Node selection and utility maximization for mobile edge computing–driven IoT
Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT) applications. Increased power consumption is another aspect that requires attention, specifically for the systems that involve huge number of...
Saved in:
| Published in: | Transactions on emerging telecommunications technologies Vol. 33; no. 3 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.03.2022
|
| ISSN: | 2161-3915, 2161-3915 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT) applications. Increased power consumption is another aspect that requires attention, specifically for the systems that involve huge number of users (IoT nodes) and computing devices (cloudlets/MEC nodes/fog nodes). Though MEC/fog networks are designed for low latency and low transmit power connections, yet the substantial increase in IoT devices signify the need to redesign it for future demands. In this article, we formulate an optimization problem related to quality of service–driven node selection and utility maximization subject to power and workload constraints for applications that require very low latency. Outer approximation algorithm is a proven technique in the field of optimization theory and is scalable with number of nodes. A distributed self‐converging algorithm based on the outer approximation algorithm is presented in this work, which proved to be efficient for the problem formulated. Extensive simulations are done to validate the numerical results. This work concludes by comparing results of outer approximation method with matching theory to validate its effectiveness.
This article presents a mathematical framework for joint mobile edge computing node selection and latency minimization in fog networks. A low complexity algorithm based on outer approximation is proposed as a solution to the optimization problem. Simulation results indicate the performance improvement in terms of network throughput and latency. |
|---|---|
| AbstractList | Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT) applications. Increased power consumption is another aspect that requires attention, specifically for the systems that involve huge number of users (IoT nodes) and computing devices (cloudlets/MEC nodes/fog nodes). Though MEC/fog networks are designed for low latency and low transmit power connections, yet the substantial increase in IoT devices signify the need to redesign it for future demands. In this article, we formulate an optimization problem related to quality of service–driven node selection and utility maximization subject to power and workload constraints for applications that require very low latency. Outer approximation algorithm is a proven technique in the field of optimization theory and is scalable with number of nodes. A distributed self‐converging algorithm based on the outer approximation algorithm is presented in this work, which proved to be efficient for the problem formulated. Extensive simulations are done to validate the numerical results. This work concludes by comparing results of outer approximation method with matching theory to validate its effectiveness.
This article presents a mathematical framework for joint mobile edge computing node selection and latency minimization in fog networks. A low complexity algorithm based on outer approximation is proposed as a solution to the optimization problem. Simulation results indicate the performance improvement in terms of network throughput and latency. Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT) applications. Increased power consumption is another aspect that requires attention, specifically for the systems that involve huge number of users (IoT nodes) and computing devices (cloudlets/MEC nodes/fog nodes). Though MEC/fog networks are designed for low latency and low transmit power connections, yet the substantial increase in IoT devices signify the need to redesign it for future demands. In this article, we formulate an optimization problem related to quality of service–driven node selection and utility maximization subject to power and workload constraints for applications that require very low latency. Outer approximation algorithm is a proven technique in the field of optimization theory and is scalable with number of nodes. A distributed self‐converging algorithm based on the outer approximation algorithm is presented in this work, which proved to be efficient for the problem formulated. Extensive simulations are done to validate the numerical results. This work concludes by comparing results of outer approximation method with matching theory to validate its effectiveness. |
| Author | Qaisar, Saad Riaz, Nida Naeem, Muhammad Ali, Mudassar |
| Author_xml | – sequence: 1 givenname: Nida surname: Riaz fullname: Riaz, Nida organization: National University of Sciences and Technology – sequence: 2 givenname: Saad surname: Qaisar fullname: Qaisar, Saad organization: National University of Sciences and Technology – sequence: 3 givenname: Mudassar orcidid: 0000-0002-8402-5920 surname: Ali fullname: Ali, Mudassar email: mudassar.ali@hotmail.com organization: University of Engineering and Technology – sequence: 4 givenname: Muhammad orcidid: 0000-0001-9734-4608 surname: Naeem fullname: Naeem, Muhammad organization: Wah Campus |
| BookMark | eNp1kE1OwzAQhS1UJEqpxBG8ZJNgO3YSL1FVoFJVNtlH_q2MkrhyzE9ZcQduyElIUxYIwWxmpPnek947B5POdwaAS4xSjBC5NjGmWYHoCZgSnOMk45hNftxnYN73j2iYghFGyynYbLw2sDeNUdH5DopOw6foGhf3sBWvrnVvYnxYH2DrpWsMNHproPLtbgC77ef7hw7u2XRw5asLcGpF05v5956B6nZZLe6T9cPdanGzThTJGU0oKzgxEmvENMq5tSgXiOJCEixzyktOqVWEqhIpQYZA3NJMWy4zKgnLZTYDV0dbFXzfB2PrXXCtCPsao_rQRD00UR-aGND0F6pcHCPFIFzzlyA5Cl6GrPt_jetlVY38F6q1cdg |
| CitedBy_id | crossref_primary_10_1002_ett_4343 crossref_primary_10_3390_app12178906 crossref_primary_10_1002_ett_70144 crossref_primary_10_1002_ett_70108 crossref_primary_10_1109_JIOT_2021_3065429 |
| Cites_doi | 10.1109/TVT.2018.2820838 10.1007/s00779-017-1032-2 10.1109/TWC.2010.02.090864 10.1109/PIMRC.2016.7794956 10.1016/j.jnca.2015.05.016 10.1109/MWC.2016.1500284WC 10.1109/ICICCS.2016.7542329 10.1002/9780470978504 10.1007/BF02592064 10.1109/LWC.2017.2696539 10.1109/VTCSpring.2015.7146129 10.1145/3132211.3134451 10.1109/MVT.2017.2668838 10.1109/COMST.2017.2745201 10.1109/JSAC.2016.2611964 10.1109/JSYST.2017.2654119 10.1109/LCN.2017.112 10.1109/MNET.2018.1700101 10.1109/TWC.2017.2785305 10.1109/ACCESS.2018.2819690 10.1109/ACCESS.2018.2820679 10.1109/JIOT.2018.2846644 10.1109/TII.2018.2829751 10.1109/TWC.2016.2633522 10.1109/VTCFall.2018.8690980 10.1109/ICOIN.2015.7057905 10.1109/TCC.2016.2586061 10.1109/ACCESS.2017.2654266 10.1109/TC.2016.2536019 10.1007/BF01581153 10.1109/FMEC.2017.7946433 10.1109/ACCESS.2017.2721957 10.1109/JIOT.2017.2688925 |
| ContentType | Journal Article |
| Copyright | 2019 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ett.3704 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2161-3915 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_ett_3704 ETT3704 |
| Genre | article |
| GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAMMB AAYXX ADMLS AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION |
| ID | FETCH-LOGICAL-c2654-45792eb1d05d069ff06a0417b21b6498944fc24c80ca23709f43df9b34b256b3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000479743900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2161-3915 |
| IngestDate | Sat Nov 29 05:58:03 EST 2025 Tue Nov 18 22:14:54 EST 2025 Wed Jan 22 16:26:35 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2654-45792eb1d05d069ff06a0417b21b6498944fc24c80ca23709f43df9b34b256b3 |
