A Many-Objective Evolutionary Algorithm With Enhanced Mating and Environmental Selections

Multiobjective evolutionary algorithms have become prevalent and efficient approaches for solving multiobjective optimization problems. However, their performances deteriorate severely when handling many-objective optimization problems (MaOPs) due to the loss of selection pressure to drive the searc...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation Vol. 19; no. 4; pp. 592 - 605
Main Authors: Jixiang Cheng, Yen, Gary G., Gexiang Zhang
Format: Journal Article
Language:English
Published: IEEE 01.08.2015
Subjects:
ISSN:1089-778X, 1941-0026
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multiobjective evolutionary algorithms have become prevalent and efficient approaches for solving multiobjective optimization problems. However, their performances deteriorate severely when handling many-objective optimization problems (MaOPs) due to the loss of selection pressure to drive the search toward the Pareto front and the ineffective design in diversity maintenance mechanism. This paper proposes a many-objective evolutionary algorithm (MaOEA) based on directional diversity (DD) and favorable convergence (FC). The main features are the enhancement of two selection schemes to facilitate both convergence and diversity. In the algorithm, a mating selection based on FC is applied to strengthen selection pressure while an environmental selection based on DD and FC is designed to balance diversity and convergence. The proposed algorithm is tested on 64 instances of 16 MaOPs with diverse characteristics and compared with seven state-of-the-art algorithms. Experimental results show that the proposed MaOEA performs competitively with respect to chosen state-of-the-art designs.
AbstractList Multiobjective evolutionary algorithms have become prevalent and efficient approaches for solving multiobjective optimization problems. However, their performances deteriorate severely when handling many-objective optimization problems (MaOPs) due to the loss of selection pressure to drive the search toward the Pareto front and the ineffective design in diversity maintenance mechanism. This paper proposes a many-objective evolutionary algorithm (MaOEA) based on directional diversity (DD) and favorable convergence (FC). The main features are the enhancement of two selection schemes to facilitate both convergence and diversity. In the algorithm, a mating selection based on FC is applied to strengthen selection pressure while an environmental selection based on DD and FC is designed to balance diversity and convergence. The proposed algorithm is tested on 64 instances of 16 MaOPs with diverse characteristics and compared with seven state-of-the-art algorithms. Experimental results show that the proposed MaOEA performs competitively with respect to chosen state-of-the-art designs.
Author Yen, Gary G.
Gexiang Zhang
Jixiang Cheng
Author_xml – sequence: 1
  surname: Jixiang Cheng
  fullname: Jixiang Cheng
  email: chengjixiang0106@126.com
  organization: Sch. of Electr. Eng., Southwest Jiaotong Univ., Chengdu, China
– sequence: 2
  givenname: Gary G.
  surname: Yen
  fullname: Yen, Gary G.
  email: gyen@okstate.edu
  organization: Sch. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK, USA
– sequence: 3
  surname: Gexiang Zhang
  fullname: Gexiang Zhang
  email: zhgxdylan@126.com
  organization: Sch. of Electr. Eng., Southwest Jiaotong Univ., Chengdu, China
BookMark eNp9kE1LAzEQhoNUsK3-APGSP7A1n83mWMpqhUoP1q_Tkk2ybco2kWws9N-7S4sHD15mhoFn5uUZgYEP3gJwi9EEYyTv18XbfEIQ5hPCCJMEX4AhlgxnCJHpoJtRLjMh8o8rMGrbHUKYcSyH4HMGn5U_ZqtqZ3VyBwuLQ2i-kwtexSOcNZsQXdru4XtXYeG3ymtrOiY5v4HKm253cDH4vfVJNfDFNv2d4NtrcFmrprU35z4Grw_Fer7IlqvHp_lsmWky5SmjBhnNNSN1ZRXjAlNDZF1RY7maco6rXGlFWI2U0DqnmrK8ojlTojZIa8PpGODTXR1D20Zbl1_R7bvwJUZl76bs3ZS9m_LspmPEH0a7pPrYKSrX_EvenUhnrf39JJBEUnD6A_GMdbw
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_knosys_2017_06_021
crossref_primary_10_1109_MCI_2019_2919398
crossref_primary_10_1109_ACCESS_2020_2989219
crossref_primary_10_1109_TCYB_2021_3082200
crossref_primary_10_1109_TCYB_2020_3008697
crossref_primary_10_1109_TCYB_2021_3081357
crossref_primary_10_1109_TEVC_2018_2875430
crossref_primary_10_1109_ACCESS_2019_2914115
crossref_primary_10_1016_j_asoc_2019_105879
crossref_primary_10_1016_j_asoc_2019_105911
crossref_primary_10_1016_j_ins_2021_03_008
crossref_primary_10_1016_j_knosys_2023_110801
crossref_primary_10_1109_MCI_2017_2742869
crossref_primary_10_1109_TSMC_2023_3298690
crossref_primary_10_1016_j_ins_2018_05_009
crossref_primary_10_1007_s11277_017_4653_x
crossref_primary_10_1016_j_isatra_2020_10_065
crossref_primary_10_1016_j_simpat_2024_102917
crossref_primary_10_1109_TEVC_2016_2598687
crossref_primary_10_1109_MCI_2017_2742868
crossref_primary_10_1007_s11831_020_09415_3
crossref_primary_10_1016_j_ins_2016_09_026
crossref_primary_10_1371_journal_pone_0234625
crossref_primary_10_1016_j_swevo_2022_101107
crossref_primary_10_1109_TEVC_2016_2622301
crossref_primary_10_3390_pr7060361
crossref_primary_10_1109_TEVC_2021_3095481
crossref_primary_10_1007_s10489_022_03561_w
crossref_primary_10_1007_s11047_017_9633_2
crossref_primary_10_1002_cpe_5342
crossref_primary_10_1007_s10489_020_02053_z
crossref_primary_10_1007_s40747_021_00273_5
crossref_primary_10_1109_TCYB_2015_2490738
crossref_primary_10_1109_TEVC_2019_2933444
crossref_primary_10_1109_TEVC_2016_2519378
crossref_primary_10_1109_TEVC_2017_2769108
crossref_primary_10_1109_TEVC_2016_2600642
crossref_primary_10_1016_j_ins_2018_01_038
crossref_primary_10_1016_j_eswa_2021_116304
crossref_primary_10_1016_j_asoc_2018_12_011
crossref_primary_10_1109_ACCESS_2020_2991752
crossref_primary_10_1016_j_ins_2019_08_069
crossref_primary_10_1016_j_swevo_2024_101574
crossref_primary_10_1111_exsy_13709
crossref_primary_10_3233_JIFS_202724
crossref_primary_10_1109_TEVC_2016_2587808
crossref_primary_10_1109_TEVC_2018_2794319
crossref_primary_10_1016_j_ins_2021_08_054
crossref_primary_10_1007_s10586_022_03647_7
crossref_primary_10_1109_ACCESS_2020_3014871
crossref_primary_10_1109_TEVC_2016_2611642
crossref_primary_10_1016_j_knosys_2021_107430
crossref_primary_10_1109_TEVC_2018_2866927
crossref_primary_10_1007_s00500_018_3642_7
crossref_primary_10_1109_TCYB_2020_2971638
crossref_primary_10_1109_TCYB_2022_3180214
crossref_primary_10_1109_TEVC_2020_2999100
crossref_primary_10_1109_TSMC_2021_3069986
crossref_primary_10_1007_s12293_025_00458_2
crossref_primary_10_1109_TCYB_2019_2918087
crossref_primary_10_1002_int_22476
crossref_primary_10_1007_s10489_021_02707_6
crossref_primary_10_1007_s13748_019_00174_2
crossref_primary_10_1109_TCYB_2018_2884083
crossref_primary_10_1007_s12293_017_0240_7
crossref_primary_10_1007_s12293_016_0206_1
crossref_primary_10_1016_j_comcom_2023_10_020
crossref_primary_10_1016_j_swevo_2019_100605
crossref_primary_10_1109_TEVC_2018_2791283
crossref_primary_10_1109_TEVC_2022_3145582
crossref_primary_10_1016_j_ins_2018_03_015
crossref_primary_10_1016_j_kjs_2023_02_009
crossref_primary_10_1080_0305215X_2023_2283038
crossref_primary_10_1016_j_eswa_2022_117487
crossref_primary_10_1109_ACCESS_2017_2751071
crossref_primary_10_1007_s10489_017_0929_9
crossref_primary_10_1016_j_ins_2019_03_040
crossref_primary_10_1109_TEVC_2015_2501315
crossref_primary_10_1016_j_swevo_2019_05_011
crossref_primary_10_1016_j_asoc_2022_108798
crossref_primary_10_1109_TPWRD_2021_3107534
crossref_primary_10_3390_en15051884
crossref_primary_10_1007_s10489_017_0958_4
crossref_primary_10_1109_TEVC_2022_3144880
crossref_primary_10_1016_j_asoc_2023_111073
crossref_primary_10_1109_ACCESS_2019_2954542
crossref_primary_10_1109_TCYB_2022_3151793
crossref_primary_10_1109_TCYB_2021_3125362
crossref_primary_10_1109_TSMC_2022_3143657
crossref_primary_10_1016_j_ins_2020_03_104
crossref_primary_10_1016_j_ins_2024_120940
crossref_primary_10_1109_TEVC_2016_2549267
crossref_primary_10_1016_j_ins_2022_05_119
crossref_primary_10_1016_j_swevo_2019_100641
crossref_primary_10_1016_j_ins_2023_119559
crossref_primary_10_1007_s00521_021_05939_2
crossref_primary_10_1007_s00500_015_1955_3
crossref_primary_10_1109_TETCI_2018_2849380
crossref_primary_10_1016_j_ins_2019_05_083
crossref_primary_10_1007_s12065_022_00787_y
crossref_primary_10_1016_j_asoc_2019_02_026
crossref_primary_10_1109_ACCESS_2020_3043253
crossref_primary_10_1007_s10489_022_03353_2
crossref_primary_10_1093_jcde_qwae022
crossref_primary_10_4018_IJSIR_323422
Cites_doi 10.1007/978-3-540-70928-2_56
10.1109/CEC.2005.1554688
10.1109/TSMCB.2008.926329
10.1109/TEVC.2013.2262178
10.1007/1-84628-137-7_6
10.1109/TEVC.2013.2240687
10.1162/EVCO_a_00009
10.1016/j.cor.2012.01.001
10.1109/TEVC.2010.2093579
10.1109/TEVC.2012.2227145
10.1007/978-3-540-70928-2_55
10.1007/978-3-540-70928-2_5
10.1109/CEC.2001.934293
10.1109/TEVC.2013.2243455
10.1109/TEVC.2007.910138
10.1109/NAFIPS.2002.1018061
10.1109/TEVC.2008.925798
10.1109/TEVC.2008.2009032
10.1109/TEVC.2014.2378512
10.1109/TEVC.2007.892759
10.1109/CEC.2008.4631121
10.1109/TEVC.2009.2027357
10.1109/TEVC.2010.2058117
10.1007/s10589-014-9644-1
10.1145/1389095.1389228
10.1007/3-540-44719-9_11
10.1109/TEVC.2013.2258025
10.1109/CEC.2009.4983256
10.1162/106365605774666895
10.1007/978-3-642-05258-3_56
10.1145/2330163.2330235
10.1109/CEC.2003.1299427
10.1109/TEVC.2005.861417
10.1109/TEVC.2003.810758
10.1109/TSMCB.2010.2068046
10.1007/s00500-014-1234-8
10.1109/CEC.2013.6557783
10.1109/TEVC.2012.2204264
10.1109/CEC.2007.4424985
10.1109/TEVC.2010.2098411
10.1016/j.tcs.2011.03.012
10.1109/TEVC.2013.2281535
10.1109/4235.996017
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2015.2424921
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Computer Science
EISSN 1941-0026
EndPage 605
ExternalDocumentID 10_1109_TEVC_2015_2424921
7090975
Genre orig-research
GrantInformation_xml – fundername: Program for New Century Excellent Talents in University
  grantid: NCET-11-0715
  funderid: 10.13039/501100004602
– fundername: Southwest Jiaotong University (SWJTU)
  grantid: SWJTU12CX008
  funderid: 10.13039/501100004536
– fundername: 2014 Doctoral Innovation Funds of SWJTU
– fundername: National Natural Science Foundation of China
  grantid: 61170016; 61373047
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-3d0dc5c42fbea45713d29fb3de5a6551b8aca24f0a7cc83c348b384a7fd0ccd53
IEDL.DBID RIE
ISICitedReferencesCount 125
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000358883500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Tue Nov 18 22:21:55 EST 2025
Sat Nov 29 03:13:47 EST 2025
Tue Aug 26 16:40:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords many-objective optimization problem (MaOP)
many-objective evolutionary algorithm (MaOEA)
Directional diversity (DD)
favorable convergence (FC)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-3d0dc5c42fbea45713d29fb3de5a6551b8aca24f0a7cc83c348b384a7fd0ccd53
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2015_2424921
ieee_primary_7090975
crossref_primary_10_1109_TEVC_2015_2424921
PublicationCentury 2000
PublicationDate 2015-Aug.
2015-8-00
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-Aug.
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
deb (ref47) 1995; 9
ref15
zitzler (ref20) 2004
ref14
ref11
ref10
ref17
villalobos (ref23) 2012
ref19
ref18
deb (ref48) 1996; 26
ref51
ref50
ref45
zitzler (ref46) 1998
ref41
ref44
ref43
ref49
steuer (ref42) 1986
ref8
ref9
ref4
zitzler (ref2) 2001
jain (ref40) 2013
ref3
ref6
ref5
zou (ref16) 2008; 38
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ref24
ref26
ref25
ref22
ref21
deb (ref7) 2006
ref28
ref27
ref29
References_xml – ident: ref30
  doi: 10.1007/978-3-540-70928-2_56
– ident: ref29
  doi: 10.1109/CEC.2005.1554688
– volume: 9
  start-page: 115
  year: 1995
  ident: ref47
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– volume: 38
  start-page: 1402
  year: 2008
  ident: ref16
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.926329
– ident: ref39
  doi: 10.1109/TEVC.2013.2262178
– ident: ref43
  doi: 10.1007/1-84628-137-7_6
– ident: ref50
  doi: 10.1109/TEVC.2013.2240687
– ident: ref21
  doi: 10.1162/EVCO_a_00009
– ident: ref35
  doi: 10.1016/j.cor.2012.01.001
– ident: ref9
  doi: 10.1109/TEVC.2010.2093579
– ident: ref13
  doi: 10.1109/TEVC.2012.2227145
– ident: ref36
  doi: 10.1007/978-3-540-70928-2_55
– ident: ref12
  doi: 10.1007/978-3-540-70928-2_5
– ident: ref10
  doi: 10.1109/CEC.2001.934293
– ident: ref17
  doi: 10.1109/TEVC.2013.2243455
– ident: ref28
  doi: 10.1109/TEVC.2007.910138
– ident: ref3
  doi: 10.1109/NAFIPS.2002.1018061
– ident: ref32
  doi: 10.1109/TEVC.2008.925798
– ident: ref51
  doi: 10.1109/TEVC.2008.2009032
– volume: 26
  start-page: 30
  year: 1996
  ident: ref48
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput Sci Inf
– ident: ref19
  doi: 10.1109/TEVC.2014.2378512
– ident: ref26
  doi: 10.1109/TEVC.2007.892759
– start-page: 307
  year: 2013
  ident: ref40
  article-title: An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization
  publication-title: Proc EMO
– ident: ref5
  doi: 10.1109/CEC.2008.4631121
– year: 2001
  ident: ref2
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
– ident: ref41
  doi: 10.1109/TEVC.2009.2027357
– start-page: 832
  year: 2004
  ident: ref20
  article-title: Indicator-based selection in multiobjective search
  publication-title: Proc PPSN
– ident: ref37
  doi: 10.1109/TEVC.2010.2058117
– ident: ref6
  doi: 10.1007/s10589-014-9644-1
– ident: ref8
  doi: 10.1145/1389095.1389228
– ident: ref15
  doi: 10.1007/3-540-44719-9_11
– ident: ref4
  doi: 10.1109/TEVC.2013.2258025
– start-page: 425
  year: 1986
  ident: ref42
  publication-title: Multiple Criteria Optimization Theory Computation and Application
– ident: ref33
  doi: 10.1109/CEC.2009.4983256
– ident: ref11
  doi: 10.1162/106365605774666895
– start-page: 292
  year: 1998
  ident: ref46
  article-title: Multiobjective optimization using evolutionary algorithms-A comparative case study
  publication-title: Proc Parallel Prob Solving Nat
– ident: ref14
  doi: 10.1007/978-3-642-05258-3_56
– start-page: 505
  year: 2012
  ident: ref23
  article-title: A new multi-objective evolutionary algorithm based on a performance assessment indicator
  publication-title: Proc GECCO
  doi: 10.1145/2330163.2330235
– ident: ref25
  doi: 10.1109/CEC.2003.1299427
– ident: ref44
  doi: 10.1109/TEVC.2005.861417
– ident: ref45
  doi: 10.1109/TEVC.2003.810758
– ident: ref27
  doi: 10.1109/TSMCB.2010.2068046
– ident: ref34
  doi: 10.1007/s00500-014-1234-8
– ident: ref22
  doi: 10.1109/CEC.2013.6557783
– ident: ref18
  doi: 10.1109/TEVC.2012.2204264
– start-page: 3352
  year: 2006
  ident: ref7
  article-title: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems
  publication-title: Proc IEEE CEC
– ident: ref31
  doi: 10.1109/CEC.2007.4424985
– ident: ref49
  doi: 10.1109/TEVC.2010.2098411
– ident: ref24
  doi: 10.1016/j.tcs.2011.03.012
– ident: ref38
  doi: 10.1109/TEVC.2013.2281535
– ident: ref1
  doi: 10.1109/4235.996017
SSID ssj0014519
Score 2.5033367
Snippet Multiobjective evolutionary algorithms have become prevalent and efficient approaches for solving multiobjective optimization problems. However, their...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 592
SubjectTerms Algorithm design and analysis
Convergence
directional diversity
Evolutionary computation
favorable convergence
Maintenance engineering
many- objective evolutionary algorithm
Many-objective optimization problem
Optimization
Sociology
Statistics
Title A Many-Objective Evolutionary Algorithm With Enhanced Mating and Environmental Selections
URI https://ieeexplore.ieee.org/document/7090975
Volume 19
WOSCitedRecordID wos000358883500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7o8DAPTqfi_EUOnsRuWZM2yXFIhwd_gVPnqaRJ6pTZSZmC_71JW-sEEbyUUhII-V6Sl773vg_gSPCEJ0xgT1KhPaoY9hxLmheSfkpTkvqqEO27O2eXl3w8FtdLcFLXwhhjiuQz03WvRSxfz9Sb-1XWY1hgwYJlWGYsLGu16oiBo0kpk-mF9Rj5uIpg9rHojaK7U5fEFXRdLYTw-z_OoAVRleJMGbb-N5p1WKt8RzQowd6AJZO1ofWly4CqZdqG1QWSwTY0nT9Z0jFvwsMAXdjl710lz-VOh6L3yvhk_oEG08dZ_jSfvKB7-0RRNikSBGwflx2NZKZR9F0ZZ8dyU8joONPdgtthNDo98yp1BU_5YTD3iMZaBYr6aWIkDexlVfsiTYg2gQytH5VwqaRPUyyZUpwoQnlCOJUs1VgpHZBtaGSzzOwAUsLnhoZhyhSm2s6KZgkNtR9KbAQJaAfw13zHqqIedwoY07i4gmARO4hiB1FcQdSB47rLa8m78VfjTQdP3bBCZvf3z3vQdJ3LLL59aMzzN3MAK-rdYpEfFlb1CQ3ryp0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQHL1Pxbh58EuuyJm2SxyEVxTkFp86nkiapF7STsQn-e5M2TgURfCmlJCXkO01Oes75PoA9wTOeMYEDSYUOqGI4cCxpQUyaOc1JHqpStO-mzTod3uuJywk4GNfCGGPK5DNz6G7LWL7uq5H7VdZgWGDBokmYcspZvlprHDNwRClVOr2wPiPv-RhmE4tGN7k5cmlc0aGrhhBh88cu9E1WpdxVjhf-N55FmPfeI2pVcC_BhCnqsPCpzID8h1qHuW80g3WYdR5lRci8DHctdG4XgOAie6rWOpS8efOTg3fUer7vDx6HDy_o1l5RUjyUKQK2j8uPRrLQKPmqjbNjuSqFdJzxrsD1cdI9Ogm8vkKgwjgaBkRjrSJFwzwzkkb2uKpDkWdEm0jG1pPKuFQypDmWTClOFKE8I5xKlmuslI7IKtSKfmHWACkRckPjOGcKU21nRbOMxjqMJTaCRHQd8Od8p8qTjzsNjOe0PIRgkTqIUgdR6iFah_1xl9eKeeOvxssOnnFDj8zG7493Yeake95O26eds02YdS-qcvq2oDYcjMw2TKs3i8tgp7SwD8UIzeY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Many-Objective+Evolutionary+Algorithm+With+Enhanced+Mating+and+Environmental+Selections&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Jixiang+Cheng&rft.au=Yen%2C+Gary+G.&rft.au=Gexiang+Zhang&rft.date=2015-08-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=19&rft.issue=4&rft.spage=592&rft.epage=605&rft_id=info:doi/10.1109%2FTEVC.2015.2424921&rft.externalDocID=7090975
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon