Node selection and utility maximization for mobile edge computing–driven IoT

Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT) applications. Increased power consumption is another aspect that requires attention, specifically for the systems that involve huge number of...

Full description

Saved in:
Bibliographic Details
Published in:Transactions on emerging telecommunications technologies Vol. 33; no. 3
Main Authors: Riaz, Nida, Qaisar, Saad, Ali, Mudassar, Naeem, Muhammad
Format: Journal Article
Language:English
Published: 01.03.2022
ISSN:2161-3915, 2161-3915
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT) applications. Increased power consumption is another aspect that requires attention, specifically for the systems that involve huge number of users (IoT nodes) and computing devices (cloudlets/MEC nodes/fog nodes). Though MEC/fog networks are designed for low latency and low transmit power connections, yet the substantial increase in IoT devices signify the need to redesign it for future demands. In this article, we formulate an optimization problem related to quality of service–driven node selection and utility maximization subject to power and workload constraints for applications that require very low latency. Outer approximation algorithm is a proven technique in the field of optimization theory and is scalable with number of nodes. A distributed self‐converging algorithm based on the outer approximation algorithm is presented in this work, which proved to be efficient for the problem formulated. Extensive simulations are done to validate the numerical results. This work concludes by comparing results of outer approximation method with matching theory to validate its effectiveness. This article presents a mathematical framework for joint mobile edge computing node selection and latency minimization in fog networks. A low complexity algorithm based on outer approximation is proposed as a solution to the optimization problem. Simulation results indicate the performance improvement in terms of network throughput and latency.
AbstractList Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT) applications. Increased power consumption is another aspect that requires attention, specifically for the systems that involve huge number of users (IoT nodes) and computing devices (cloudlets/MEC nodes/fog nodes). Though MEC/fog networks are designed for low latency and low transmit power connections, yet the substantial increase in IoT devices signify the need to redesign it for future demands. In this article, we formulate an optimization problem related to quality of service–driven node selection and utility maximization subject to power and workload constraints for applications that require very low latency. Outer approximation algorithm is a proven technique in the field of optimization theory and is scalable with number of nodes. A distributed self‐converging algorithm based on the outer approximation algorithm is presented in this work, which proved to be efficient for the problem formulated. Extensive simulations are done to validate the numerical results. This work concludes by comparing results of outer approximation method with matching theory to validate its effectiveness. This article presents a mathematical framework for joint mobile edge computing node selection and latency minimization in fog networks. A low complexity algorithm based on outer approximation is proposed as a solution to the optimization problem. Simulation results indicate the performance improvement in terms of network throughput and latency.
Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT) applications. Increased power consumption is another aspect that requires attention, specifically for the systems that involve huge number of users (IoT nodes) and computing devices (cloudlets/MEC nodes/fog nodes). Though MEC/fog networks are designed for low latency and low transmit power connections, yet the substantial increase in IoT devices signify the need to redesign it for future demands. In this article, we formulate an optimization problem related to quality of service–driven node selection and utility maximization subject to power and workload constraints for applications that require very low latency. Outer approximation algorithm is a proven technique in the field of optimization theory and is scalable with number of nodes. A distributed self‐converging algorithm based on the outer approximation algorithm is presented in this work, which proved to be efficient for the problem formulated. Extensive simulations are done to validate the numerical results. This work concludes by comparing results of outer approximation method with matching theory to validate its effectiveness.
Author Qaisar, Saad
Riaz, Nida
Naeem, Muhammad
Ali, Mudassar
Author_xml – sequence: 1
  givenname: Nida
  surname: Riaz
  fullname: Riaz, Nida
  organization: National University of Sciences and Technology
– sequence: 2
  givenname: Saad
  surname: Qaisar
  fullname: Qaisar, Saad
  organization: National University of Sciences and Technology
– sequence: 3
  givenname: Mudassar
  orcidid: 0000-0002-8402-5920
  surname: Ali
  fullname: Ali, Mudassar
  email: mudassar.ali@hotmail.com
  organization: University of Engineering and Technology
– sequence: 4
  givenname: Muhammad
  orcidid: 0000-0001-9734-4608
  surname: Naeem
  fullname: Naeem, Muhammad
  organization: Wah Campus
BookMark eNp1kE1OwzAQhS1UJEqpxBG8ZJNgO3YSL1FVoFJVNtlH_q2MkrhyzE9ZcQduyElIUxYIwWxmpPnek947B5POdwaAS4xSjBC5NjGmWYHoCZgSnOMk45hNftxnYN73j2iYghFGyynYbLw2sDeNUdH5DopOw6foGhf3sBWvrnVvYnxYH2DrpWsMNHproPLtbgC77ef7hw7u2XRw5asLcGpF05v5956B6nZZLe6T9cPdanGzThTJGU0oKzgxEmvENMq5tSgXiOJCEixzyktOqVWEqhIpQYZA3NJMWy4zKgnLZTYDV0dbFXzfB2PrXXCtCPsao_rQRD00UR-aGND0F6pcHCPFIFzzlyA5Cl6GrPt_jetlVY38F6q1cdg
CitedBy_id crossref_primary_10_1002_ett_4343
crossref_primary_10_3390_app12178906
crossref_primary_10_1002_ett_70144
crossref_primary_10_1002_ett_70108
crossref_primary_10_1109_JIOT_2021_3065429
Cites_doi 10.1109/TVT.2018.2820838
10.1007/s00779-017-1032-2
10.1109/TWC.2010.02.090864
10.1109/PIMRC.2016.7794956
10.1016/j.jnca.2015.05.016
10.1109/MWC.2016.1500284WC
10.1109/ICICCS.2016.7542329
10.1002/9780470978504
10.1007/BF02592064
10.1109/LWC.2017.2696539
10.1109/VTCSpring.2015.7146129
10.1145/3132211.3134451
10.1109/MVT.2017.2668838
10.1109/COMST.2017.2745201
10.1109/JSAC.2016.2611964
10.1109/JSYST.2017.2654119
10.1109/LCN.2017.112
10.1109/MNET.2018.1700101
10.1109/TWC.2017.2785305
10.1109/ACCESS.2018.2819690
10.1109/ACCESS.2018.2820679
10.1109/JIOT.2018.2846644
10.1109/TII.2018.2829751
10.1109/TWC.2016.2633522
10.1109/VTCFall.2018.8690980
10.1109/ICOIN.2015.7057905
10.1109/TCC.2016.2586061
10.1109/ACCESS.2017.2654266
10.1109/TC.2016.2536019
10.1007/BF01581153
10.1109/FMEC.2017.7946433
10.1109/ACCESS.2017.2721957
10.1109/JIOT.2017.2688925
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
DOI 10.1002/ett.3704
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2161-3915
EndPage n/a
ExternalDocumentID 10_1002_ett_3704
ETT3704
Genre article
GroupedDBID .GA
.Y3
05W
1OC
31~
50Z
8-0
8-1
8-3
8-4
8-5
930
A03
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
G-S
GODZA
HGLYW
IN-
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
RX1
SUPJJ
V2E
WIH
WIK
WXSBR
AAMMB
AAYXX
ADMLS
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ID FETCH-LOGICAL-c2654-45792eb1d05d069ff06a0417b21b6498944fc24c80ca23709f43df9b34b256b3
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479743900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2161-3915
IngestDate Sat Nov 29 05:58:03 EST 2025
Tue Nov 18 22:14:54 EST 2025
Wed Jan 22 16:26:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2654-45792eb1d05d069ff06a0417b21b6498944fc24c80ca23709f43df9b34b256b3
ORCID 0000-0001-9734-4608
0000-0002-8402-5920
PageCount 12
ParticipantIDs crossref_primary_10_1002_ett_3704
crossref_citationtrail_10_1002_ett_3704
wiley_primary_10_1002_ett_3704_ETT3704
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Transactions on emerging telecommunications technologies
PublicationYear 2022
References 2017; 5
2017; 6
2019; 7
2017; 4
2011
2017; 21
2017; 24
1986; 36
1994; 66
2018; 67
2016; 59
2016; 34
2018; 6
2018; 17
2018; 2018
2012; 3
2018; 5
2016; 3
2017; 16
2017; 12
2016; 65
2018
2017
2016
2017; 19
2015
2014
2018; 12
2018; 32
2010; 9
2018; 14
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Golub GH (e_1_2_7_40_1) 2012
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Li G (e_1_2_7_20_1) 2018; 2018