| ORCID | 0000-0001-9734-4608 0000-0002-8402-5920 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1002_ett_3704 crossref_citationtrail_10_1002_ett_3704 wiley_primary_10_1002_ett_3704_ETT3704 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Transactions on emerging telecommunications technologies |
| PublicationYear | 2022 |
| References | 2017; 5 2017; 6 2019; 7 2017; 4 2011 2017; 21 2017; 24 1986; 36 1994; 66 2018; 67 2016; 59 2016; 34 2018; 6 2018; 17 2018; 2018 2012; 3 2018; 5 2016; 3 2017; 16 2017; 12 2016; 65 2018 2017 2016 2017; 19 2015 2014 2018; 12 2018; 32 2010; 9 2018; 14 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Golub GH (e_1_2_7_40_1) 2012 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 Li G (e_1_2_7_20_1) 2018; 2018 e_1_2_7_27_1 e_1_2_7_28_1 Chen L (e_1_2_7_17_1) 2018 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 Deng R (e_1_2_7_24_1) 2016; 3 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – year: 2011 – volume: 3 start-page: 1171 issue: 6 year: 2016 end-page: 1181 article-title: Optimal workload allocation in fog‐cloud computing toward balanced delay and power consumption publication-title: IEEE Internet Things J – volume: 12 start-page: 2495 issue: 3 year: 2018 end-page: 2508 article-title: Mobile edge cloud system: architectures, challenges, and approaches publication-title: IEEE Syst J – volume: 7 start-page: 141 year: 2019 end-page: 154 article-title: A power and latency aware cloudlet selection strategy for multi‐cloudlet environment publication-title: IEEE Trans Cloud Comput – volume: 65 start-page: 3702 issue: 12 year: 2016 end-page: 3712 article-title: Joint optimization of task scheduling and image placement in fog computing supported software‐defined embedded system publication-title: IEEE Trans Comput – volume: 19 start-page: 2322 issue: 4 year: 2017 end-page: 2358 article-title: A survey on mobile edge computing: the communication perspective publication-title: IEEE Commun Surv Tutor – volume: 34 start-page: 3590 issue: 12 year: 2016 end-page: 3605 article-title: Dynamic computation offloading for mobile‐edge computing with energy harvesting devices publication-title: IEEE J Sel Areas Commun – start-page: 1 year: 2018 end-page: 13 article-title: Computation offloading balance in small cell networks with mobile edge computing publication-title: Wireless Networks – volume: 6 start-page: 398 issue: 3 year: 2017 end-page: 401 article-title: Energy‐efficient resource allocation for mobile edge computing‐based augmented reality applications publication-title: IEEE Wirel Commun Lett – volume: 6 start-page: 19324 year: 2018 end-page: 19337 article-title: Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing publication-title: IEEE Access – volume: 17 start-page: 1784 issue: 3 year: 2018 end-page: 1797 article-title: Joint offloading and computing optimization in wireless powered mobile‐edge computing systems publication-title: IEEE Trans Wirel Commun – volume: 5 start-page: 4076 issue: 5 year: 2018 end-page: 4087 article-title: MEETS: maximal energy efficient task scheduling in homogeneous fog networks publication-title: IEEE Internet Things J – year: 2016 – volume: 2018 year: 2018 article-title: Data processing delay optimization in mobile edge computing publication-title: Wirel Commun Mob Comput – year: 2018 – volume: 59 start-page: 46 year: 2016 end-page: 54 article-title: Dynamic energy‐aware cloudlet‐based mobile cloud computing model for green computing publication-title: J Netw Comput Appl – volume: 4 start-page: 1204 issue: 5 year: 2017 end-page: 1215 article-title: Computing resource allocation in three‐tier IoT fog networks: a joint optimization approach combining Stackelberg game and matching publication-title: IEEE Internet Things J – year: 2014 – volume: 9 start-page: 844 issue: 2 year: 2010 end-page: 852 article-title: On the statistics of cognitive radio capacity in shadowing and fast fading environments publication-title: IEEE Trans Wirel Commun – volume: 24 start-page: 120 issue: 1 year: 2017 end-page: 128 article-title: Toward massive machine type cellular communications publication-title: IEEE Wirel Commun – volume: 67 start-page: 7475 year: 2018 end-page: 7484 article-title: Joint radio and computational resource allocation in IoT fog computing publication-title: IEEE Trans Veh Technol – volume: 3 year: 2012 – volume: 32 start-page: 54 issue: 1 year: 2018 end-page: 60 article-title: Selective offloading in mobile edge computing for the green Internet of Things publication-title: IEEE Network – volume: 21 start-page: 1067 year: 2017 end-page: 1077 article-title: Delay‐aware power optimization model for mobile edge computing systems publication-title: Pers Ubiquit Comput – volume: 5 start-page: 2200 year: 2017 end-page: 2210 article-title: An evolutionary game for user access mode selection in fog radio access networks publication-title: IEEE Access – volume: 12 start-page: 36 issue: 2 year: 2017 end-page: 44 article-title: Mobile‐edge computing for vehicular networks: a promising network paradigm with predictive off‐loading publication-title: IEEE Veh Technol Mag – volume: 5 start-page: 13455 year: 2017 end-page: 13464 article-title: Combinational auction‐based service provider selection in mobile edge computing networks publication-title: IEEE Access – volume: 36 start-page: 307 issue: 3 year: 1986 end-page: 339 article-title: An outer‐approximation algorithm for a class of mixed‐integer nonlinear programs publication-title: Mathematical Programming – year: 2017 – volume: 16 start-page: 1397 issue: 3 year: 2017 end-page: 1411 article-title: Energy‐efficient resource allocation for mobile‐edge computation offloading publication-title: IEEE Trans Wirel Commun – volume: 6 start-page: 17741 year: 2018 end-page: 17755 article-title: V2V data offloading for cellular network based on the software defined network (SDN) inside mobile edge computing (MEC) architecture publication-title: IEEE Access – volume: 14 start-page: 4055 issue: 9 year: 2018 end-page: 4063 article-title: Joint cloudlet selection and latency minimization in fog networks publication-title: IEEE Trans Ind Inform – year: 2015 – volume: 66 start-page: 327 issue: 1‐3 year: 1994 end-page: 349 article-title: Solving mixed integer nonlinear programs by outer approximation publication-title: Mathematical Programming – ident: e_1_2_7_31_1 doi: 10.1109/TVT.2018.2820838 – ident: e_1_2_7_19_1 doi: 10.1007/s00779-017-1032-2 – start-page: 1 year: 2018 ident: e_1_2_7_17_1 article-title: Computation offloading balance in small cell networks with mobile edge computing publication-title: Wireless Networks – ident: e_1_2_7_21_1 doi: 10.1109/TWC.2010.02.090864 – ident: e_1_2_7_39_1 doi: 10.1109/PIMRC.2016.7794956 – ident: e_1_2_7_27_1 doi: 10.1016/j.jnca.2015.05.016 – ident: e_1_2_7_3_1 doi: 10.1109/MWC.2016.1500284WC – ident: e_1_2_7_2_1 doi: 10.1109/ICICCS.2016.7542329 – ident: e_1_2_7_42_1 doi: 10.1002/9780470978504 – ident: e_1_2_7_13_1 doi: 10.1007/BF02592064 – ident: e_1_2_7_10_1 doi: 10.1109/LWC.2017.2696539 – ident: e_1_2_7_4_1 – ident: e_1_2_7_32_1 doi: 10.1109/VTCSpring.2015.7146129 – ident: e_1_2_7_33_1 doi: 10.1145/3132211.3134451 – ident: e_1_2_7_22_1 doi: 10.1109/MVT.2017.2668838 – ident: e_1_2_7_7_1 doi: 10.1109/COMST.2017.2745201 – ident: e_1_2_7_23_1 doi: 10.1109/JSAC.2016.2611964 – ident: e_1_2_7_12_1 doi: 10.1109/JSYST.2017.2654119 – ident: e_1_2_7_5_1 – ident: e_1_2_7_11_1 doi: 10.1109/LCN.2017.112 – volume: 3 start-page: 1171 issue: 6 year: 2016 ident: e_1_2_7_24_1 article-title: Optimal workload allocation in fog‐cloud computing toward balanced delay and power consumption publication-title: IEEE Internet Things J – ident: e_1_2_7_34_1 doi: 10.1109/MNET.2018.1700101 – ident: e_1_2_7_18_1 doi: 10.1109/TWC.2017.2785305 – ident: e_1_2_7_16_1 doi: 10.1109/ACCESS.2018.2819690 – volume: 2018 year: 2018 ident: e_1_2_7_20_1 article-title: Data processing delay optimization in mobile edge computing publication-title: Wirel Commun Mob Comput – ident: e_1_2_7_8_1 doi: 10.1109/ACCESS.2018.2820679 – ident: e_1_2_7_35_1 doi: 10.1109/JIOT.2018.2846644 – ident: e_1_2_7_38_1 doi: 10.1109/TII.2018.2829751 – ident: e_1_2_7_15_1 doi: 10.1109/TWC.2016.2633522 – ident: e_1_2_7_14_1 doi: 10.1109/VTCFall.2018.8690980 – ident: e_1_2_7_28_1 doi: 10.1109/ICOIN.2015.7057905 – ident: e_1_2_7_29_1 doi: 10.1109/TCC.2016.2586061 – ident: e_1_2_7_30_1 doi: 10.1109/ACCESS.2017.2654266 – ident: e_1_2_7_36_1 doi: 10.1109/TC.2016.2536019 – ident: e_1_2_7_6_1 – ident: e_1_2_7_41_1 doi: 10.1007/BF01581153 – volume-title: Matrix Computations year: 2012 ident: e_1_2_7_40_1 – ident: e_1_2_7_9_1 – ident: e_1_2_7_25_1 doi: 10.1109/FMEC.2017.7946433 – ident: e_1_2_7_26_1 doi: 10.1109/ACCESS.2017.2721957 – ident: e_1_2_7_37_1 doi: 10.1109/JIOT.2017.2688925 |
| SSID | ssj0000752548 |
| Score | 2.2532594 |
| Snippet | Optimal user association and resource utilization entails a challenging problem of high latency in mobile edge computing (MEC)–driven Internet of Things (IoT)... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| Title | Node selection and utility maximization for mobile edge computing–driven IoT |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.3704 |
| Volume | 33 |
| WOSCitedRecordID | wos000479743900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2161-3915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000752548 issn: 2161-3915 databaseCode: DRFUL dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA0y40IXvsXxRQTRVZ0kTdpmKTqDwlBEqsyuNI-C4LQyU8Wl_-Af-iUmaWccQUFw1c1tGm5u7j29JOcAcIyRwEzT3CMcRR5lIvMED6zWi2RES6Kwk-m8H4RxHA2H_KY5VWnvwtT8ELOGm90ZLl_bDZ6JSfeLNFRX1ZkfWirQNjFhS1ugfXnbvxvMOiymGJq_HydJh22ThWM2ZZ9FpDt9_Vs9msenrsD0V_8ztTWw0sBKeF7HwTpY0MUGWJ4jG9wEcVwqDSdO98YsBswKBU3UWRgOR9nrw6i5kQkNjIWjUpgvQ9tsg9IJP5gxPt7e1dhmR3hdJlsg6feSiyuvUVPwJAkYNesQcmIys0JMoYDnOQoyRHEoCBYBtTzsNJeEygjJjJjZ85z6KufCp8LAIuFvg1ZRFnoHQBqGNdDxRUSVgZhKoNwx2TCliWIdcDp1aSobpnErePGY1hzJJDUOSq2DOuBoZvlUs2v8YHPifP2rQdpLEvvc_avhHlgi9hKDO0m2D1rV-FkfgEX5Uj1MxodNGH0C9h7LgQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK6gH32J9riB6it1sdvPAk2hLizWIRPEWsrsJFGwrbRWP_gf_ob_E3U1SKygInnKZJMvs7MyXIfN9AEc25jZLaWaRAPsWZTyxeOBqrRfBSCqItI1M533XC0P_4SG4qcBZOQuT80NMG276ZJh8rQ-4bkg3vlhD08nk1PE0F2iNqihiVahd3rbuutMWi6qG6vPHaNLZussS2Kykn8WkUd7-rSDNAlRTYVrL_1rbCiwVwBKd55GwCpV0sAaLM3SD6xCGQ5misVG-UduBkoFEKu40EEf95LXXL2YykQKyqD_k6tVIt9uQMNIP6hkfb-9ypPMj6gyjDYhazeiibRV6CpYgLqNqJ7yAqNwsMZPYDbIMuwmmtseJzV2qmdhpJggVPhYJUasPMurILOAO5QoYcWcTqoPhIN0CRD0vhzoO96lUIFNynBkuGyZTIlkdTkqfxqLgGteSF49xzpJMYuWgWDuoDodTy6ecX-MHm2Pj7F8N4mYU6ev2Xw0PYL4dXXfjbie82oEFokcazH9lu1CdjJ7TPZgTL5PeeLRfxNQnLzrPcQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KK6IH32J9riB6it1sdpMunsS2WCyhSJTeQvYRKNgHbRSP_gf_ob_E3U1aKygInnKZJMvszOyXIfN9AJy5iLtUkdTBDNUdQnnicOYbrRdBsRJYulam87EThGG912PdEriazcLk_BDzhpvJDFuvTYKrsUxrX6yhKssuvcBwgVYIZb7OykrjvvXQmbdY9GmoP3-sJp1ruizMpTP6WYRrs9u_HUiLANWeMK31f61tA6wVwBJe55GwCUpquAVWF-gGt0EYjqSCU6t8o7cDJkMJddwZIA4HyWt_UMxkQg1k4WDE9auhabdBYaUf9DM-3t7lxNRH2B5FOyBqNaObW6fQU3AE9inROxEwrGuzRFQin6Up8hNE3IBjl_vEMLGTVGAi6kgkWK-epcSTKeMe4RoYcW8XlIejodoDkARBDnU8XidSg0zJUWq5bKhUWNIquJj5NBYF17iRvHiKc5ZkHGsHxcZBVXA6txzn_Bo_2JxbZ_9qEDejyFz3_2p4Apa7jVbcaYd3B2AFm4kG-1vZIShnk2d1BJbES9afTo6LkPoEAXzO7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Node+selection+and+utility+maximization+for+mobile+edge+computing%E2%80%93driven+IoT&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Riaz%2C+Nida&rft.au=Qaisar%2C+Saad&rft.au=Ali%2C+Mudassar&rft.au=Naeem%2C+Muhammad&rft.date=2022-03-01&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=33&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.3704&rft.externalDBID=10.1002%252Fett.3704&rft.externalDocID=ETT3704 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |