprsannals-I-7-141-2012
– ident: ref194
  doi: 10.4319/lo.2006.51.5.2388
– ident: ref163
  doi: 10.1080/01431160512331316810
– ident: ref29
  doi: 10.1109/TGRS.2013.2295819
– ident: ref94
  doi: 10.3390/rs9040365
– ident: ref44
  doi: 10.1080/01431161.2017.1375616
– ident: ref234
  doi: 10.1016/j.rse.2019.111223
– ident: ref189
  doi: 10.3390/rs11131554
– ident: ref193
  doi: 10.1038/nature20584
– ident: ref15
  doi: 10.3390/rs8020088
SSID ssj0000851918
Score 2.5639699
Snippet Change detection is a vibrant area of research in remote sensing. Thanks to increases in the spatial resolution of remote sensing images, subtle changes at a...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 68
SubjectTerms Detection algorithms
Feature extraction
Image resolution
Image sensors
Remote sensing
Satellites
Sensors
Spatial resolution
Title Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions
URI https://ieeexplore.ieee.org/document/9395350
Volume 9
WOSCitedRecordID wos000733245000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-6831
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000851918
  issn: 2473-2397
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qUfTiq4pv9uBJujXJbh7rTdSq4Iv6wFtoN7sq2LS0UejF3-7Mbgw9iOAtCbMQ8k12HjszHyH73Yz7JgTPDcwzBCh-FLIEHA3WFaAgErdMx1pyFd_cJM_P8q5GmlUvjNbaFp_pFl7as_xsoD4wVXYouQw5BugzcRy7Xq0qn4Kug7TpvEDEnAVgZ8tDTN-Th9fnnXsIBgO_BS4yF2hKpszQFK-KNSvtpf-90DJZLN1HeuzwXiE1na-S-ZLJ_HWySubOLVXvpEG-XOMAPdWFLbfKaXs06NMnPZowrO5gyEYM2scwg-_0j94ObWqbdjQgqOk9VrfnL_SyD7vO-IheW7rpcZNOH3vDXZ5RN5uEOguJj9fIY_vs4eSClWwLTAVRWDAIFA0PezjwDEyWCSTGFtrTfhInSgljwJPsRZEwmecrDnjyJBI9LUE6A6tv-Dqp54NcbxAK8ibC_h-uMxGIrkwU_OaZMCJSJpRik3g_Hz9V5ShyZMR4T21I4skU8UoRr7TEa5McVEuGbg7HX8INxKoSLGHa-v3xNlnAxa5GZYfUi9GH3iWz6rN4G4_2rJZ9A9UTzQ8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB0hFsGFHVFWHzghDEnspDE3BBQQbUFs4ha1jg1IkKK2IPXCtzNjh6oHhMQtsRwrypt4Fs_MA9hp5SK0MVpuqJ7RQQmTmKdoaPCWRAFRtGV61pJ6tdlMHx_V9RjsDWthjDEu-czs06U7y887-oNCZQdKqFiQgz4R41Khr9YaRlTIeFAuoBfJquARatryGDMM1EHj7OYW3cEo3EcjWUhSJiOKaIRZxSmW2tz_XmkeZksDkh15xBdgzBSLMF1ymT8PFmHqzJH1Dpbgy5cOsBPTdwlXBat1O2_swXQHnPI7OPERo_xxiuF7CWRX7y64zW4MYmjYLeW3F0_s4g33nd4hazjC6d4eGz34xrsiZ747CfM6koaX4b52end8zku-Ba6jJO5zdBWtiNvU8gyVlo0UeRcmMGFaTbWW1qIt2U4SafMg1AIRFWki20bh7Bz1vhUrMF50CrMKDOfbhCqAhMllJFsq1fij59LKRNtYyQoEPx8_02UzcuLEeM2cUxKojPDKCK-sxKsCu8NH3n0njr8mLxFWw4klTGu_D2_D9Pldo57VL5qX6zBDC_mMlQ0Y73c_zCZM6s_-S6-75STuG6jg0FY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change+Detection+From+Very-High-Spatial-Resolution+Optical+Remote+Sensing+Images%3A+Methods%2C+applications%2C+and+future+directions&rft.jtitle=IEEE+geoscience+and+remote+sensing+magazine&rft.au=Wen%2C+Dawei&rft.au=Huang%2C+Xin&rft.au=Bovolo%2C+Francesca&rft.au=Li%2C+Jiayi&rft.date=2021-12-01&rft.issn=2473-2397&rft.eissn=2168-6831&rft.volume=9&rft.issue=4&rft.spage=68&rft.epage=101&rft_id=info:doi/10.1109%2FMGRS.2021.3063465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_MGRS_2021_3063465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2397&client=summon