A review on workflow scheduling and resource allocation algorithms in distributed mobile clouds
The advent of distributed computing and mobile clouds made it possible to transfer and distribute the heavy processes of complex workflows to the cloud. Managing and with the help of the mobile cloud, virtualization and shared resources managing the executing large‐scale workflows is possible. Since...
Uložené v:
| Vydané v: | Transactions on emerging telecommunications technologies Ročník 34; číslo 8 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Chichester, UK
John Wiley & Sons, Ltd
01.08.2023
|
| Predmet: | |
| ISSN: | 2161-3915, 2161-3915 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The advent of distributed computing and mobile clouds made it possible to transfer and distribute the heavy processes of complex workflows to the cloud. Managing and with the help of the mobile cloud, virtualization and shared resources managing the executing large‐scale workflows is possible. Since virtual resources are used, scheduling and resource allocation are important and key research topics in public cloud environment and mobile clouds. The cloud model of mobile devices with public or virtual cloud, which consists of temporary mobile devices, is an interesting topic to be investigated. Workflow scheduling and availability of resources in mobile clouds by high mobility and Energy efficient, it is one of the challenges and problems that must be investigated one of the main challenges in this research area. The purpose of scheduling algorithms is to improve service quality criteria by observing the constraints. In this article, the main goal is to extensively review the scheduling algorithms for the complex scientific workflow in public and mobile clouds. Furthermore, a review of the use of heuristic and meta‐heuristic techniques in dynamic and static states, with various constraints for task scheduling in cloud and mobile computing has been performed. This article accomplishes a review of using existing techniques for scheduling tasks in mobile clouds. We also present a comprehensive analysis and systematic comparison between these scheduling algorithms.
Workflow scheduling model in mobile cloud. |
|---|---|
| AbstractList | The advent of distributed computing and mobile clouds made it possible to transfer and distribute the heavy processes of complex workflows to the cloud. Managing and with the help of the mobile cloud, virtualization and shared resources managing the executing large‐scale workflows is possible. Since virtual resources are used, scheduling and resource allocation are important and key research topics in public cloud environment and mobile clouds. The cloud model of mobile devices with public or virtual cloud, which consists of temporary mobile devices, is an interesting topic to be investigated. Workflow scheduling and availability of resources in mobile clouds by high mobility and Energy efficient, it is one of the challenges and problems that must be investigated one of the main challenges in this research area. The purpose of scheduling algorithms is to improve service quality criteria by observing the constraints. In this article, the main goal is to extensively review the scheduling algorithms for the complex scientific workflow in public and mobile clouds. Furthermore, a review of the use of heuristic and meta‐heuristic techniques in dynamic and static states, with various constraints for task scheduling in cloud and mobile computing has been performed. This article accomplishes a review of using existing techniques for scheduling tasks in mobile clouds. We also present a comprehensive analysis and systematic comparison between these scheduling algorithms. The advent of distributed computing and mobile clouds made it possible to transfer and distribute the heavy processes of complex workflows to the cloud. Managing and with the help of the mobile cloud, virtualization and shared resources managing the executing large‐scale workflows is possible. Since virtual resources are used, scheduling and resource allocation are important and key research topics in public cloud environment and mobile clouds. The cloud model of mobile devices with public or virtual cloud, which consists of temporary mobile devices, is an interesting topic to be investigated. Workflow scheduling and availability of resources in mobile clouds by high mobility and Energy efficient, it is one of the challenges and problems that must be investigated one of the main challenges in this research area. The purpose of scheduling algorithms is to improve service quality criteria by observing the constraints. In this article, the main goal is to extensively review the scheduling algorithms for the complex scientific workflow in public and mobile clouds. Furthermore, a review of the use of heuristic and meta‐heuristic techniques in dynamic and static states, with various constraints for task scheduling in cloud and mobile computing has been performed. This article accomplishes a review of using existing techniques for scheduling tasks in mobile clouds. We also present a comprehensive analysis and systematic comparison between these scheduling algorithms. Workflow scheduling model in mobile cloud. |
| Author | Ghaemi, Reza Kamel Tabbakh, Seyed Reza Golmohammadi, Akram |
| Author_xml | – sequence: 1 givenname: Akram surname: Golmohammadi fullname: Golmohammadi, Akram organization: Islamic Azad University – sequence: 2 givenname: Seyed Reza surname: Kamel Tabbakh fullname: Kamel Tabbakh, Seyed Reza email: rezakamel@computer.org organization: Islamic Azad University – sequence: 3 givenname: Reza surname: Ghaemi fullname: Ghaemi, Reza organization: Islamic Azad University |
| BookMark | eNp1kEtLAzEUhYNUsNaCPyFLN1OTeaSZZSn1AQU3dR0yN5k2mk4kyTj035u2LkT0bu5dfOdyzrlGo851GqFbSmaUkPxexzgrOaUXaJxTRrOiptXox32FpiG8kTTzKq9KPkZigb3-NHrArsOD8--tdQMOsNOqt6bbYtmpRATXe9BYWutARpNYabfOm7jbB2w6rEyI3jR91ArvXWOsxmBdr8INumylDXr6vSfo9WG1WT5l65fH5-VinUHOKpoBp01RA2Ok1LJSUBeqzlsFXDfQMFLP8-SeSzknvCSMSA2MAi0KIhnndS2LCZqd_4J3IXjdCjDx5DR6aaygRBwbEqkhcWwoCe5-CT682Ut_-AvNzuiQch3-5cRqsznxXzLteHo |
| CitedBy_id | crossref_primary_10_1038_s41598_024_81915_9 crossref_primary_10_1016_j_compind_2024_104131 crossref_primary_10_1109_ACCESS_2024_3509218 |
| Cites_doi | 10.1109/TASE.2022.3195958 10.1109/TASE.2009.2014643 10.1016/j.jocs.2016.10.013 10.1016/j.comcom.2020.06.032 10.1109/JAS.2021.1003934 10.1002/cpe.3942 10.1109/TASE.2022.32043 10.1007/s11227-022-04684-0 10.1007/s11277-018-5895-y 10.1016/j.future.2008.09.002 10.1007/s40747-021-00609-1 10.1109/JIOT.2023.3243266 10.1109/71.993206 10.1016/j.future.2012.05.004 10.1007/s12083‐021‐01267‐3 10.1145/1999995.2000000 10.1007/978-3-642-28675-9_8 10.1007/s11227-020-03528-z 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00038 10.1007/s11227-022-04681-3 10.1007/978‐3‐031‐20984‐0‐32 10.1007/978-3-642-35170-9_20 10.1007/s12083-022-01445-x 10.1007/s10586‐020‐03223‐x 10.1109/ACCESS.2018.2812144 10.1109/eScience.2012.6404430 10.1007/s00170‐015‐7804‐9 10.2139/ssrn.4034378 10.1007/s10586-022-03608-0 10.1002/9780470496916 10.1007/s10586-020-03085-3 10.1016/j.pmcj.2022.101715 10.1007/s11227-022-04703-0 10.1016/j.future.2019.05.002 10.4230/LIPIcs.OPODIS.19 10.1109/WORKS.2008.4723958 10.1145/3152397 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION |
| DOI | 10.1002/ett.4811 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2161-3915 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_ett_4811 ETT4811 |
| Genre | researchArticle |
| GroupedDBID | .GA .Y3 05W 1OC 31~ 50Z 8-0 8-1 8-3 8-4 8-5 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-E D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA HGLYW IN- LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM RX1 SUPJJ V2E WIH WIK WXSBR AAMMB AAYXX ADMLS AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION |
| ID | FETCH-LOGICAL-c2651-c81b39c6604ea5dc93d92fdc8ebcb609729158aa7084060aec61c1330a68899a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001014935700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2161-3915 |
| IngestDate | Tue Nov 18 21:26:56 EST 2025 Sat Nov 29 05:58:11 EST 2025 Wed Jan 22 16:18:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2651-c81b39c6604ea5dc93d92fdc8ebcb609729158aa7084060aec61c1330a68899a3 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1002_ett_4811 crossref_primary_10_1002_ett_4811 wiley_primary_10_1002_ett_4811_ETT4811 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK |
| PublicationTitle | Transactions on emerging telecommunications technologies |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Ltd |
| Publisher_xml | – name: John Wiley & Sons, Ltd |
| References | 2022; 11(1) 2021; 24 2013; 29 2021; 8 2009; 25 2023; 79 2021; 21 2012 2011 2020; 160 2009 2002; 3 2017; 29 2022; 87 2018; 6 2023 2022 2021 2015; 84 2020 2023;16:785–802 2022; 8 2015; 44 2019; 26 2019 2018 2017 2022; 15 2016 2018; 51 2015 2010; 7 e_1_2_7_5_1 Haidri RA (e_1_2_7_29_1) 2017 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_60_1 Li J (e_1_2_7_57_1) 2020 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 Hao Y (e_1_2_7_43_1) 2021 e_1_2_7_13_1 Zhou N (e_1_2_7_30_1) 2018 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Sun T (e_1_2_7_32_1) 2018 Chen W (e_1_2_7_37_1) 2020 Singh S (e_1_2_7_39_1) 2015; 44 Ren'e G (e_1_2_7_44_1) 2011 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_54_1 e_1_2_7_21_1 Ghafouri R (e_1_2_7_33_1) 2018 Arabnejad H (e_1_2_7_23_1) 2016 Dong M (e_1_2_7_35_1) 2019 e_1_2_7_4_1 e_1_2_7_8_1 Liu L (e_1_2_7_56_1) 2018 e_1_2_7_18_1 Wu Q (e_1_2_7_52_1) 2017 e_1_2_7_16_1 e_1_2_7_61_1 Tang C (e_1_2_7_6_1) 2018 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 Toussi GK (e_1_2_7_2_1) 2022; 11 e_1_2_7_12_1 Ali A (e_1_2_7_59_1) 2021; 21 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 Kalyan Chakravarthi K (e_1_2_7_7_1) 2020 Praveena Akki VV (e_1_2_7_58_1) 2020 e_1_2_7_27_1 TongxiangWang XW (e_1_2_7_55_1) 2017 Kim W‐J (e_1_2_7_20_1) 2015 e_1_2_7_51_1 e_1_2_7_53_1 e_1_2_7_24_1 Huang T (e_1_2_7_40_1) 2019; 26 e_1_2_7_34_1 Arabnejad V (e_1_2_7_31_1) 2019 e_1_2_7_38_1 Rizvi N (e_1_2_7_36_1) 2020 Li X (e_1_2_7_48_1) 2022 Li Y (e_1_2_7_22_1) 2015 Song X (e_1_2_7_64_1) 2022 |
| References_xml | – year: 2009 – start-page: 1932 year: 2015 end-page: 8184 – volume: 160 start-page: 577 year: 2020 end-page: 587 article-title: An energy harvesting solution for computation offloading in fog computing networks publication-title: Comput Commun – volume: 15 start-page: 973 year: 2022 end-page: 987 – volume: 79 start-page: 1784 year: 2023 end-page: 1718 article-title: enhanced genetic algorithm with some heuristic principles for task graph scheduling publication-title: J Supercomput – volume: 8 start-page: 1425 year: 2022 end-page: 1443 article-title: Reliability aware green workflow scheduling using ε‐fuzzy dominance in cloud publication-title: Compl Intell Syst – volume: 51 start-page: 1 issue: 1 year: 2018 end-page: 38 article-title: Augmentation techniques for mobile cloud computing: a taxonomy, survey, and future directions publication-title: ACM Comput Surv – start-page: 2169 year: 2018 end-page: 3536 – year: 2021 – start-page: 1045 year: 2017 end-page: 9219 – volume: 79 start-page: 1451 year: 2023 end-page: 1503 article-title: A hybrid bi‐objective scheduling algorithm for execution of scientific workflows on cloud platforms with execution time and reliability approach publication-title: J Supercomput – volume: 44 start-page: 1 year: 2015 end-page: 50 article-title: Cloud resource provisioning: survey, status and future research directions publication-title: Knowl Inf Syst – volume: 25 start-page: 237 issue: 3 year: 2009 end-page: 256 article-title: Towards a general model of the multicriteria workflow scheduling on the grid publication-title: Fut Gener Comput Syst – volume: 79 start-page: 1814 year: 2023 end-page: 1833 article-title: A cost and makespan aware scheduling algorithm for dynamic multi‐workflow in cloud environment publication-title: J Supercomput – year: 2016 – year: 2018 – start-page: 43 year: 2011 end-page: 56 – start-page: 1 year: 2022 end-page: 14 article-title: Reliability‐aware and energy‐efficient workflow scheduling in IaaS clouds publication-title: IEEE Transactions on Automation Science and Engineering – year: 2016 article-title: Deadline‐budget constrained scheduling algorithm for scientific workflows in a cloud publication-title: Environment – volume: 7 start-page: 364 issue: 2 year: 2010 end-page: 376 article-title: Bi‐criteria scheduling of scientific grid workflows publication-title: IEEE Trans Autom Sci Eng – start-page: 19 year: 2017 end-page: 1578 – volume: 26 start-page: 1 year: 2019 end-page: 15 article-title: Computation offloading for multimedia workflows with deadline constraints in cloudlet‐based mobile cloud publication-title: Wirel Netw – volume: 84 start-page: 119 year: 2015 end-page: 111 article-title: A scientific workflow management system architecture and its scheduling based on cloud service platform for manufacturing big data analytics publication-title: Int J Adv Manuf Technol – volume: 3 start-page: 260 year: 2002 end-page: 274 article-title: Performance‐effective and low‐complexity task scheduling for heterogeneous computing publication-title: IEEE Trans Parallel Distrib Syst – volume: 21 start-page: 4527 issue: 13 year: 2021 article-title: An efficient dynamic‐decision based task scheduler for task offloading optimization and energy management in mobile cloud computing publication-title: Smart Cloud Comput Technol Appl – volume: 6 start-page: 14908 year: 2018 end-page: 14925 article-title: Task offloading in heterogeneous mobile cloud computing: modeling, analysis, and cloudlet deployment publication-title: IEEE Access – volume: 87 year: 2022 article-title: Multi‐workflow scheduling and resource provisioning in Mobile edge computing using opposition‐based marine‐predator algorithm publication-title: Pervas Mobile Comput – start-page: 19 year: 2020 end-page: 1578 – year: 2022 – year: 2020 – year: 2023 – start-page: 1045 year: 2019 end-page: 9219 article-title: Budget and deadline aware e‐science workflow scheduling in clouds publication-title: IEEE Trans Parallel Distrib Syst – volume: 8 start-page: 848 year: 2021 end-page: 865 article-title: Task scheduling for multi‐cloud computing subject to security and reliability constraints publication-title: IEEE – year: 2017 – volume: 24 start-page: 1711 issue: 3 year: 2021 end-page: 1733 article-title: A divide and conquer approach to deadline constrained cost‐optimization workflow scheduling for the cloud publication-title: Clust Comput – start-page: 164 year: 2019 end-page: 1212 – start-page: 105 year: 2012 end-page: 119 – volume: 29 issue: 5 year: 2017 article-title: Deadline‐constrained coevolutionary genetic algorithm for scientific workflow scheduling in cloud computing publication-title: Concurr Comput: Pract Exp – year: 2019 – start-page: 2011 year: 2011 – year: 2023;16:785–802 article-title: Gobalakrishnan Natesan DCCWOA: a multi‐heuristic fault tolerant scheduling technique for cloud computing environment publication-title: Springer Peer‐to‐Peer Netw Appl – year: 2015 – volume: 11(1) year: 2022 article-title: EDQWS: an enhanced divide and conquer algorithm for workflow scheduling in cloud publication-title: J Cloud Comp – volume: 29 start-page: 158 issue: 1 year: 2013 end-page: 169 article-title: Deadlineconstrained workflow scheduling algorithms for infrastructure as a service clouds publication-title: Fut Gener Comput Syst – start-page: 164 volume-title: ECOS: an Efficient Task‐Clustering Based Cost‐Effective Aware Scheduling Algorithm for Scientific Workflows Execution on Heterogeneous Cloud Systems year: 2019 ident: e_1_2_7_35_1 – ident: e_1_2_7_49_1 doi: 10.1109/TASE.2022.3195958 – volume-title: A Scheduling Algorithm Using Sub‐Deadline for Workflow Applications under Budget and Deadline Constrained year: 2018 ident: e_1_2_7_32_1 – volume-title: Fairness Task Assignment Strategy with Distance Constraint in Mobile CrowdSensing year: 2022 ident: e_1_2_7_64_1 – ident: e_1_2_7_9_1 doi: 10.1109/TASE.2009.2014643 – ident: e_1_2_7_26_1 doi: 10.1016/j.jocs.2016.10.013 – ident: e_1_2_7_45_1 doi: 10.1016/j.comcom.2020.06.032 – volume: 44 start-page: 1 year: 2015 ident: e_1_2_7_39_1 article-title: Cloud resource provisioning: survey, status and future research directions publication-title: Knowl Inf Syst – ident: e_1_2_7_65_1 doi: 10.1109/JAS.2021.1003934 – ident: e_1_2_7_8_1 doi: 10.1002/cpe.3942 – ident: e_1_2_7_25_1 – volume-title: Cost Adaptive VM Management for ScientificWorkflow Application in Mobile Cloud year: 2015 ident: e_1_2_7_20_1 – ident: e_1_2_7_50_1 doi: 10.1109/TASE.2022.32043 – ident: e_1_2_7_10_1 doi: 10.1007/s11227-022-04684-0 – ident: e_1_2_7_14_1 doi: 10.1007/s11277-018-5895-y – volume: 21 start-page: 4527 issue: 13 year: 2021 ident: e_1_2_7_59_1 article-title: An efficient dynamic‐decision based task scheduler for task offloading optimization and energy management in mobile cloud computing publication-title: Smart Cloud Comput Technol Appl – ident: e_1_2_7_13_1 doi: 10.1016/j.future.2008.09.002 – ident: e_1_2_7_63_1 doi: 10.1007/s40747-021-00609-1 – ident: e_1_2_7_66_1 doi: 10.1109/JIOT.2023.3243266 – volume-title: EERA: An Energy‐efficient Resource Allocation Strategy for Mobile Cloud Workflows year: 2020 ident: e_1_2_7_57_1 – ident: e_1_2_7_18_1 doi: 10.1109/71.993206 – volume-title: Chen energy‐Aware Task Scheduling Inmobile Cloud Computing year: 2018 ident: e_1_2_7_6_1 – ident: e_1_2_7_19_1 doi: 10.1016/j.future.2012.05.004 – ident: e_1_2_7_21_1 – ident: e_1_2_7_61_1 doi: 10.1007/s12083‐021‐01267‐3 – ident: e_1_2_7_42_1 doi: 10.1145/1999995.2000000 – volume-title: Execution Cost Minimization Scheduling Algorithms for Deadlineconstrained Parallel Applications on Heterogeneous Clouds year: 2020 ident: e_1_2_7_37_1 – ident: e_1_2_7_24_1 doi: 10.1007/978-3-642-28675-9_8 – ident: e_1_2_7_3_1 doi: 10.1007/s11227-020-03528-z – start-page: 1932 volume-title: Energy Optimization with Dynamic Task Scheduling Mobile Cloud Computing year: 2015 ident: e_1_2_7_22_1 – ident: e_1_2_7_38_1 doi: 10.1109/BigDataSecurity-HPSC-IDS49724.2020.00038 – volume-title: A Budget Constrained Scheduling Algorithm for Executing Workflow Application in Infrastructure as a Service Clouds year: 2018 ident: e_1_2_7_33_1 – ident: e_1_2_7_51_1 doi: 10.1007/s11227-022-04681-3 – start-page: 2169 volume-title: A Deadline‐Constrained Multi‐Objective Task Scheduling Algorithm in Mobile Cloud Environments year: 2018 ident: e_1_2_7_56_1 – ident: e_1_2_7_67_1 doi: 10.1007/978‐3‐031‐20984‐0‐32 – ident: e_1_2_7_41_1 doi: 10.1007/978-3-642-35170-9_20 – start-page: 1045 year: 2019 ident: e_1_2_7_31_1 article-title: Budget and deadline aware e‐science workflow scheduling in clouds publication-title: IEEE Trans Parallel Distrib Syst – volume-title: Energy‐Aware Offloading Based on Priority in Mobile Cloud Computing 2210‐5379 year: 2021 ident: e_1_2_7_43_1 – ident: e_1_2_7_47_1 doi: 10.1007/s12083-022-01445-x – volume-title: Concurrent wo1rkflow Budget‐ and Deadline‐Constrained Scheduling in Heterogeneous Distributed Environments year: 2018 ident: e_1_2_7_30_1 – start-page: 2011 volume-title: Proceedings of the Tenth IEEE International Symposium on Networking Computing and Applications, August 25–27 year: 2011 ident: e_1_2_7_44_1 – volume-title: HBDCWS: Heuristic‐Based Budget and Deadline Constrained Workflow Scheduling Approach for Heterogeneous Clouds year: 2020 ident: e_1_2_7_36_1 – ident: e_1_2_7_12_1 doi: 10.1007/s10586‐020‐03223‐x – ident: e_1_2_7_16_1 doi: 10.1109/ACCESS.2018.2812144 – volume: 11 year: 2022 ident: e_1_2_7_2_1 article-title: EDQWS: an enhanced divide and conquer algorithm for workflow scheduling in cloud publication-title: J Cloud Comp – ident: e_1_2_7_28_1 – ident: e_1_2_7_54_1 doi: 10.1109/eScience.2012.6404430 – ident: e_1_2_7_5_1 doi: 10.1007/s00170‐015‐7804‐9 – start-page: 19 volume-title: Cost Effective Deadline Aware Scheduling Strategy for Workflow Applications on Virtual Machines in Cloud Computing year: 2017 ident: e_1_2_7_29_1 – ident: e_1_2_7_46_1 doi: 10.2139/ssrn.4034378 – ident: e_1_2_7_60_1 doi: 10.1007/s10586-022-03608-0 – volume-title: Energy Efficient Resource Scheduling Using Optimization Based Neural Network in Mobile Cloud Computing year: 2020 ident: e_1_2_7_58_1 – volume-title: Multi‐QoS Constrained and Profit‐Aware Scheduling Approach for Concurrent Workflows on Heterogeneous Systems year: 2016 ident: e_1_2_7_23_1 – ident: e_1_2_7_15_1 doi: 10.1002/9780470496916 – ident: e_1_2_7_17_1 doi: 10.1007/s10586-020-03085-3 – start-page: 19 volume-title: TOPSIS Inspired Cost‐Efficient Concurrent Workflow Scheduling Algorithm in Cloud year: 2020 ident: e_1_2_7_7_1 – ident: e_1_2_7_68_1 doi: 10.1016/j.pmcj.2022.101715 – ident: e_1_2_7_62_1 doi: 10.1007/s11227-022-04703-0 – ident: e_1_2_7_34_1 doi: 10.1016/j.future.2019.05.002 – volume-title: Extended Efficiency and Soft‐Fairness Multiresource Allocation in a Cloud Computing System year: 2022 ident: e_1_2_7_48_1 – ident: e_1_2_7_53_1 – ident: e_1_2_7_27_1 doi: 10.4230/LIPIcs.OPODIS.19 – volume: 26 start-page: 1 year: 2019 ident: e_1_2_7_40_1 article-title: Computation offloading for multimedia workflows with deadline constraints in cloudlet‐based mobile cloud publication-title: Wirel Netw – ident: e_1_2_7_11_1 doi: 10.1109/WORKS.2008.4723958 – volume-title: Efficient Multi‐Tasks Scheduling Algorithm in Mobile Cloud Computing with Time Constraints year: 2017 ident: e_1_2_7_55_1 – ident: e_1_2_7_4_1 doi: 10.1145/3152397 – start-page: 1045 volume-title: Deadline‐Constrained Cost Optimization Approaches for Workflow Scheduling in Clouds year: 2017 ident: e_1_2_7_52_1 |
| SSID | ssj0000752548 |
| Score | 2.2790055 |
| Snippet | The advent of distributed computing and mobile clouds made it possible to transfer and distribute the heavy processes of complex workflows to the cloud.... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | mobile cloud public cloud resource allocation scientific workflow scheduling service quality |
| Title | A review on workflow scheduling and resource allocation algorithms in distributed mobile clouds |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fett.4811 |
| Volume | 34 |
| WOSCitedRecordID | wos001014935700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2161-3915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000752548 issn: 2161-3915 databaseCode: DRFUL dateStart: 20120101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6k9aAH32J9sYLoKZpsNpvkWLTFQykirfQW9hUttIk0qf59Z7NpraAgeMoevsAymc08duYbhC5DTdwgEKmjYqIdmobU4eDYOzFYSxGqVMYV2fNzL-z3o9EofqyrKk0vjOWHWCbczMmo_tfmgHNR3H6RhuqyvKGRaettElBb2kDN-6fusLfMsIAxhOinGknnmSRL7AUL9lmX3C5e_2aPVv3TysB0t_-ztR20VbuVuG31YBet6WwPba6QDe6jpI1tnwrOM2zKsdJJ_oEhuAVjY3rSMc8UIGw2H5v7eJvNg-VLPhuXr9MCjzOsDNOuGZKlFZ7mAvaH5SSfq-IADbudwd2DU49XcCRhgedI8Fj9WDLmUs0DJWMfvleqZKSFFMzQ-oDEIs5DF4JA5nItmSchpHU5iyBK4_4hamR5po8QZoqpiuyLaZ9yLiKp0hSgKmBUEKJa6Hoh5ETW3ONmBMYksazJJAGRJUZkLXSxRL5Zvo0fMFeV9H8FJJ3BwDyP_wo8QRtmjLwt7DtFjXI212doXb6X42J2XivWJ7hn00Y |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KK6gHv8X6uYLoKTZNk02Cp6ItFWMRacVb2OxutNAm0qb6953NprWCguApObzAMpnNzLzsvAE4c6VlOk4UG8K3pGHHrm0wTOwNH6Nl5IqY-7nY81Pgdrve87P_UIKrWS-M1oeYE25qZ-Tfa7XBFSFd-1INlVl2aXuqr7dioxc5ZajcPLb7wZxiwWiI5U8-k66uWBa_7szkZ02rNnv8W0BaTFDzCNNe_9faNmCtSCxJU3vCJpRksgWrC3KD2xA2ie5UIWlC1IGseJh-ECxvMdyornTCEoEIzecT9Ude83l4-5KOB9nraEIGCRFKa1eNyZKCjNIIF0j4MJ2KyQ70263edccoBiwY3KJO3eCYszZ8TqlpS-YI7jfwjcWCezLiEVXCPmgyjzHXxDKQmkxyWudY1JqMelinscYulJM0kXtAqKAil_uismEzFnlcxDFChUPtyLJEFS5mVg55oT6uhmAMQ62bbIVoslCZrAqnc-SbVtz4AXOem_9XQNjq9dR1_6_AE1ju9O6DMLjt3h3Aihoqr4_5HUI5G0_lESzx92wwGR8XXvYJYUnXNg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KK6IH32J9riB6is1zk-Cp2BbFUoq00lvY7G600CalTfXvO5uktYKC4Ck5fAnLZDcz3-zONwBXrjR1xwkjTfim1OzItTWGgb3mo7cMXRFxPxN7fmm7nY43GPjdEtwtamFyfYhlwk2tjOx_rRa4nIio9qUaKtP01vZUXW_FdvDdZag0nlv99jLFgt4Q6U_Wk85QWRbfcBbys7pZWzz-zSGtBqiZh2lt_2tsO7BVBJakns-EXSjJeA82V-QG9yGok7xShSQxUQeyolHyQZDeortRVemExQIReT6fqB35PJ-Ht6_JdJi-jWdkGBOhtHZVmywpyDgJcYCEj5K5mB1Av9Xs3T9oRYMFjZvUMTSOMavlc0p1WzJHcN_CLxYJ7smQh1QJ-6DJPMZcHWkg1Znk1OBIanVGPeRpzDqEcpzE8ggIFVRkcl9UWjZjocdFFCFUONQOTVNU4WZh5YAX6uOqCcYoyHWTzQBNFiiTVeFyiZzkihs_YK4z8_8KCJq9nroe_xV4AevdRitoP3aeTmBD9ZTPT_mdQjmdzuUZrPH3dDibnheT7BMo6tax |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+workflow+scheduling+and+resource+allocation+algorithms+in+distributed+mobile+clouds&rft.jtitle=Transactions+on+emerging+telecommunications+technologies&rft.au=Golmohammadi%2C+Akram&rft.au=Kamel+Tabbakh%2C+Seyed+Reza&rft.au=Ghaemi%2C+Reza&rft.date=2023-08-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=2161-3915&rft.eissn=2161-3915&rft.volume=34&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fett.4811&rft.externalDBID=10.1002%252Fett.4811&rft.externalDocID=ETT4811 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-3915&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-3915&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-3915&client=summon |