A Set-Based Genetic Algorithm for Interval Many-Objective Optimization Problems

Interval many-objective optimization problems (IMaOPs), involving more than three objectives and at least one subjected to interval uncertainty, are ubiquitous in real-world applications. However, there have been very few effective methods for solving these problems. In this paper, we proposed a set...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on evolutionary computation Ročník 22; číslo 1; s. 47 - 60
Hlavní autori: Gong, Dunwei, Sun, Jing, Miao, Zhuang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.02.2018
Predmet:
ISSN:1089-778X, 1941-0026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Interval many-objective optimization problems (IMaOPs), involving more than three objectives and at least one subjected to interval uncertainty, are ubiquitous in real-world applications. However, there have been very few effective methods for solving these problems. In this paper, we proposed a set-based genetic algorithm to effectively solve them. The original optimization problem was first transformed into a deterministic bi-objective problem, where new objectives are hyper-volume and imprecision. A set-based Pareto dominance relation was then defined to modify the fast nondominated sorting approach in NSGA-II. Additionally, set-based evolutionary schemes were suggested. Finally, our method was empirically evaluated on 39 benchmark IMaOPs as well as a car cab design problem and compared with two typical methods. The numerical results demonstrated the superiority of our method and indicated that a tradeoff approximate front between convergence and uncertainty can be produced.
AbstractList Interval many-objective optimization problems (IMaOPs), involving more than three objectives and at least one subjected to interval uncertainty, are ubiquitous in real-world applications. However, there have been very few effective methods for solving these problems. In this paper, we proposed a set-based genetic algorithm to effectively solve them. The original optimization problem was first transformed into a deterministic bi-objective problem, where new objectives are hyper-volume and imprecision. A set-based Pareto dominance relation was then defined to modify the fast nondominated sorting approach in NSGA-II. Additionally, set-based evolutionary schemes were suggested. Finally, our method was empirically evaluated on 39 benchmark IMaOPs as well as a car cab design problem and compared with two typical methods. The numerical results demonstrated the superiority of our method and indicated that a tradeoff approximate front between convergence and uncertainty can be produced.
Author Gong, Dunwei
Sun, Jing
Miao, Zhuang
Author_xml – sequence: 1
  givenname: Dunwei
  surname: Gong
  fullname: Gong, Dunwei
  email: dwgong@vip.163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221008, China
– sequence: 2
  givenname: Jing
  orcidid: 0000-0002-1485-0247
  surname: Sun
  fullname: Sun, Jing
  email: sunj@hhit.edu.cn
  organization: School of Sciences, Huaihai Institute of Technology, Lianyungang, China
– sequence: 3
  givenname: Zhuang
  surname: Miao
  fullname: Miao, Zhuang
  email: 1037407168@qq.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221008, China
BookMark eNp9kM1KAzEURoNUsFYfQNzkBVKTzCSZLGuptVAZwSruhkx6oynzUzKhUJ_eqS0uXLi634XvXC7nEg2atgGEbhgdM0b13Wr2Nh1zyuSYyySVXJyhIdMpI5RyOegzzTRRKnu_QJddt6GUpYLpIcon-AUiuTcdrPEcGoje4kn10QYfP2vs2oAXTYSwMxV-Ms2e5OUGbPQ7wPk2-tp_mejbBj-Htqyg7q7QuTNVB9enOUKvD7PV9JEs8_liOlkSy6WIhBlp0gwSZZhIqbHciTLRzCROCJGCWpdcl0qVqTTO0b6d8ZJqaVW_9EWejJA63rWh7boArrA-_rwSg_FVwWhx8FIcvBQHL8XJS0-yP-Q2-NqE_b_M7ZHxAPDbV0omGaXJN12tcE4
CODEN ITEVF5
CitedBy_id crossref_primary_10_1007_s00500_024_09893_8
crossref_primary_10_1016_j_knosys_2018_08_030
crossref_primary_10_1063_1_5096784
crossref_primary_10_1016_j_asoc_2019_106041
crossref_primary_10_1109_TEVC_2019_2912204
crossref_primary_10_1109_ACCESS_2019_2894774
crossref_primary_10_1186_s40537_021_00433_x
crossref_primary_10_1155_2018_2183214
crossref_primary_10_1177_15501477211031748
crossref_primary_10_1155_2022_9662953
crossref_primary_10_1109_TCYB_2018_2849442
crossref_primary_10_1109_ACCESS_2019_2933262
crossref_primary_10_1109_TCYB_2019_2908485
crossref_primary_10_3233_JCM_247133
crossref_primary_10_1016_j_mtcomm_2019_100674
crossref_primary_10_1016_j_engstruct_2022_115196
crossref_primary_10_1007_s00521_019_04178_w
crossref_primary_10_1016_j_comnet_2020_107183
crossref_primary_10_1016_j_jpdc_2019_09_001
crossref_primary_10_1109_TEVC_2018_2859638
crossref_primary_10_3233_JIFS_182893
crossref_primary_10_1007_s13042_020_01189_1
crossref_primary_10_1109_TPWRS_2020_2967468
crossref_primary_10_1016_j_ins_2019_07_014
crossref_primary_10_1155_2018_8302324
crossref_primary_10_1007_s12065_019_00253_2
crossref_primary_10_1016_j_oceaneng_2021_110101
crossref_primary_10_1016_j_ins_2023_119533
crossref_primary_10_1016_j_physa_2022_128017
crossref_primary_10_3390_math7050395
crossref_primary_10_1016_j_jmst_2021_10_015
crossref_primary_10_1093_comjnl_bxaa168
crossref_primary_10_3390_land11050646
crossref_primary_10_1088_1742_6596_1881_3_032094
crossref_primary_10_1016_j_compositesb_2018_07_024
crossref_primary_10_1016_j_suscom_2022_100668
crossref_primary_10_1016_j_asoc_2021_108096
crossref_primary_10_1016_j_swevo_2024_101749
crossref_primary_10_3390_fi11110233
crossref_primary_10_1016_j_ins_2018_10_005
crossref_primary_10_1109_TASE_2022_3230951
crossref_primary_10_1080_19942060_2020_1784797
crossref_primary_10_1088_1742_6596_2066_1_012079
crossref_primary_10_1080_02533839_2018_1498025
crossref_primary_10_1109_ACCESS_2019_2925828
crossref_primary_10_3390_math8020149
crossref_primary_10_1109_TCYB_2019_2922287
crossref_primary_10_1016_j_engappai_2020_104008
crossref_primary_10_1109_TEVC_2019_2933444
crossref_primary_10_1088_1755_1315_1105_1_012024
crossref_primary_10_1186_s13638_019_1456_7
crossref_primary_10_1016_j_eswa_2022_119211
crossref_primary_10_1109_ACCESS_2019_2960874
crossref_primary_10_1109_TEVC_2020_2975381
crossref_primary_10_1016_j_knosys_2020_105518
crossref_primary_10_1109_TCYB_2019_2932451
crossref_primary_10_1016_j_ins_2024_121552
crossref_primary_10_1109_TSMC_2019_2962880
crossref_primary_10_1109_TCYB_2018_2819360
crossref_primary_10_1177_1687814019834161
crossref_primary_10_1016_j_ins_2022_12_068
crossref_primary_10_3390_rs11243003
crossref_primary_10_1016_j_swevo_2025_101853
crossref_primary_10_3390_en16247931
crossref_primary_10_3390_su11184964
crossref_primary_10_3390_electronics13193842
crossref_primary_10_1016_j_swevo_2025_101870
crossref_primary_10_1080_0305215X_2022_2051701
crossref_primary_10_1016_j_asoc_2021_107931
crossref_primary_10_3390_ijerph19010586
crossref_primary_10_1109_TCYB_2020_3016426
crossref_primary_10_1155_2018_4378701
crossref_primary_10_1016_j_mechatronics_2021_102706
crossref_primary_10_1109_ACCESS_2023_3332904
crossref_primary_10_1007_s40815_021_01175_x
crossref_primary_10_1186_s13677_022_00313_6
crossref_primary_10_3390_math9080864
crossref_primary_10_3390_math9060631
crossref_primary_10_1109_JSTARS_2020_3004375
crossref_primary_10_3390_electronics13153071
crossref_primary_10_1109_ACCESS_2019_2908934
crossref_primary_10_1002_cpe_4248
crossref_primary_10_3390_app131810247
crossref_primary_10_1016_j_ijepes_2021_107595
crossref_primary_10_1016_j_ijepes_2019_05_063
crossref_primary_10_1016_j_ins_2019_06_001
crossref_primary_10_1007_s10489_021_02977_0
crossref_primary_10_1002_sys_21580
crossref_primary_10_1016_j_ymeth_2022_04_008
crossref_primary_10_32604_cmc_2023_037611
crossref_primary_10_1109_ACCESS_2019_2937553
crossref_primary_10_1142_S021819402550038X
crossref_primary_10_1109_ACCESS_2021_3101636
crossref_primary_10_1109_TCYB_2018_2884083
crossref_primary_10_1109_ACCESS_2020_3044052
crossref_primary_10_1109_TCYB_2019_2928174
crossref_primary_10_1016_j_swevo_2019_05_005
crossref_primary_10_1109_TCYB_2019_2957574
crossref_primary_10_1016_j_future_2020_01_048
crossref_primary_10_1007_s40747_017_0058_4
crossref_primary_10_1016_j_ijepes_2020_106050
crossref_primary_10_1080_0305215X_2024_2335552
crossref_primary_10_3390_ma15186349
crossref_primary_10_1007_s12046_020_01554_4
crossref_primary_10_1016_j_cie_2022_108164
crossref_primary_10_1109_ACCESS_2021_3058128
crossref_primary_10_1109_TCASAI_2025_3527979
crossref_primary_10_3390_en11123494
crossref_primary_10_3390_met10081003
crossref_primary_10_1155_2022_7265308
crossref_primary_10_1016_j_knosys_2023_111019
crossref_primary_10_1080_00207543_2025_2470991
crossref_primary_10_1016_j_asoc_2023_110095
crossref_primary_10_1088_1742_6596_1852_3_032054
crossref_primary_10_1007_s00366_021_01369_9
crossref_primary_10_1109_ACCESS_2020_2990193
crossref_primary_10_1109_TCYB_2020_3027962
crossref_primary_10_1007_s00500_022_07182_w
crossref_primary_10_1016_j_adhoc_2024_103610
crossref_primary_10_3390_s24041310
crossref_primary_10_1002_itl2_245
crossref_primary_10_1002_rnc_7114
crossref_primary_10_1109_TNSM_2022_3224158
crossref_primary_10_3390_en12081508
crossref_primary_10_1109_ACCESS_2021_3060863
crossref_primary_10_1088_1742_6596_1750_1_012081
crossref_primary_10_1016_j_ins_2019_10_043
crossref_primary_10_1007_s40314_022_02173_x
crossref_primary_10_1016_j_knosys_2020_105568
crossref_primary_10_1016_j_commatsci_2023_112737
crossref_primary_10_1109_TCYB_2022_3151793
crossref_primary_10_1109_TEVC_2022_3193294
crossref_primary_10_1007_s11432_018_9754_6
crossref_primary_10_1109_ACCESS_2023_3293523
crossref_primary_10_3390_aerospace9030147
crossref_primary_10_1016_j_apm_2018_12_025
crossref_primary_10_1109_TCYB_2019_2960039
crossref_primary_10_1049_iet_ipr_2020_0111
crossref_primary_10_1109_TSMC_2024_3407836
crossref_primary_10_1007_s00521_024_10332_w
crossref_primary_10_1002_2050_7038_12991
crossref_primary_10_3390_app112411852
crossref_primary_10_1155_2021_6672773
crossref_primary_10_1371_journal_pone_0314584
crossref_primary_10_1109_TGRS_2020_3037249
crossref_primary_10_1145_3469801
crossref_primary_10_1145_3632172
crossref_primary_10_1109_COMST_2021_3130901
crossref_primary_10_3390_s19245529
crossref_primary_10_1002_sys_21811
crossref_primary_10_1016_j_knosys_2020_106520
crossref_primary_10_1109_TCNS_2022_3186624
crossref_primary_10_1155_2022_1467935
crossref_primary_10_1007_s00521_020_04779_w
crossref_primary_10_1016_j_swevo_2019_03_009
crossref_primary_10_1016_j_psep_2020_03_023
crossref_primary_10_1016_j_asoc_2023_110425
crossref_primary_10_1016_j_cie_2025_111136
crossref_primary_10_1016_j_ins_2018_01_006
crossref_primary_10_1016_j_pnsc_2024_05_013
crossref_primary_10_1109_TCYB_2018_2844324
Cites_doi 10.1016/j.ejor.2006.08.008
10.1007/11732242_71
10.1109/TEVC.2012.2185847
10.1109/CEC.2011.5949822
10.1007/s00158-010-0501-2
10.1016/j.cie.2011.09.003
10.1007/3-540-44719-9_23
10.1016/j.ins.2016.06.007
10.1007/s10589-014-9717-1
10.1109/TCYB.2016.2586191
10.1109/CEC.2002.1007032
10.1007/978-3-540-30217-9_84
10.1016/j.cie.2014.05.014
10.1109/CEC.2005.1554719
10.1162/EVCO_a_00066
10.1109/TEVC.2016.2519758
10.1109/TEVC.2016.2587808
10.1109/TEVC.2007.892759
10.1109/TEVC.2015.2433266
10.1137/1.9780898717716
10.1109/4235.996017
10.1109/TEVC.2012.2227145
10.1109/TEVC.2014.2332878
10.1007/978-3-540-31880-4_20
10.1016/j.compstruc.2008.10.005
10.1109/ICInfA.2014.6932817
10.1162/EVCO_a_00009
10.1109/TEVC.2010.2093579
10.1109/TEVC.2015.2420112
10.1109/BICTA.2010.5645160
10.1145/1830483.1830574
10.1016/j.ins.2011.05.011
10.1016/j.ejor.2009.11.003
10.1109/TEVC.2009.2016569
10.1007/978-3-642-01020-0_15
10.1109/CEC.2002.1007013
10.1109/TEVC.2013.2281535
10.1016/j.amc.2008.12.035
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2016.2634625
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 60
ExternalDocumentID 10_1109_TEVC_2016_2634625
7763800
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program)
  grantid: 2014CB0463062
– fundername: Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-Aged Teachers and Presidents
– fundername: National Natural Science Foundation of China
  grantid: 61375067; 61403155; 61673404
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-1a6a48e37a1540ac2f5b391a3f5554e7db29b77b46aff01a682b096c7f01b3923
IEDL.DBID RIE
ISICitedReferencesCount 207
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423562800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 21:32:53 EST 2025
Tue Aug 26 17:00:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-1a6a48e37a1540ac2f5b391a3f5554e7db29b77b46aff01a682b096c7f01b3923
ORCID 0000-0002-1485-0247
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TEVC_2016_2634625
crossref_primary_10_1109_TEVC_2016_2634625
ieee_primary_7763800
PublicationCentury 2000
PublicationDate 2018-Feb.
2018-2-00
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb.
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
zitzler (ref10) 2001
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
jain (ref42) 2012
ref2
ref1
ref17
ref38
ref16
ref18
huband (ref41) 2005
zitzler (ref39) 1999
ref24
(ref43) 2015
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
sun (ref19) 2013; 22
References_xml – ident: ref38
  doi: 10.1016/j.ejor.2006.08.008
– year: 1999
  ident: ref39
  article-title: Evolutionary algorithms for multiobjective optimization: Methods and applications
– ident: ref2
  doi: 10.1007/11732242_71
– ident: ref26
  doi: 10.1109/TEVC.2012.2185847
– ident: ref35
  doi: 10.1109/CEC.2011.5949822
– ident: ref9
  doi: 10.1007/s00158-010-0501-2
– ident: ref15
  doi: 10.1016/j.cie.2011.09.003
– ident: ref1
  doi: 10.1007/3-540-44719-9_23
– ident: ref22
  doi: 10.1016/j.ins.2016.06.007
– ident: ref5
  doi: 10.1007/s10589-014-9717-1
– ident: ref24
  doi: 10.1109/TCYB.2016.2586191
– ident: ref40
  doi: 10.1109/CEC.2002.1007032
– ident: ref12
  doi: 10.1007/978-3-540-30217-9_84
– ident: ref16
  doi: 10.1016/j.cie.2014.05.014
– year: 2012
  ident: ref42
  article-title: An improved NSGA-II procedure for many-objective optimization Part I: Solving problems with box constraints
– ident: ref17
  doi: 10.1109/CEC.2005.1554719
– ident: ref4
  doi: 10.1162/EVCO_a_00066
– ident: ref29
  doi: 10.1109/TEVC.2016.2519758
– ident: ref23
  doi: 10.1109/TEVC.2016.2587808
– ident: ref13
  doi: 10.1109/TEVC.2007.892759
– ident: ref28
  doi: 10.1109/TEVC.2015.2433266
– ident: ref33
  doi: 10.1137/1.9780898717716
– volume: 22
  start-page: 269
  year: 2013
  ident: ref19
  article-title: Solving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degree
  publication-title: Chin J Electron
– ident: ref11
  doi: 10.1109/4235.996017
– ident: ref20
  doi: 10.1109/TEVC.2012.2227145
– year: 2001
  ident: ref10
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref27
  doi: 10.1109/TEVC.2014.2332878
– start-page: 280
  year: 2005
  ident: ref41
  article-title: A scalable multi-objective test problem toolkit
  publication-title: Proc 3rd Int Conf Evol Multi-Criterion Optim
  doi: 10.1007/978-3-540-31880-4_20
– ident: ref8
  doi: 10.1016/j.compstruc.2008.10.005
– ident: ref36
  doi: 10.1109/ICInfA.2014.6932817
– ident: ref32
  doi: 10.1162/EVCO_a_00009
– ident: ref25
  doi: 10.1109/TEVC.2010.2093579
– ident: ref21
  doi: 10.1109/TEVC.2015.2420112
– ident: ref18
  doi: 10.1109/BICTA.2010.5645160
– ident: ref34
  doi: 10.1145/1830483.1830574
– ident: ref6
  doi: 10.1016/j.ins.2011.05.011
– ident: ref3
  doi: 10.1016/j.ejor.2009.11.003
– ident: ref31
  doi: 10.1109/TEVC.2009.2016569
– ident: ref30
  doi: 10.1007/978-3-642-01020-0_15
– ident: ref37
  doi: 10.1109/CEC.2002.1007013
– year: 2015
  ident: ref43
  publication-title: PyOptimization
– ident: ref14
  doi: 10.1109/TEVC.2013.2281535
– ident: ref7
  doi: 10.1016/j.amc.2008.12.035
SSID ssj0014519
Score 2.6158059
Snippet Interval many-objective optimization problems (IMaOPs), involving more than three objectives and at least one subjected to interval uncertainty, are ubiquitous...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 47
SubjectTerms Context
Convergence
Genetic algorithm
Genetic algorithms
interval
many-objective optimization
Noise measurement
Optimization
set-based evolution
Sorting
Uncertainty
Title A Set-Based Genetic Algorithm for Interval Many-Objective Optimization Problems
URI https://ieeexplore.ieee.org/document/7763800
Volume 22
WOSCitedRecordID wos000423562800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH8B4kEPoqARv9KDJ-Ng6z7aHZFAvAgkouG2rF2nGD4MDP9-X7eycDAm3rrlvaXZe339tX19P4C7mEshsYeW7wnb8hRLLZEm6Ms0RrDBUx7KgmyCDYd8Og3HFXgo78IopfLkM9XWzfwsP1nJrd4q6zAcDAhwqlDFVnFXqzwx0GVSimT6EBEjn5oTTMcOO5P-W08ncQVtGrheoFmx9-agPVKVfE4Z1P_XmxM4NtiRdAtjn0JFLRtQ3_EyEDNMG3C0V2SwCaMueVGZ9YjTVUJ0lWnUJt35-2o9yz4WBEErybcF0eXIM4YGayQ-iyhIRhhPFuaiJhkX1DObM3gd9Ce9J8vQKFiSBn5mOXEQe1y5LEa4ZMeSpr5wQyd2Ux-xhGKJoKFgTHhBnKY2SnMqcGEjGT6gIHXPobZcLdUFEGF7DopyjInMU0kQUpq6tnI4ftLnLGmBvfuxkTQ1xjXVxTzK1xp2GGlbRNoWkbFFC-5Lla-iwMZfwk1th1LQmODy99dXcIjKvMixvoZatt6qGziQ39lss77N3ecHJ_DCdg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGQAIOvAZiPHPghChL07RJj2MCgRgbEgPtVjVpykNsQ1vH78dpu2kHhMStrZwoqh37S-L4AziLpVYaR-j4XFGHG5E6Kk3QllmMYEOmMtQF2YTodGS_Hz5W4GJ-F8YYkyefmUv7mJ_lJyM9tVtlDYGTAQHOEiz7nDNa3NaanxnYQilFOn2ImFH2yzNMl4aN3vVLy6ZxBZcs8HhgebEXotACrUoeVW42_zeeLdgo0SNpFurehooZ7sDmjJmBlBN1B9YXygzWoNskTyZzrjBgJcTWmcbWpPn5Ohq_Z28DgrCV5BuDaHTkAZ2D01UfhR8kXfQog_KqJnksyGcmu_B8c91r3TolkYKjWeBnjhsHMZfGEzECJhprlvrKC93YS31EE0YkioVKCMWDOE0pSkumcGmjBb6gIPP2oDocDc0-EEW5i6ISvaLgJglCxlKPGldil74USR3o7MdGuqwybskuPqN8tUHDyOoisrqISl3U4Xze5KsosfGXcM3qYS5YquDg98-nsHrbe2hH7bvO_SGsYUeyyLg-gmo2nppjWNHf2ftkfJKb0g9ytcW9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Set-Based+Genetic+Algorithm+for+Interval+Many-Objective+Optimization+Problems&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Gong%2C+Dunwei&rft.au=Sun%2C+Jing&rft.au=Miao%2C+Zhuang&rft.date=2018-02-01&rft.pub=IEEE&rft.issn=1089-778X&rft.volume=22&rft.issue=1&rft.spage=47&rft.epage=60&rft_id=info:doi/10.1109%2FTEVC.2016.2634625&rft.externalDocID=7763800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon