Efficient resource allocation algorithms for multihop D2D approach in 5G network
Summary Now the 5G network systems are expected to enhance their throughput. Device‐to‐device (D2D) communication is one such technique that offers an effective solution. The existing cellular user (CU) communication must be ensured that this solution had minimized its interference with it. Hence, d...
Uloženo v:
| Vydáno v: | International journal of communication systems Ročník 38; číslo 1 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
10.01.2025
|
| Témata: | |
| ISSN: | 1074-5351, 1099-1131 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Summary
Now the 5G network systems are expected to enhance their throughput. Device‐to‐device (D2D) communication is one such technique that offers an effective solution. The existing cellular user (CU) communication must be ensured that this solution had minimized its interference with it. Hence, designing methods for resource allocation for D2D transmission is also important. Such allocation will maximize network throughput without causing much interference with the present communication. Apart from these, it ensures delay minimization and achieves fairness among user data rates. But when distance is increased, an extension from direct D2D communication (single‐hop) to multi‐hop is necessary. At the same time, its objectives shall be retained. In the proposed work, initially, a comparative study is done on different algorithms for multi‐hop (two‐hop) D2D communication pairs. While studying different algorithms such as random allocation (RA), graph allocation (GA), particle swamp optimization (PSO), and technique for order preference by similarity to the ideal solution (TOPSIS), they are also analyzed, looking for the possibility of a particular combination of them to achieve specific objectives. The realized method has improved performance even in the situation of an increase in distance. The arrived two methods also support a better data rate. The first method allocates resources based on orthogonal sharing. The second method is for allocating resources to them that have cellular orientation. The simulated results exhibit the improved capability of the proposed methods. The method based on the graph to allocate the mentioned resources functions better. Finally, for throughput and data rates, PSO and TOPSIS techniques are implemented.
Hybrid resource allocation is suggested to overcome the limitations of the multi‐hop D2D method. A two‐step method is used. A graph‐based technique creates an interference matrix. Then, the technique for order preference by similarity to the ideal solution (TOPSIS) is applied. The proposed approach eliminated interferences and maximized resource block gains to boost system throughput. |
|---|---|
| ISSN: | 1074-5351 1099-1131 |
| DOI: | 10.1002/dac.5520 |