e_1_2_7_27_1
e_1_2_7_28_1
Chen L (e_1_2_7_17_1) 2018
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_32_1
e_1_2_7_23_1
Deng R (e_1_2_7_24_1) 2016; 3
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – year: 2011
– volume: 3
  start-page: 1171
  issue: 6
  year: 2016
  end-page: 1181
  article-title: Optimal workload allocation in fog‐cloud computing toward balanced delay and power consumption
  publication-title: IEEE Internet Things J
– volume: 12
  start-page: 2495
  issue: 3
  year: 2018
  end-page: 2508
  article-title: Mobile edge cloud system: architectures, challenges, and approaches
  publication-title: IEEE Syst J
– volume: 7
  start-page: 141
  year: 2019
  end-page: 154
  article-title: A power and latency aware cloudlet selection strategy for multi‐cloudlet environment
  publication-title: IEEE Trans Cloud Comput
– volume: 65
  start-page: 3702
  issue: 12
  year: 2016
  end-page: 3712
  article-title: Joint optimization of task scheduling and image placement in fog computing supported software‐defined embedded system
  publication-title: IEEE Trans Comput
– volume: 19
  start-page: 2322
  issue: 4
  year: 2017
  end-page: 2358
  article-title: A survey on mobile edge computing: the communication perspective
  publication-title: IEEE Commun Surv Tutor
– volume: 34
  start-page: 3590
  issue: 12
  year: 2016
  end-page: 3605
  article-title: Dynamic computation offloading for mobile‐edge computing with energy harvesting devices
  publication-title: IEEE J Sel Areas Commun
– start-page: 1
  year: 2018
  end-page: 13
  article-title: Computation offloading balance in small cell networks with mobile edge computing
  publication-title: Wireless Networks
– volume: 6
  start-page: 398
  issue: 3
  year: 2017
  end-page: 401
  article-title: Energy‐efficient resource allocation for mobile edge computing‐based augmented reality applications
  publication-title: IEEE Wirel Commun Lett
– volume: 6
  start-page: 19324
  year: 2018
  end-page: 19337
  article-title: Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing
  publication-title: IEEE Access
– volume: 17
  start-page: 1784
  issue: 3
  year: 2018
  end-page: 1797
  article-title: Joint offloading and computing optimization in wireless powered mobile‐edge computing systems
  publication-title: IEEE Trans Wirel Commun
– volume: 5
  start-page: 4076
  issue: 5
  year: 2018
  end-page: 4087
  article-title: MEETS: maximal energy efficient task scheduling in homogeneous fog networks
  publication-title: IEEE Internet Things J
– year: 2016
– volume: 2018
  year: 2018
  article-title: Data processing delay optimization in mobile edge computing
  publication-title: Wirel Commun Mob Comput
– year: 2018
– volume: 59
  start-page: 46
  year: 2016
  end-page: 54
  article-title: Dynamic energy‐aware cloudlet‐based mobile cloud computing model for green computing
  publication-title: J Netw Comput Appl
– volume: 4
  start-page: 1204
  issue: 5
  year: 2017
  end-page: 1215
  article-title: Computing resource allocation in three‐tier IoT fog networks: a joint optimization approach combining Stackelberg game and matching
  publication-title: IEEE Internet Things J
– year: 2014
– volume: 9
  start-page: 844
  issue: 2
  year: 2010
  end-page: 852
  article-title: On the statistics of cognitive radio capacity in shadowing and fast fading environments
  publication-title: IEEE Trans Wirel Commun
– volume: 24
  start-page: 120
  issue: 1
  year: 2017
  end-page: 128
  article-title: Toward massive machine type cellular communications
  publication-title: IEEE Wirel Commun
– volume: 67
  start-page: 7475
  year: 2018
  end-page: 7484
  article-title: Joint radio and computational resource allocation in IoT fog computing
  publication-title: IEEE Trans Veh Technol
– volume: 3
  year: 2012
– volume: 32
  start-page: 54
  issue: 1
  year: 2018
  end-page: 60
  article-title: Selective offloading in mobile edge computing for the green Internet of Things
  publication-title: IEEE Network
– volume: 21
  start-page: 1067
  year: 2017
  end-page: 1077
  article-title: Delay‐aware power optimization model for mobile edge computing systems
  publication-title: Pers Ubiquit Comput
– volume: 5
  start-page: 2200
  year: 2017
  end-page: 2210
  article-title: An evolutionary game for user access mode selection in fog radio access networks
  publication-title: IEEE Access
– volume: 12
  start-page: 36
  issue: 2
  year: 2017
  end-page: 44
  article-title: Mobile‐edge computing for vehicular networks: a promising network paradigm with predictive off‐loading
  publication-title: IEEE Veh Technol Mag
– volume: 5
  start-page: 13455
  year: 2017
  end-page: 13464
  article-title: Combinational auction‐based service provider selection in mobile edge computing networks
  publication-title: IEEE Access
– volume: 36
  start-page: 307
  issue: 3
  year: 1986
  end-page: 339
  article-title: An outer‐approximation algorithm for a class of mixed‐integer nonlinear programs
  publication-title: Mathematical Programming
– year: 2017
– volume: 16
  start-page: 1397
  issue: 3
  year: 2017
  end-page: 1411
  article-title: Energy‐efficient resource allocation for mobile‐edge computation offloading
  publication-title: IEEE Trans Wirel Commun
– volume: 6
  start-page: 17741
  year: 2018
  end-page: 17755
  article-title: V2V data offloading for cellular network based on the software defined network (SDN) inside mobile edge computing (MEC) architecture
  publication-title: IEEE Access
– volume: 14
  start-page: 4055
  issue: 9
  year: 2018
  end-page: 4063
  article-title: Joint cloudlet selection and latency minimization in fog networks
  publication-title: IEEE Trans Ind Inform
– year: 2015
– volume: 66
  start-page: 327
  issue: 1‐3
  year: 1994
  end-page: 349
  article-title: Solving mixed integer nonlinear programs by outer approximation
  publication-title: Mathematical Programming
– ident: e_1_2_7_31_1
  doi: 10.1109/TVT.2018.2820838
– ident: e_1_2_7_19_1
  doi: 10.1007/s00779-017-1032-2
– start-page: 1
  year: 2018
  ident: e_1_2_7_17_1
  article-title: Computation offloading balance in small cell networks with mobile edge computing
  publication-title: Wireless Networks
– ident: e_1_2_7_21_1
  doi: 10.1109/TWC.2010.02.090864
– ident: e_1_2_7_39_1
  doi: 10.1109/PIMRC.2016.7794956
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jnca.2015.05.016
– ident: e_1_2_7_3_1
  doi: 10.1109/MWC.2016.1500284WC
– ident: e_1_2_7_2_1
  doi: 10.1109/ICICCS.2016.7542329
– ident: e_1_2_7_42_1
  doi: 10.1002/9780470978504
– ident: e_1_2_7_13_1
  doi: 10.1007/BF02592064
– ident: e_1_2_7_10_1
  doi: 10.1109/LWC.2017.2696539
– ident: e_1_2_7_4_1
– ident: e_1_2_7_32_1
  doi: 10.1109/VTCSpring.2015.7146129
– ident: e_1_2_7_33_1
  doi: 10.1145/3132211.3134451
– ident: e_1_2_7_22_1
  doi: 10.1109/MVT.2017.2668838
– ident: e_1_2_7_7_1
  doi: 10.1109/COMST.2017.2745201
– ident: e_1_2_7_23_1
  doi: 10.1109/JSAC.2016.2611964
– ident: e_1_2_7_12_1
  doi: 10.1109/JSYST.2017.2654119
– ident: e_1_2_7_5_1
– ident: e_1_2_7_11_1
  doi: 10.1109/LCN.2017.112
– volume: 3
  start-page: 1171
  issue: 6
  year: 2016
  ident: e_1_2_7_24_1
  article-title: Optimal workload allocation in fog‐cloud computing toward balanced delay and power consumption
  publication-title: IEEE Internet Things J
– ident: e_1_2_7_34_1
  doi: 10.1109/MNET.2018.1700101
– ident: e_1_2_7_18_1
  doi: 10.1109/TWC.2017.2785305
– ident: e_1_2_7_16_1
  doi: 10.1109/ACCESS.2018.2819690
– volume: 2018
  year: 2018
  ident: e_1_2_7_20_1
  article-title: Data processing delay optimization in mobile edge computing
  publication-title: Wirel Commun Mob Comput
– ident: e_1_2_7_8_1
  doi: 10.1109/ACCESS.2018.2820679
– ident: e_1_2_7_35_1
  doi: 10.1109/JIOT.2018.2846644
– ident: e_1_2_7_38_1
  doi: 10.1109/TII.2018.2829751
– ident: e_1_2_7_15_1
  doi: 10.1109/TWC.2016.2633522
– ident: e_1_2_7_14_1
  doi: 10.1109/VTCFall.2018.8690980
– ident: e_1_2_7_28_1
  doi: 10.1109/ICOIN.2015.7057905
– ident: e_1_2_7_29_1
  doi: 10.1109/TCC.2016.2586061
– ident: e_1_2_7_30_1
  doi: 10.1109/ACCESS.2017.2654266
– ident: e_1_2_7_36_1
  doi: 10.1109/TC.2016.2536019
– ident: e_1_2_7_6_1
– ident: e_1_2_7_41_1
  doi: 10.1007/BF01581153
– volume-title: Matrix Computations
  year: 2012
  ident: e_1_2_7_40_1
– ident: e_1_2_7_9_1
– ident: e_1_2_7_25_1
  doi: 10.1109/FMEC.2017.7946433
– ident: e_1_2_7_26_1
  doi: 10.1109/ACCESS.2017.2721957
– ident: e_1_2_7_37_1
  doi: 10.1109/JIOT.2017.2688925
SSID ssj0000752548
Score 2.2532594
Snippet Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT)...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Node selection and utility maximization for mobile edge computing–driven IoT
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3704
Volume 33
WOSCitedRecordID wos000479743900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2161-3915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000752548
  issn: 2161-3915
  databaseCode: DRFUL
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA0y40IXvsXxRQTRVZ0kTdpmKTqDwlBEqsyuNI-C4LQyU8Wl_-Af-iUmaWccQUFw1c1tGm5u7j29JOcAcIyRwEzT3CMcRR5lIvMED6zWi2RES6Kwk-m8H4RxHA2H_KY5VWnvwtT8ELOGm90ZLl_bDZ6JSfeLNFRX1ZkfWirQNjFhS1ugfXnbvxvMOiymGJq_HydJh22ThWM2ZZ9FpDt9_Vs9msenrsD0V_8ztTWw0sBKeF7HwTpY0MUGWJ4jG9wEcVwqDSdO98YsBswKBU3UWRgOR9nrw6i5kQkNjIWjUpgvQ9tsg9IJP5gxPt7e1dhmR3hdJlsg6feSiyuvUVPwJAkYNesQcmIys0JMoYDnOQoyRHEoCBYBtTzsNJeEygjJjJjZ85z6KufCp8LAIuFvg1ZRFnoHQBqGNdDxRUSVgZhKoNwx2TCliWIdcDp1aSobpnErePGY1hzJJDUOSq2DOuBoZvlUs2v8YHPifP2rQdpLEvvc_avhHlgi9hKDO0m2D1rV-FkfgEX5Uj1MxodNGH0C9h7LgQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK6gH32J9riB6it1sdvPAk2hLizWIRPEWsrsJFGwrbRWP_gf_ob_E3U1SKygInnKZJMvs7MyXIfN9AEc25jZLaWaRAPsWZTyxeOBqrRfBSCqItI1M533XC0P_4SG4qcBZOQuT80NMG276ZJh8rQ-4bkg3vlhD08nk1PE0F2iNqihiVahd3rbuutMWi6qG6vPHaNLZussS2Kykn8WkUd7-rSDNAlRTYVrL_1rbCiwVwBKd55GwCpV0sAaLM3SD6xCGQ5misVG-UduBkoFEKu40EEf95LXXL2YykQKyqD_k6tVIt9uQMNIP6hkfb-9ypPMj6gyjDYhazeiibRV6CpYgLqNqJ7yAqNwsMZPYDbIMuwmmtseJzV2qmdhpJggVPhYJUasPMurILOAO5QoYcWcTqoPhIN0CRD0vhzoO96lUIFNynBkuGyZTIlkdTkqfxqLgGteSF49xzpJMYuWgWDuoDodTy6ecX-MHm2Pj7F8N4mYU6ev2Xw0PYL4dXXfjbie82oEFokcazH9lu1CdjJ7TPZgTL5PeeLRfxNQnLzrPcQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KK6IH32J9riB6it1sdpMunsS2WCyhSJTeQvYRKNgHbRSP_gf_ob_E3U1aKygInnKZJMvszOyXIfN9AJy5iLtUkdTBDNUdQnnicOYbrRdBsRJYulam87EThGG912PdEriazcLk_BDzhpvJDFuvTYKrsUxrX6yhKssuvcBwgVYIZb7OykrjvvXQmbdY9GmoP3-sJp1ruizMpTP6WYRrs9u_HUiLANWeMK31f61tA6wVwBJe55GwCUpquAVWF-gGt0EYjqSCU6t8o7cDJkMJddwZIA4HyWt_UMxkQg1k4WDE9auhabdBYaUf9DM-3t7lxNRH2B5FOyBqNaObW6fQU3AE9inROxEwrGuzRFQin6Up8hNE3IBjl_vEMLGTVGAi6kgkWK-epcSTKeMe4RoYcW8XlIejodoDkARBDnU8XidSg0zJUWq5bKhUWNIquJj5NBYF17iRvHiKc5ZkHGsHxcZBVXA6txzn_Bo_2JxbZ_9qEDejyFz3_2p4Apa7jVbcaYd3B2AFm4kG-1vZIShnk2d1BJbES9afTo6LkPoEAXzO7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Node+selection+and+utility+maximization+for+mobile+edge+computing%E2%80%93driven+IoT&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Riaz%2C+Nida&rft.au=Qaisar%2C+Saad&rft.au=Ali%2C+Mudassar&rft.au=Naeem%2C+Muhammad&rft.date=2022-03-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.3704&rft.externalDBID=10.1002%252Fett.3704&rft.externalDocID=ETT3704
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon