Kinship Verification in Childhood Images Using Vision Transformer

Facial Kinship Verification involves determining whether two face images belong to relatives, a task that is particularly challenging due to subtle differences in facial features and large intra-class variations. In recent years, deep learning models have shown great promise in addressing this probl...

Full description

Saved in:
Bibliographic Details
Published in:Procedia computer science Vol. 258; pp. 3105 - 3114
Main Authors: Oruganti, Madhu, Meenpal, Toshanlal, Majumdar, Saikat, Tekchandani, Hitesh
Format: Journal Article
Language:English
Published: Elsevier B.V 2025
Subjects:
ISSN:1877-0509, 1877-0509
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Facial Kinship Verification involves determining whether two face images belong to relatives, a task that is particularly challenging due to subtle differences in facial features and large intra-class variations. In recent years, deep learning models have shown great promise in addressing this problem. In this work, we propose a Vision Transformer (ViT) model for facial Kinship Verification, leveraging the proven effectiveness of Transformer architectures in Natural Language Processing. The Vision Transformer is trained end-to-end on two benchmark datasets: the large-scale Families in the Wild (FIW) dataset, consisting of thousands of face images with corresponding kinship labels, and the smaller KinFaceW-II dataset. Our model employs multiple attention mechanisms to capture complex relationships between facial features and produce a final kinship prediction. Experimental results demonstrate that our approach outperforms state-of-the-art methods, achieving an average accuracy of 92% on the FIW dataset and an F1 score of 0.85. The Euclidean distance metric further enhances the classification of kin and non-kin pairs. These findings confirm the effectiveness of Vision Transformer models for facial Kinship Verification and underscore their potential for future research in this domain.
AbstractList Facial Kinship Verification involves determining whether two face images belong to relatives, a task that is particularly challenging due to subtle differences in facial features and large intra-class variations. In recent years, deep learning models have shown great promise in addressing this problem. In this work, we propose a Vision Transformer (ViT) model for facial Kinship Verification, leveraging the proven effectiveness of Transformer architectures in Natural Language Processing. The Vision Transformer is trained end-to-end on two benchmark datasets: the large-scale Families in the Wild (FIW) dataset, consisting of thousands of face images with corresponding kinship labels, and the smaller KinFaceW-II dataset. Our model employs multiple attention mechanisms to capture complex relationships between facial features and produce a final kinship prediction. Experimental results demonstrate that our approach outperforms state-of-the-art methods, achieving an average accuracy of 92% on the FIW dataset and an F1 score of 0.85. The Euclidean distance metric further enhances the classification of kin and non-kin pairs. These findings confirm the effectiveness of Vision Transformer models for facial Kinship Verification and underscore their potential for future research in this domain.
Author Meenpal, Toshanlal
Majumdar, Saikat
Oruganti, Madhu
Tekchandani, Hitesh
Author_xml – sequence: 1
  givenname: Madhu
  surname: Oruganti
  fullname: Oruganti, Madhu
  email: madhu.oruganti@klh.edu.in
  organization: Asst. Prof., Department of AI & DS, Koneru Lakshmaiah Education Foundation, Aziz Nagar, Hyderabad, 500075, TG, India
– sequence: 2
  givenname: Toshanlal
  surname: Meenpal
  fullname: Meenpal, Toshanlal
  organization: Associate Prof., Department of ECE, National Institute of Technology, GE Road, Raipur, 492010, CG, India
– sequence: 3
  givenname: Saikat
  surname: Majumdar
  fullname: Majumdar, Saikat
  organization: Associate Prof., Department of ECE, National Institute of Technology, GE Road, Raipur, 492010, CG, India
– sequence: 4
  givenname: Hitesh
  surname: Tekchandani
  fullname: Tekchandani, Hitesh
  organization: Asst. Prof., Department of AI & DS, Koneru Lakshmaiah Education Foundation, Aziz Nagar, Hyderabad, 500075, TG, India
BookMark eNqFkM1OAjEURhuDiYg8gZt5gRn7P52FC0JUiCRugG1T2w5cAi1pJya-vQO4MC70bu63uOcm37lFgxCDR-ie4IpgIh921TFFmyuKqagwr4RUV2hIVF2XWOBm8CPfoHHOO9wPU6oh9RBNXiHkLRyLtU_QgjUdxFBAKKZb2LttjK6YH8zG52KVIWyKNeTTwTKZkNuYDj7doevW7LMff-8RWj0_LaezcvH2Mp9OFqWlUqjScSNtI6R03Nec0dpTSbii75g1tRG0lUpSY4TpE_GYtZb2haywtTLMccxGiF3-2hRzTr7VxwQHkz41wfokQu_0WYQ-idCY615ETzW_KAvduWSXDOz_YR8vrO9rfYBPOlvwwXoHydtOuwh_8l8g3Xw8
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3605630
Cites_doi 10.1109/ICME46284.2020.9102823
10.1007/s10044-020-00906-4
10.1016/j.compeleceng.2024.109375
10.1109/NCC52529.2021.9530084
10.1109/TPAMI.2013.134
10.1145/3134421.3134424
10.1109/TCYB.2022.3163707
10.1016/j.imavis.2023.104727
10.1016/j.jvcir.2021.103265
10.1109/FG52635.2021.9667009
10.1109/ICCCNT45670.2019.8944489
10.1109/TIP.2020.3034027
10.1109/CVPR.2015.7298621
10.1007/s11042-023-16694-y
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.04.568
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 3114
ExternalDocumentID 10_1016_j_procs_2025_04_568
S1877050925016722
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
9DU
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
ROL
SES
SSZ
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c2658-d4a6c9566d4e74327e261482b0397a52f6862aa5a2f61e03fc2202c5c78a3d403
ISSN 1877-0509
IngestDate Thu Nov 27 00:56:43 EST 2025
Tue Nov 18 20:35:42 EST 2025
Sat Nov 29 17:08:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Accuracy
F1 Score
Vision Transformers
Childhood Images
Facial Kinship Verification
Binary Classification Problem
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2658-d4a6c9566d4e74327e261482b0397a52f6862aa5a2f61e03fc2202c5c78a3d403
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2025.04.568
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2025_04_568
crossref_citationtrail_10_1016_j_procs_2025_04_568
elsevier_sciencedirect_doi_10_1016_j_procs_2025_04_568
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Madhu Oruganti, Toshanlal Meenpal, and Saikat Majumder, ”Selective variance based kinship verification in parent’s childhood and their children,” in *2021 National Conference on Communications (NCC)*, IEEE, 2021, pp. 1–6.
Yellow Class Childhood (YCCH) contest,” Facebook page
Accessed: 2022-04-05.
Jiaxuan Zhu, Ming Shao, Chao Xia, Hong Pan, and Siyu Xia, ”Adversarial attacks on kinship verification using transformer,” in *2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021)*, 2021, pp. 1-8, doi
Aarti Goyal and Toshanlal Meenpal, ”Eccentricity based kinship verification from facial images in the wild,” *Pattern Analysis and Applications*, vol. 24, pp. 119–144, 2021, Springer.
Oruganti, Meenpal, Saikat (bib6857) 2024; 118
Moumita Mukherjee and Toshanlal Meenpal, ”Kinship verification using compound local binary pattern and local feature discriminant analysis,” in *2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT)*, IEEE, 2019, pp. 1–7.
Joseph P. Robinson, Ming Shao, Handong Zhao, Yue Wu, Timothy Gillis, and Yun Fu, ”Recognizing families in the wild (RFIW) data challenge workshop in conjunction with ACM MM 2017,” in *Proceedings of the 2017 Workshop on Recognizing Families in the Wild*, 2017, pp. 5–12.
.
Aarti Goyal and Toshanlal Meenpal, ”Patch-based dual-tree complex wavelet transform for kinship recognition,” *IEEE Transactions on Image Processing*, vol. 30, pp. 191–206, 2020, IEEE.
Meenpal Oruganti and Saikat Majumder, ”Stationary wavelet transform features for kinship verification in childhood images,” *Multimedia Tools and Applications*, pp. 1–26, 2023, Springer.
Sheng Huang, Jingkai Lin, Luwen Huangfu, Yun Xing, Junlin Hu, and Daniel Dajun Zeng, ”Adaptively weighted k-tuple metric network for kinship verification,” *IEEE Transactions on Cybernetics*, vol. 53, no. 10, pp. 6173–6186, 2022, IEEE.
Wanhua Li, Yingqiang Zhang, Kangchen Lv, Jiwen Lu, Jianjiang Feng, and Jie Zhou, ”Graph-based kinship reasoning network,” in *2020 IEEE International Conference on Multimedia and Expo (ICME)*, IEEE, 2020, pp. 1–6.
Jiwen Lu, Xiuzhuang Zhou, Yap-Pen Tan, Yuanyuan Shang, and Jie Zhou, ”Neighborhood repulsed metric learning for kinship verification,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 36, no. 2, pp. 331–345, 2013, IEEE.
Yuting Zhang, Kihyuk Sohn, Ruben Villegas, Gang Pan, and Honglak Lee, ”Improving object detection with deep convolutional networks via bayesian optimization and structured prediction,” in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2015, pp. 249–258.
Zhong, Yaoyao, and Weihong Deng. ”Face transformer for recognition.” arXiv preprint arXiv:2103.14803 (2021).
Huishan Wu, Jiawei Chen, Xiao Liu, and Junlin Hu, ”Component-based metric learning for fully automatic kinship verification,” *Journal of Visual Communication and Image Representation*, vol. 79, p. 103265, 2021, Elsevier.
Madhu Oruganti, Toshanlal Meenpal, and Saikat Majumder, ”Easy pair selection method for kinship verification using fixed age group images,” *Image and Vision Computing*, p. 104727, 2023, Elsevier.
10.1016/j.procs.2025.04.568_bib6868
10.1016/j.procs.2025.04.568_bib6867
10.1016/j.procs.2025.04.568_bib6859
10.1016/j.procs.2025.04.568_bib6858
10.1016/j.procs.2025.04.568_bib6869
10.1016/j.procs.2025.04.568_bib6864
10.1016/j.procs.2025.04.568_bib6863
10.1016/j.procs.2025.04.568_bib6866
10.1016/j.procs.2025.04.568_bib6865
10.1016/j.procs.2025.04.568_bib6860
10.1016/j.procs.2025.04.568_bib6871
10.1016/j.procs.2025.04.568_bib6870
10.1016/j.procs.2025.04.568_bib6862
10.1016/j.procs.2025.04.568_bib6861
10.1016/j.procs.2025.04.568_bib6872
Oruganti (10.1016/j.procs.2025.04.568_bib6857) 2024; 118
References_xml – reference: Madhu Oruganti, Toshanlal Meenpal, and Saikat Majumder, ”Easy pair selection method for kinship verification using fixed age group images,” *Image and Vision Computing*, p. 104727, 2023, Elsevier.
– reference: , Accessed: 2022-04-05.
– reference: Madhu Oruganti, Toshanlal Meenpal, and Saikat Majumder, ”Selective variance based kinship verification in parent’s childhood and their children,” in *2021 National Conference on Communications (NCC)*, IEEE, 2021, pp. 1–6.
– reference: Yuting Zhang, Kihyuk Sohn, Ruben Villegas, Gang Pan, and Honglak Lee, ”Improving object detection with deep convolutional networks via bayesian optimization and structured prediction,” in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2015, pp. 249–258.
– reference: Wanhua Li, Yingqiang Zhang, Kangchen Lv, Jiwen Lu, Jianjiang Feng, and Jie Zhou, ”Graph-based kinship reasoning network,” in *2020 IEEE International Conference on Multimedia and Expo (ICME)*, IEEE, 2020, pp. 1–6.
– reference: Aarti Goyal and Toshanlal Meenpal, ”Eccentricity based kinship verification from facial images in the wild,” *Pattern Analysis and Applications*, vol. 24, pp. 119–144, 2021, Springer.
– reference: Huishan Wu, Jiawei Chen, Xiao Liu, and Junlin Hu, ”Component-based metric learning for fully automatic kinship verification,” *Journal of Visual Communication and Image Representation*, vol. 79, p. 103265, 2021, Elsevier.
– reference: Joseph P. Robinson, Ming Shao, Handong Zhao, Yue Wu, Timothy Gillis, and Yun Fu, ”Recognizing families in the wild (RFIW) data challenge workshop in conjunction with ACM MM 2017,” in *Proceedings of the 2017 Workshop on Recognizing Families in the Wild*, 2017, pp. 5–12.
– reference: Sheng Huang, Jingkai Lin, Luwen Huangfu, Yun Xing, Junlin Hu, and Daniel Dajun Zeng, ”Adaptively weighted k-tuple metric network for kinship verification,” *IEEE Transactions on Cybernetics*, vol. 53, no. 10, pp. 6173–6186, 2022, IEEE.
– reference: .
– reference: Meenpal Oruganti and Saikat Majumder, ”Stationary wavelet transform features for kinship verification in childhood images,” *Multimedia Tools and Applications*, pp. 1–26, 2023, Springer.
– reference: ”Yellow Class Childhood (YCCH) contest,” Facebook page,
– volume: 118
  start-page: 109375
  year: 2024
  ident: bib6857
  article-title: ”Kinship verification in childhood images using curvelet transformed features."
  publication-title: Computers and Electrical Engineering
– reference: Zhong, Yaoyao, and Weihong Deng. ”Face transformer for recognition.” arXiv preprint arXiv:2103.14803 (2021).
– reference: Moumita Mukherjee and Toshanlal Meenpal, ”Kinship verification using compound local binary pattern and local feature discriminant analysis,” in *2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT)*, IEEE, 2019, pp. 1–7.
– reference: Jiwen Lu, Xiuzhuang Zhou, Yap-Pen Tan, Yuanyuan Shang, and Jie Zhou, ”Neighborhood repulsed metric learning for kinship verification,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 36, no. 2, pp. 331–345, 2013, IEEE.
– reference: Aarti Goyal and Toshanlal Meenpal, ”Patch-based dual-tree complex wavelet transform for kinship recognition,” *IEEE Transactions on Image Processing*, vol. 30, pp. 191–206, 2020, IEEE.
– reference: Jiaxuan Zhu, Ming Shao, Chao Xia, Hong Pan, and Siyu Xia, ”Adversarial attacks on kinship verification using transformer,” in *2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021)*, 2021, pp. 1-8, doi:
– ident: 10.1016/j.procs.2025.04.568_bib6871
– ident: 10.1016/j.procs.2025.04.568_bib6867
  doi: 10.1109/ICME46284.2020.9102823
– ident: 10.1016/j.procs.2025.04.568_bib6870
  doi: 10.1007/s10044-020-00906-4
– volume: 118
  start-page: 109375
  year: 2024
  ident: 10.1016/j.procs.2025.04.568_bib6857
  article-title: ”Kinship verification in childhood images using curvelet transformed features."
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2024.109375
– ident: 10.1016/j.procs.2025.04.568_bib6872
– ident: 10.1016/j.procs.2025.04.568_bib6863
  doi: 10.1109/NCC52529.2021.9530084
– ident: 10.1016/j.procs.2025.04.568_bib6859
  doi: 10.1109/TPAMI.2013.134
– ident: 10.1016/j.procs.2025.04.568_bib6861
  doi: 10.1145/3134421.3134424
– ident: 10.1016/j.procs.2025.04.568_bib6865
  doi: 10.1109/TCYB.2022.3163707
– ident: 10.1016/j.procs.2025.04.568_bib6864
  doi: 10.1016/j.imavis.2023.104727
– ident: 10.1016/j.procs.2025.04.568_bib6862
  doi: 10.1016/j.jvcir.2021.103265
– ident: 10.1016/j.procs.2025.04.568_bib6866
  doi: 10.1109/FG52635.2021.9667009
– ident: 10.1016/j.procs.2025.04.568_bib6858
  doi: 10.1109/ICCCNT45670.2019.8944489
– ident: 10.1016/j.procs.2025.04.568_bib6868
  doi: 10.1109/TIP.2020.3034027
– ident: 10.1016/j.procs.2025.04.568_bib6860
  doi: 10.1109/CVPR.2015.7298621
– ident: 10.1016/j.procs.2025.04.568_bib6869
  doi: 10.1007/s11042-023-16694-y
SSID ssj0000388917
Score 2.3492646
Snippet Facial Kinship Verification involves determining whether two face images belong to relatives, a task that is particularly challenging due to subtle differences...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3105
SubjectTerms Accuracy
Binary Classification Problem
Childhood Images
F1 Score
Facial Kinship Verification
Vision Transformers
Title Kinship Verification in Childhood Images Using Vision Transformer
URI https://dx.doi.org/10.1016/j.procs.2025.04.568
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEF2l0EMvLf1SaQvaA7fUUrL2eu0jqlpRVUWVSBE3a71eN0mDiRKCOPEH-NOd2VkvLqAIDr1YziYex57nndnxzBvG9oYqBRzVaZRlcRmBPU6jUuQm0qUsc2vhK2Vcswl1eJidnOQ_e73rthbmYqaaJru8zOf_VdUwBsrG0tlHqDsIhQHYB6XDFtQO2wcp_vuEMrCO4WS1j8i52r5AYvztVCOzA2ULHLviciI5RwfWZ-t6f9XVEQCEXOo5dn_oe5MZgrOL1W9QzoTqfqrxKmgQFshz102gPzpbjnUz0zcpiHq6Oq0otfvI1TCFAIL9g6XIFXWa6h-AQ7wcdyMTVL_sp9FMqQiZZcjK3DPm515BvO1-9gRXU3YscTyk-tI7szwFHKZoYwxSrguJdLWS-vP8y6l9y9aFDMQ2uW1aOCEFCikGSQFCnrBNoWSO-YE_rm4Cdkibk7sOzuFKWhYrly9458_c7-l0vJfRFnvulx18n-DykvVs84q9aFt6cD_Dv2b7Hj28ix4-aXhADyf0cIceTujhHfS8Yb--fhl9Poh8l43ICHA_oyrRqYFVclolFtxJoaxw5LDlAFxVLUWNNURaSw17Q3x4jYCLNNKoTMdVMojfso3mrLHvGMc3beB_qjpWNqmsLCtZS62zNBUgUebbTLR3pDCegh47ocyKNerYZp_CQXNiYFn_87S91YV_Isg5LAA96w58_7jzfGDP8BNF4z6yjfPFyu6wp-bifLJc7Dro_AWJ6pPs
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kinship+Verification+in+Childhood+Images+Using+Vision+Transformer&rft.jtitle=Procedia+computer+science&rft.au=Oruganti%2C+Madhu&rft.au=Meenpal%2C+Toshanlal&rft.au=Majumdar%2C+Saikat&rft.au=Tekchandani%2C+Hitesh&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=258&rft.spage=3105&rft.epage=3114&rft_id=info:doi/10.1016%2Fj.procs.2025.04.568&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_04_568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon