Company perspectives of generative artificial intelligence in industrial work

The use of artificial intelligence (AI) technologies in the manufacturing industry is rapidly increasing. During this transformation, it can be difficult to understand how AI will change the way work is done. This study explores how generative AI could change manufacturing work. Data collection was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science Jg. 253; S. 217 - 226
Hauptverfasser: Aromaa, Susanna, Heikkilä, Päivi, Jurvansuu, Marko, Pehlivan, Selen, Väärä, Teijo, Jurmu, Marko
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2025
Schlagworte:
ISSN:1877-0509, 1877-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The use of artificial intelligence (AI) technologies in the manufacturing industry is rapidly increasing. During this transformation, it can be difficult to understand how AI will change the way work is done. This study explores how generative AI could change manufacturing work. Data collection was conducted using interviews and a questionnaire with seven representatives from three industrial companies. They identified several application areas for GenAI in the industrial work context, such as design, planning, training, problem solving, coding and data management. They also expressed positive attitudes but raised concerns about trust, safety, acceptability and interoperability. Changes in work were identified as being more related to cognitive aspects such as changing the way of thinking and altering the interaction with people and machines. Therefore, human-AI design efforts should focus especially on cognitive ergonomics. Findings from this study can be used in the manufacturing industry when adopting AI, as well as in identifying research topics in the human-AI research community.
AbstractList The use of artificial intelligence (AI) technologies in the manufacturing industry is rapidly increasing. During this transformation, it can be difficult to understand how AI will change the way work is done. This study explores how generative AI could change manufacturing work. Data collection was conducted using interviews and a questionnaire with seven representatives from three industrial companies. They identified several application areas for GenAI in the industrial work context, such as design, planning, training, problem solving, coding and data management. They also expressed positive attitudes but raised concerns about trust, safety, acceptability and interoperability. Changes in work were identified as being more related to cognitive aspects such as changing the way of thinking and altering the interaction with people and machines. Therefore, human-AI design efforts should focus especially on cognitive ergonomics. Findings from this study can be used in the manufacturing industry when adopting AI, as well as in identifying research topics in the human-AI research community.
Author Aromaa, Susanna
Jurvansuu, Marko
Heikkilä, Päivi
Väärä, Teijo
Jurmu, Marko
Pehlivan, Selen
Author_xml – sequence: 1
  givenname: Susanna
  surname: Aromaa
  fullname: Aromaa, Susanna
  email: susanna.aromaa@vtt.fi
  organization: VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
– sequence: 2
  givenname: Päivi
  surname: Heikkilä
  fullname: Heikkilä, Päivi
  organization: VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
– sequence: 3
  givenname: Marko
  surname: Jurvansuu
  fullname: Jurvansuu, Marko
  organization: VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
– sequence: 4
  givenname: Selen
  surname: Pehlivan
  fullname: Pehlivan, Selen
  organization: VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
– sequence: 5
  givenname: Teijo
  surname: Väärä
  fullname: Väärä, Teijo
  organization: VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
– sequence: 6
  givenname: Marko
  surname: Jurmu
  fullname: Jurmu, Marko
  organization: VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland
BookMark eNqFkE1LxDAQhoOs4LruL_DSP9A6SZt-HDzI4heseNFzGJOpZO02Jakr--9NXQ_iQUMgM7w8w-Q5ZbPe9cTYOYeMAy8vNtngnQ6ZACEz4BnU8ojNeV1VKUhoZj_qE7YMYQPx5HXd8GrOHlZuO2C_TwbyYSA92h2FxLXJK_XkcWoT9KNtrbbYJbYfqetsDDXFJl7zHkY_RR_Ov52x4xa7QMvvd8Geb66fVnfp-vH2fnW1TrUopUyFFGWheQUGc45g8kIbQmFIcKmpIAQkmcec4s5Uv3CJEDOORYPYCJMvWHOYq70LwVOrtB3jsq4fPdpOcVCTGrVRX2rUpEYBV1FNZPNf7ODtFv3-H-ryQFH81s6SV0HbyYKxPlpTxtk_-U8sLoKG
CitedBy_id crossref_primary_10_3390_bs15040552
Cites_doi 10.1007/s12525-023-00680-1
10.1038/s42256-019-0088-2
10.1016/j.ijinfomgt.2023.102642
10.1002/hfm.20996
10.1080/15228053.2023.2233814
10.1111/j.1365-2648.2007.04569.x
10.1109/ACCESS.2018.2870052
10.54941/ahfe1002927
10.1108/IJM-03-2021-0173
10.1145/3442188.3445922
10.14763/2020.2.1469
10.1007/s40171-023-00356-x
10.1007/978-3-030-05297-3_12
10.1080/08874417.2023.2261010
10.1016/j.eng.2019.07.015
10.1016/j.jmsy.2023.07.008
10.1145/3604930.3605705
10.1002/hrm.22147
10.1007/s11948-020-00276-4
10.1016/j.ijme.2023.100790
10.5465/annals.2018.0057
10.1109/EMR.2023.3333794
10.1016/j.jmsy.2022.07.010
10.1145/3557891
10.1109/ACCESS.2020.3042874
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.01.085
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 226
ExternalDocumentID 10_1016_j_procs_2025_01_085
S1877050925000936
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYXX
CITATION
~HD
ID FETCH-LOGICAL-c2655-25264c170da31a0d34cdea2de215ce4ea0ae53170e509e8b15a0e211a49aa92d3
ISSN 1877-0509
IngestDate Thu Nov 27 00:54:20 EST 2025
Tue Nov 18 22:11:29 EST 2025
Sat Aug 09 17:31:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords manufacturing
company perspective
industry work
Generative artificial intelligence
human factors
ergonomics
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2655-25264c170da31a0d34cdea2de215ce4ea0ae53170e509e8b15a0e211a49aa92d3
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2025.01.085
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_procs_2025_01_085
crossref_primary_10_1016_j_procs_2025_01_085
elsevier_sciencedirect_doi_10_1016_j_procs_2025_01_085
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jobin, Anna, Marcello Ienca and Effy Vayena. (2019) “The global landscape of AI ethics guidelines.”
Kagermann, Henning, Wolfgang Wahlster and Johannes Helbig. (2013) Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: securing the future of German manufacturing industry. 82.
Institute, Future of Life. (2023). “Policymaking in the pause - What can policymakers do now to combat risks from advanced AI systems?” Retrieved from
30-40.
Larsson, Stefan and Fredrik Heintz. (2020) “Transparency in artificial intelligence.”
277–304.
Murphy, Kevin P. (2022) Probabilistic machine learning: an introduction.
389–399.
117–135.
Joskowicz, Jose and Daniel Slomovitz. (2024) “Engineers’ Perspectives on the Use of Generative Artificial Intelligence Tools in the Workplace.”
Bender, Emily M, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. (2021) “On the dangers of stochastic parrots: Can language models be too big?”
Zhou, Ji, Yanhong Zhou, Baicun Wang and Jiyuan Zang. (2019) “Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manufacturing.”
336–378.
Chignell, Mark, Lu Wang, Atefeh Zare and Jamy Li. (2023) “The evolution of HCI and human factors: Integrating human and artificial intelligence.”
Heikkilä, Päivi, Susanna Aromaa, Hanna Lammi and Timo Kuula. (2023) “Framework of Future Industrial Worker Characteristics.”
)
Lim, Weng Marc, Asanka Gunasekara, Jessica Leigh Pallant, Jason Ian Pallant and Ekaterina Pechenkina. (2023) “Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators.”
1–32.
624-636.
52138–52160.
220121–220139.
334-354.
Karvonen, Hannu, Eetu Heikkilä and Mikael Wahlström. (2019) “Artificial intelligence awareness in work environments.”
Peres, Ricardo Silva, Xiaodong Jia, Jay Lee, Keyi Sun, Armando Walter Colombo and Jose Barata. (2020) “Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook.”
Salmon, Paul M, Chris Baber, Catherine Burns, Tony Carden, Nancy Cooke, Missy Cummings, Peter Hancock, Scott McLean, Gemma JM Read and Neville A Stanton. (2023) “Managing the risks of artificial general intelligence: A human factors and ergonomics perspective.”
47–53.
European Commission, EU. (2021) Proposal for a regulation of the European parliament and of the council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts.
258–267.
102642.
Siau, Keng and Weiyu Wang. (2018) “Building trust in artificial intelligence, machine learning, and robotics.”
Malik, Nishtha, Shalini Nath Tripathi, Arpan Kumar Kar and Shivam Gupta. (2021) “Impact of artificial intelligence on employees working in industry 4.0 led organizations.”
Huang, Sihan, Baicun Wang, Xingyu Li, Pai Zheng, Dimitris Mourtzis and Lihui Wang. (2022) “Industry 5.0 and Society 5.0—Comparison, complementation and co-evolution.”
Espoo, Finland: 175–185.
Fui-Hoon Nah, Fiona, Ruilin Zheng, Jingyuan Cai, Keng Siau and Langtao Chen. (2023) “Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration.”
627–660.
Elo, Satu and Helvi Kyngäs. (2008) “The qualitative content analysis process.”
659–689.
Banh, Leonardo and Gero Strobel. (2023) “Generative artificial intelligence.”
1–7.
European Commission, EU. (2019) Ethics Guidelines for Trustworthy AI.
Dwivedi, Yogesh K, Nir Kshetri, Laurie Hughes, Emma Louise Slade, Anand Jeyaraj, Arpan Kumar Kar, Abdullah M Baabdullah, Alex Koohang, Vishnupriya Raghavan and Manju Ahuja. (2023) ““So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy.”
3333–3361.
107–115.
1–30.
424-428.
100790.
Chien, Andrew A, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma and Rajini Wijayawardana. (2023) “Reducing the Carbon Impact of Generative AI Inference (today and in 2035).”
Felzmann, Heike, Eduard Fosch-Villaronga, Christoph Lutz and Aurelia Tamò-Larrieux. (2020) “Towards transparency by design for artificial intelligence.”
1-17.
160–185.
Gladysz, Bartlomiej, Tuan-anh Tran, David Romero, Tim van Erp, János Abonyi and Tamás Ruppert. (2023) “Current development on the Operator 4.0 and transition towards the Operator 5.0: A systematic literature review in light of Industry 5.0.”
Einola, Katja and Violetta Khoreva. (2023) “Best friend or broken tool? Exploring the co‐existence of humans and artificial intelligence in the workplace ecosystem.”
Gozalo-Brizuela, Roberto and Eduardo C Garrido-Merchan. (2023) “ChatGPT is not all you need. A State of the Art Review of large Generative AI models.”
Glikson, Ella and Anita Williams Woolley. (2020) “Human trust in artificial intelligence: Review of empirical research.”
610–623.
Ooi, Keng-Boon, Garry Wei-Han Tan, Mostafa Al-Emran, Mohammed A Al-Sharafi, Alexandru Capatina, Amrita Chakraborty, Yogesh K Dwivedi, Tzu-Ling Huang, Arpan Kumar Kar and Voon-Hsien Lee. (2023) “The potential of generative artificial intelligence across disciplines: perspectives and future directions.”
Chui, Michael, Vishnu Kamalnath and Brian McCarthy. (2020). “An Executive’s Guide to AI.” Retrieved from
Adadi, Amina and Mohammed Berrada. (2018) “Peeking inside the black-box: a survey on explainable artificial intelligence (XAI).”
Kar, Arpan Kumar, PS Varsha and Shivakami Rajan. (2023) “Unravelling the impact of generative artificial intelligence (GAI) in industrial applications: A review of scientific and grey literature.”
Breque, Maija, Lars De Nul and Athanasios Petridis. (2021) Industry 5.0: Towards a sustainable, human-centric and resilient European industry.
10.1016/j.procs.2025.01.085_bib11
10.1016/j.procs.2025.01.085_bib33
10.1016/j.procs.2025.01.085_bib12
10.1016/j.procs.2025.01.085_bib34
10.1016/j.procs.2025.01.085_bib13
10.1016/j.procs.2025.01.085_bib14
10.1016/j.procs.2025.01.085_bib15
10.1016/j.procs.2025.01.085_bib16
10.1016/j.procs.2025.01.085_bib17
10.1016/j.procs.2025.01.085_bib18
10.1016/j.procs.2025.01.085_bib4
10.1016/j.procs.2025.01.085_bib5
10.1016/j.procs.2025.01.085_bib6
10.1016/j.procs.2025.01.085_bib7
10.1016/j.procs.2025.01.085_bib1
10.1016/j.procs.2025.01.085_bib30
10.1016/j.procs.2025.01.085_bib2
10.1016/j.procs.2025.01.085_bib31
10.1016/j.procs.2025.01.085_bib3
10.1016/j.procs.2025.01.085_bib10
10.1016/j.procs.2025.01.085_bib32
10.1016/j.procs.2025.01.085_bib22
10.1016/j.procs.2025.01.085_bib23
10.1016/j.procs.2025.01.085_bib24
10.1016/j.procs.2025.01.085_bib25
10.1016/j.procs.2025.01.085_bib26
10.1016/j.procs.2025.01.085_bib27
10.1016/j.procs.2025.01.085_bib28
10.1016/j.procs.2025.01.085_bib29
10.1016/j.procs.2025.01.085_bib20
10.1016/j.procs.2025.01.085_bib21
10.1016/j.procs.2025.01.085_bib8
10.1016/j.procs.2025.01.085_bib9
10.1016/j.procs.2025.01.085_bib19
References_xml – reference: ): 277–304.
– reference: Ooi, Keng-Boon, Garry Wei-Han Tan, Mostafa Al-Emran, Mohammed A Al-Sharafi, Alexandru Capatina, Amrita Chakraborty, Yogesh K Dwivedi, Tzu-Ling Huang, Arpan Kumar Kar and Voon-Hsien Lee. (2023) “The potential of generative artificial intelligence across disciplines: perspectives and future directions.”
– reference: Gladysz, Bartlomiej, Tuan-anh Tran, David Romero, Tim van Erp, János Abonyi and Tamás Ruppert. (2023) “Current development on the Operator 4.0 and transition towards the Operator 5.0: A systematic literature review in light of Industry 5.0.”
– reference: ): 334-354.
– reference: ): 107–115.
– reference: Adadi, Amina and Mohammed Berrada. (2018) “Peeking inside the black-box: a survey on explainable artificial intelligence (XAI).”
– reference: Chui, Michael, Vishnu Kamalnath and Brian McCarthy. (2020). “An Executive’s Guide to AI.” Retrieved from
– reference: ): 100790.
– reference: ): 627–660.
– reference: ): 117–135.
– reference: Bender, Emily M, Timnit Gebru, Angelina McMillan-Major and Shmargaret Shmitchell. (2021) “On the dangers of stochastic parrots: Can language models be too big?”
– reference: ): 47–53.
– reference: 220121–220139.
– reference: 102642.
– reference: Felzmann, Heike, Eduard Fosch-Villaronga, Christoph Lutz and Aurelia Tamò-Larrieux. (2020) “Towards transparency by design for artificial intelligence.”
– reference: ): 258–267.
– reference: ): 659–689.
– reference: Glikson, Ella and Anita Williams Woolley. (2020) “Human trust in artificial intelligence: Review of empirical research.”
– reference: Fui-Hoon Nah, Fiona, Ruilin Zheng, Jingyuan Cai, Keng Siau and Langtao Chen. (2023) “Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration.”
– reference: Chignell, Mark, Lu Wang, Atefeh Zare and Jamy Li. (2023) “The evolution of HCI and human factors: Integrating human and artificial intelligence.”
– reference: Breque, Maija, Lars De Nul and Athanasios Petridis. (2021) Industry 5.0: Towards a sustainable, human-centric and resilient European industry.
– reference: Institute, Future of Life. (2023). “Policymaking in the pause - What can policymakers do now to combat risks from advanced AI systems?” Retrieved from
– reference: Dwivedi, Yogesh K, Nir Kshetri, Laurie Hughes, Emma Louise Slade, Anand Jeyaraj, Arpan Kumar Kar, Abdullah M Baabdullah, Alex Koohang, Vishnupriya Raghavan and Manju Ahuja. (2023) ““So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy.”
– reference: Salmon, Paul M, Chris Baber, Catherine Burns, Tony Carden, Nancy Cooke, Missy Cummings, Peter Hancock, Scott McLean, Gemma JM Read and Neville A Stanton. (2023) “Managing the risks of artificial general intelligence: A human factors and ergonomics perspective.”
– reference: Larsson, Stefan and Fredrik Heintz. (2020) “Transparency in artificial intelligence.”
– reference: Kagermann, Henning, Wolfgang Wahlster and Johannes Helbig. (2013) Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0: securing the future of German manufacturing industry. 82.
– reference: Karvonen, Hannu, Eetu Heikkilä and Mikael Wahlström. (2019) “Artificial intelligence awareness in work environments.”
– reference: Einola, Katja and Violetta Khoreva. (2023) “Best friend or broken tool? Exploring the co‐existence of humans and artificial intelligence in the workplace ecosystem.”
– reference: ): 389–399.
– reference: Malik, Nishtha, Shalini Nath Tripathi, Arpan Kumar Kar and Shivam Gupta. (2021) “Impact of artificial intelligence on employees working in industry 4.0 led organizations.”
– reference: 424-428.
– reference: 1–7.
– reference: ): 1-17.
– reference: Siau, Keng and Weiyu Wang. (2018) “Building trust in artificial intelligence, machine learning, and robotics.”
– reference: ): 1–30.
– reference: 160–185.
– reference: Joskowicz, Jose and Daniel Slomovitz. (2024) “Engineers’ Perspectives on the Use of Generative Artificial Intelligence Tools in the Workplace.”
– reference: ): 3333–3361.
– reference: Murphy, Kevin P. (2022) Probabilistic machine learning: an introduction.
– reference: Espoo, Finland: 175–185.
– reference: Zhou, Ji, Yanhong Zhou, Baicun Wang and Jiyuan Zang. (2019) “Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manufacturing.”
– reference: 30-40.
– reference: (
– reference: 52138–52160.
– reference: Heikkilä, Päivi, Susanna Aromaa, Hanna Lammi and Timo Kuula. (2023) “Framework of Future Industrial Worker Characteristics.”
– reference: Chien, Andrew A, Liuzixuan Lin, Hai Nguyen, Varsha Rao, Tristan Sharma and Rajini Wijayawardana. (2023) “Reducing the Carbon Impact of Generative AI Inference (today and in 2035).”
– reference: Huang, Sihan, Baicun Wang, Xingyu Li, Pai Zheng, Dimitris Mourtzis and Lihui Wang. (2022) “Industry 5.0 and Society 5.0—Comparison, complementation and co-evolution.”
– reference: Elo, Satu and Helvi Kyngäs. (2008) “The qualitative content analysis process.”
– reference: ):
– reference: European Commission, EU. (2019) Ethics Guidelines for Trustworthy AI.
– reference: Gozalo-Brizuela, Roberto and Eduardo C Garrido-Merchan. (2023) “ChatGPT is not all you need. A State of the Art Review of large Generative AI models.”
– reference: Peres, Ricardo Silva, Xiaodong Jia, Jay Lee, Keyi Sun, Armando Walter Colombo and Jose Barata. (2020) “Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook.”
– reference: Jobin, Anna, Marcello Ienca and Effy Vayena. (2019) “The global landscape of AI ethics guidelines.”
– reference: 1–32.
– reference: ): 624-636.
– reference: Banh, Leonardo and Gero Strobel. (2023) “Generative artificial intelligence.”
– reference: ): 336–378.
– reference: Lim, Weng Marc, Asanka Gunasekara, Jessica Leigh Pallant, Jason Ian Pallant and Ekaterina Pechenkina. (2023) “Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators.”
– reference: European Commission, EU. (2021) Proposal for a regulation of the European parliament and of the council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts.
– reference: 610–623.
– reference: Kar, Arpan Kumar, PS Varsha and Shivakami Rajan. (2023) “Unravelling the impact of generative artificial intelligence (GAI) in industrial applications: A review of scientific and grey literature.”
– ident: 10.1016/j.procs.2025.01.085_bib20
  doi: 10.1007/s12525-023-00680-1
– ident: 10.1016/j.procs.2025.01.085_bib16
  doi: 10.1038/s42256-019-0088-2
– ident: 10.1016/j.procs.2025.01.085_bib26
  doi: 10.1016/j.ijinfomgt.2023.102642
– ident: 10.1016/j.procs.2025.01.085_bib7
  doi: 10.1002/hfm.20996
– ident: 10.1016/j.procs.2025.01.085_bib21
  doi: 10.1080/15228053.2023.2233814
– ident: 10.1016/j.procs.2025.01.085_bib2
– ident: 10.1016/j.procs.2025.01.085_bib25
  doi: 10.1111/j.1365-2648.2007.04569.x
– ident: 10.1016/j.procs.2025.01.085_bib4
– ident: 10.1016/j.procs.2025.01.085_bib12
  doi: 10.1109/ACCESS.2018.2870052
– ident: 10.1016/j.procs.2025.01.085_bib29
  doi: 10.54941/ahfe1002927
– ident: 10.1016/j.procs.2025.01.085_bib22
  doi: 10.1108/IJM-03-2021-0173
– ident: 10.1016/j.procs.2025.01.085_bib5
  doi: 10.1145/3442188.3445922
– ident: 10.1016/j.procs.2025.01.085_bib14
  doi: 10.14763/2020.2.1469
– ident: 10.1016/j.procs.2025.01.085_bib23
  doi: 10.1007/s40171-023-00356-x
– ident: 10.1016/j.procs.2025.01.085_bib27
– ident: 10.1016/j.procs.2025.01.085_bib9
  doi: 10.1007/978-3-030-05297-3_12
– ident: 10.1016/j.procs.2025.01.085_bib30
– ident: 10.1016/j.procs.2025.01.085_bib6
– ident: 10.1016/j.procs.2025.01.085_bib17
  doi: 10.1080/08874417.2023.2261010
– ident: 10.1016/j.procs.2025.01.085_bib1
– ident: 10.1016/j.procs.2025.01.085_bib28
  doi: 10.1016/j.eng.2019.07.015
– ident: 10.1016/j.procs.2025.01.085_bib31
  doi: 10.1016/j.jmsy.2023.07.008
– ident: 10.1016/j.procs.2025.01.085_bib15
– ident: 10.1016/j.procs.2025.01.085_bib11
– ident: 10.1016/j.procs.2025.01.085_bib34
  doi: 10.1145/3604930.3605705
– ident: 10.1016/j.procs.2025.01.085_bib19
  doi: 10.1002/hrm.22147
– ident: 10.1016/j.procs.2025.01.085_bib24
– ident: 10.1016/j.procs.2025.01.085_bib13
  doi: 10.1007/s11948-020-00276-4
– ident: 10.1016/j.procs.2025.01.085_bib3
  doi: 10.1016/j.ijme.2023.100790
– ident: 10.1016/j.procs.2025.01.085_bib33
  doi: 10.5465/annals.2018.0057
– ident: 10.1016/j.procs.2025.01.085_bib10
  doi: 10.1109/EMR.2023.3333794
– ident: 10.1016/j.procs.2025.01.085_bib32
  doi: 10.1016/j.jmsy.2022.07.010
– ident: 10.1016/j.procs.2025.01.085_bib8
  doi: 10.1145/3557891
– ident: 10.1016/j.procs.2025.01.085_bib18
  doi: 10.1109/ACCESS.2020.3042874
SSID ssj0000388917
Score 2.3490372
Snippet The use of artificial intelligence (AI) technologies in the manufacturing industry is rapidly increasing. During this transformation, it can be difficult to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms company perspective
ergonomics
Generative artificial intelligence
human factors
industry work
manufacturing
Title Company perspectives of generative artificial intelligence in industrial work
URI https://dx.doi.org/10.1016/j.procs.2025.01.085
Volume 253
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZC4cClvEXLQz5wg5W8XjteHxFq1QOtkFpQbyvHdmDbsInSJuqpv4AfzYztfUCqCpC4bHadeJ14vp2Z2DPfEPJmooVxTLLM5XaaCS4mmeZGZqyEFzV2VocqCl8-qqOj8vRUfxqNfrS5MOuZapry6kov_quooQ2EjamzfyHu7qbQAOcgdDiC2OH4R4JvN_EXfRplCNf4GgimQ6QQ9krMEfWQkrPGsMeulAeGbA1915BTAHAKYehYCeJtMp89aObfjelifZpO4x_4-vy8noVNeRH81nhar-sugme1RJ9-tWoTiOa90v7WbVcdo5EcLlTEdOa4braROxNUbalUhuwz0RLd0Jb0M5fFLxpWDYw1j-n2G3YgLkmcoRWySMrOIzlrrA70G8H2MY6Kg_JQHKIY3yF3uZIaAwQPr_sVO-TN0aGEc_c1WxqrEDC4MdbNrs7AfTl5SLbT_w76PuLlERn55jF50Nb0oEnFPyGHCT50CB86n9IePrSHDx3CBy5oDx-K8HlKPu_vnXw4yFLJjczysZQZl-Ag21wxZ4rcMFcI67zhzoNnaL3whhkPWlsxD7_el5NcGgbv5UZoYzR3xTOy1cwb_5xQyUVhmZXe5U6AHzlxcMepKoXzU2fLcofwdnYqm_josSzKrGoDD8-qMKUVTmnF8gqmdIe86zotIh3L7R8ft9NepUcieooVAOW2jrv_2vEFuY9XcZHuJdm6XK78K3LPri_ri-XrAKifN_2eYA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Company+perspectives+of+generative+artificial+intelligence+in+industrial+work&rft.jtitle=Procedia+computer+science&rft.au=Aromaa%2C+Susanna&rft.au=Heikkil%C3%A4%2C+P%C3%A4ivi&rft.au=Jurvansuu%2C+Marko&rft.au=Pehlivan%2C+Selen&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=253&rft.spage=217&rft.epage=226&rft_id=info:doi/10.1016%2Fj.procs.2025.01.085&rft.externalDocID=S1877050925000936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon