PGCN: Pyramidal Graph Convolutional Network for EEG Emotion Recognition
Emotion recognition is essential in the diagnosis and rehabilitation of various mental diseases. In the last decade, electroencephalogram (EEG)-based emotion recognition has been intensively investigated due to its prominative accuracy and reliability, and graph convolutional network (GCN) has becom...
Saved in:
| Published in: | IEEE transactions on multimedia Vol. 26; pp. 9070 - 9082 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
2024
|
| Subjects: | |
| ISSN: | 1520-9210, 1941-0077 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Emotion recognition is essential in the diagnosis and rehabilitation of various mental diseases. In the last decade, electroencephalogram (EEG)-based emotion recognition has been intensively investigated due to its prominative accuracy and reliability, and graph convolutional network (GCN) has become a mainstream model to decode emotions from EEG signals. However, the electrode relationship, especially long-range electrode dependencies across the scalp, may be underutilized by GCNs, although such relationships have been proven to be important in emotion recognition. The small receptive field makes shallow GCNs only aggregate local nodes. On the other hand, stacking too many layers leads to over-smoothing. To solve these problems, we propose the pyramidal graph convolutional network (PGCN), which aggregates features at three levels: local , mesoscopic , and global . First, we construct a vanilla GCN based on the 3D topological relationships of electrodes, which is used to integrate two-order local features; Second, we construct several mesoscopic brain regions based on priori knowledge and employ mesoscopic attention to sequentially calculate the virtual mesoscopic centers to focus on the functional connections of mesoscopic brain regions; Finally, we fuse the node features and their 3D positions to construct a numerical relationship adjacency matrix to integrate structural and functional connections from the global perspective. Experimental results on four public datasets indicate that PGCN enhances the relationship modelling across the scalp and achieves state-of-the-art performance in both subject-dependent and subject-independent scenarios. Meanwhile, PGCN makes an effective trade-off between enhancing network depth and receptive fields while suppressing the ensuing over-smoothing. |
|---|---|
| AbstractList | Emotion recognition is essential in the diagnosis and rehabilitation of various mental diseases. In the last decade, electroencephalogram (EEG)-based emotion recognition has been intensively investigated due to its prominative accuracy and reliability, and graph convolutional network (GCN) has become a mainstream model to decode emotions from EEG signals. However, the electrode relationship, especially long-range electrode dependencies across the scalp, may be underutilized by GCNs, although such relationships have been proven to be important in emotion recognition. The small receptive field makes shallow GCNs only aggregate local nodes. On the other hand, stacking too many layers leads to over-smoothing. To solve these problems, we propose the pyramidal graph convolutional network (PGCN), which aggregates features at three levels: local , mesoscopic , and global . First, we construct a vanilla GCN based on the 3D topological relationships of electrodes, which is used to integrate two-order local features; Second, we construct several mesoscopic brain regions based on priori knowledge and employ mesoscopic attention to sequentially calculate the virtual mesoscopic centers to focus on the functional connections of mesoscopic brain regions; Finally, we fuse the node features and their 3D positions to construct a numerical relationship adjacency matrix to integrate structural and functional connections from the global perspective. Experimental results on four public datasets indicate that PGCN enhances the relationship modelling across the scalp and achieves state-of-the-art performance in both subject-dependent and subject-independent scenarios. Meanwhile, PGCN makes an effective trade-off between enhancing network depth and receptive fields while suppressing the ensuing over-smoothing. |
| Author | He, Huiguang Cai, Ting Jin, Ming Li, Jinpeng Du, Changde |
| Author_xml | – sequence: 1 givenname: Ming orcidid: 0000-0001-7687-9953 surname: Jin fullname: Jin, Ming organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China – sequence: 2 givenname: Changde orcidid: 0000-0002-0084-433X surname: Du fullname: Du, Changde organization: Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Huiguang orcidid: 0000-0002-0684-1711 surname: He fullname: He, Huiguang organization: National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Ting orcidid: 0000-0001-9649-361X surname: Cai fullname: Cai, Ting organization: No. 2 Hospital, Ningbo, China – sequence: 5 givenname: Jinpeng orcidid: 0000-0001-8701-2642 surname: Li fullname: Li, Jinpeng email: jinpeng.li@ieee.org organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China |
| BookMark | eNp9kE1PwzAMQCM0JLbBnQOH_IGOJM3Hwg1VpSBtY0LjXGWNA4GumdIC2r-nFTsgDpxs2X6W_SZo1IQGELqkZEYp0deb5XLGCOOzNJ0LqeQJGlPNaUKIUqM-F4wkmlFyhiZt-0YI5YKoMSrWRba6wetDNDtvTY2LaPavOAvNZ6g_Oh-avraC7ivEd-xCxHle4HwXhg5-giq8NH7Iz9GpM3ULF8c4Rc93-Sa7TxaPxUN2u0gqJnmXgEgZq6jTThCwXHErttxsjTNAU7tVzFnptHZzagUoxpWRslIOjOm_slykUyR_9lYxtG0EV1a-M8MFXTS-LikpBx1lr6McdJRHHT1I_oD76HcmHv5Drn4QDwC_xrmWVNP0G6f-bXU |
| CODEN | ITMUF8 |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_108231 crossref_primary_10_1007_s00521_024_10821_y crossref_primary_10_1038_s41598_024_82705_z crossref_primary_10_1016_j_bspc_2025_108556 crossref_primary_10_1109_JBHI_2024_3504847 crossref_primary_10_1109_TAFFC_2025_3527459 crossref_primary_10_1016_j_eswa_2025_128183 crossref_primary_10_1016_j_knosys_2025_113752 crossref_primary_10_1109_TIFS_2025_3602266 crossref_primary_10_1007_s00180_025_01666_7 crossref_primary_10_1016_j_neucom_2025_130254 crossref_primary_10_1007_s00371_024_03652_4 crossref_primary_10_1016_j_aej_2025_09_013 crossref_primary_10_1016_j_cmpb_2025_109021 crossref_primary_10_1016_j_bspc_2025_107799 crossref_primary_10_1007_s00530_025_01894_3 crossref_primary_10_1016_j_knosys_2025_113938 crossref_primary_10_1109_TNSRE_2025_3603190 crossref_primary_10_1007_s10586_024_04994_3 crossref_primary_10_3389_fnins_2024_1479570 crossref_primary_10_1016_j_knosys_2025_114115 crossref_primary_10_1109_TIM_2025_3553234 crossref_primary_10_1109_TAFFC_2025_3564272 crossref_primary_10_1016_j_eswa_2025_127323 crossref_primary_10_1186_s40708_024_00242_x crossref_primary_10_1016_j_neunet_2025_107457 crossref_primary_10_1016_j_eswa_2025_128035 |
| Cites_doi | 10.1002/da.22728 10.1093/cercor/bhn102 10.1109/TAFFC.2017.2712143 10.1016/j.neucom.2017.08.043 10.1109/EMBC46164.2021.9630195 10.1016/j.neubiorev.2017.04.021 10.1016/j.nicl.2020.102331 10.1109/79.911197 10.1109/TNSRE.2020.2980223 10.7551/mitpress/9609.001.0001 10.1109/NER.2013.6695876 10.1109/TNN.2010.2091281 10.1109/TAFFC.2018.2885474 10.1016/j.neuroimage.2003.09.055 10.1109/TAFFC.2021.3064940 10.1109/TAFFC.2020.2994159 10.5555/2946645.2946704 10.1109/TCDS.2019.2963476 10.3389/fpsyt.2020.00698 10.1109/TCYB.2018.2797176 10.1023/A:1018628609742 10.1109/TPAMI.2021.3074057 10.1109/TCDS.2017.2685338 10.1109/TAFFC.2019.2937768 10.1109/TAFFC.2018.2817622 10.1145/3326362 10.1371/journal.pcbi.0010042 10.1109/TCDS.2020.2999337 10.1088/1741-2552/aace8c 10.1109/ijcnn48605.2020.9206750 10.1109/tnnls.2023.3236635 10.1016/j.neunet.2019.04.003 10.1093/cercor/bhi016 10.1109/NER.2019.8717055 10.1109/TAMD.2015.2431497 10.1109/TCYB.2019.2905157 10.1371/journal.pbio.0060159 10.1109/ICASSP.2018.8462440 10.14569/ijacsa.2017.081046 10.1109/TBME.2010.2048568 10.1145/3474085.3475697 10.1109/TSMCA.2008.918624 10.1093/cercor/bhl149 10.1109/ACCESS.2019.2891579 10.1109/CVPR.2016.90 10.1609/aaai.v34i04.5747 10.1109/TAFFC.2018.2874986 10.1016/j.tins.2004.02.007 10.24963/ijcai.2017/250 10.1109/TITS.2019.2935152 10.1109/TCDS.2021.3071170 10.1038/nrn3214 10.1109/TAFFC.2020.3025777 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TMM.2024.3385676 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0077 |
| EndPage | 9082 |
| ExternalDocumentID | 10_1109_TMM_2024_3385676 10496191 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Guangdong Provincial Key Laboratory of Human Digital Twin grantid: 2022B1212010004 – fundername: Ningbo Clinical Research Center for Medical Imaging grantid: 2021L003 – fundername: National Natural Science Foundation of China grantid: 62106248 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TN5 VH1 ZY4 AAYXX CITATION |
| ID | FETCH-LOGICAL-c264t-e5322c1f9f50ed474d5b4abafae13db72fd6f99f81d5e7247a66c7feaa385d453 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001297535300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-9210 |
| IngestDate | Sat Nov 29 03:10:15 EST 2025 Tue Nov 18 22:26:24 EST 2025 Wed Aug 27 01:54:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c264t-e5322c1f9f50ed474d5b4abafae13db72fd6f99f81d5e7247a66c7feaa385d453 |
| ORCID | 0000-0001-9649-361X 0000-0001-7687-9953 0000-0002-0084-433X 0000-0001-8701-2642 0000-0002-0684-1711 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_10496191 crossref_citationtrail_10_1109_TMM_2024_3385676 crossref_primary_10_1109_TMM_2024_3385676 |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on multimedia |
| PublicationTitleAbbrev | TMM |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Velikovi (ref44) 2017 Defferrard (ref36) 2016 ref51 ref50 ref46 ref45 ref48 ref47 ref41 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 Jawabri (ref42) 2023 ref37 ref31 ref30 Kipf (ref33) 2016 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref3 doi: 10.1002/da.22728 – ident: ref18 doi: 10.1093/cercor/bhn102 – start-page: 3844 volume-title: Proc. Annu. Conf. Neural Inf. Process. Syst. year: 2016 ident: ref36 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – ident: ref43 doi: 10.1109/TAFFC.2017.2712143 – ident: ref8 doi: 10.1016/j.neucom.2017.08.043 – ident: ref38 doi: 10.1109/EMBC46164.2021.9630195 – ident: ref41 doi: 10.1016/j.neubiorev.2017.04.021 – ident: ref2 doi: 10.1016/j.nicl.2020.102331 – ident: ref1 doi: 10.1109/79.911197 – ident: ref11 doi: 10.1109/TNSRE.2020.2980223 – ident: ref23 doi: 10.7551/mitpress/9609.001.0001 – ident: ref25 doi: 10.1109/NER.2013.6695876 – ident: ref54 doi: 10.1109/TNN.2010.2091281 – ident: ref49 doi: 10.1109/TAFFC.2018.2885474 – ident: ref24 doi: 10.1016/j.neuroimage.2003.09.055 – ident: ref14 doi: 10.1109/TAFFC.2021.3064940 – ident: ref13 doi: 10.1109/TAFFC.2020.2994159 – ident: ref55 doi: 10.5555/2946645.2946704 – ident: ref4 doi: 10.1109/TCDS.2019.2963476 – ident: ref9 doi: 10.3389/fpsyt.2020.00698 – ident: ref46 doi: 10.1109/TCYB.2018.2797176 – ident: ref26 doi: 10.1023/A:1018628609742 – ident: ref39 doi: 10.1109/TPAMI.2021.3074057 – ident: ref29 doi: 10.1109/TCDS.2017.2685338 – ident: ref12 doi: 10.1109/TAFFC.2019.2937768 – ident: ref10 doi: 10.1109/TAFFC.2018.2817622 – ident: ref45 doi: 10.1145/3326362 – ident: ref17 doi: 10.1371/journal.pcbi.0010042 – ident: ref51 doi: 10.1109/TCDS.2020.2999337 – ident: ref22 doi: 10.1088/1741-2552/aace8c – ident: ref21 doi: 10.1109/ijcnn48605.2020.9206750 – ident: ref37 doi: 10.1109/tnnls.2023.3236635 – ident: ref27 doi: 10.1016/j.neunet.2019.04.003 – ident: ref40 doi: 10.1093/cercor/bhi016 – ident: ref52 doi: 10.1109/NER.2019.8717055 – ident: ref28 doi: 10.1109/TAMD.2015.2431497 – ident: ref32 doi: 10.1109/TCYB.2019.2905157 – volume-title: StatPearls year: 2023 ident: ref42 article-title: Physiology, cerebral cortex functions – ident: ref16 doi: 10.1371/journal.pbio.0060159 – ident: ref6 doi: 10.1109/ICASSP.2018.8462440 – ident: ref30 doi: 10.14569/ijacsa.2017.081046 – ident: ref50 doi: 10.1109/TBME.2010.2048568 – ident: ref53 doi: 10.1145/3474085.3475697 – ident: ref5 doi: 10.1109/TSMCA.2008.918624 – ident: ref15 doi: 10.1093/cercor/bhl149 – ident: ref48 doi: 10.1109/ACCESS.2019.2891579 – year: 2017 ident: ref44 article-title: Graph attention networks – ident: ref56 doi: 10.1109/CVPR.2016.90 – ident: ref57 doi: 10.1609/aaai.v34i04.5747 – ident: ref7 doi: 10.1109/TAFFC.2018.2874986 – ident: ref20 doi: 10.1016/j.tins.2004.02.007 – ident: ref34 doi: 10.24963/ijcai.2017/250 – ident: ref35 doi: 10.1109/TITS.2019.2935152 – ident: ref47 doi: 10.1109/TCDS.2021.3071170 – ident: ref19 doi: 10.1038/nrn3214 – year: 2016 ident: ref33 article-title: Semi-supervised classification with graph convolutional networks – ident: ref31 doi: 10.1109/TAFFC.2020.3025777 |
| SSID | ssj0014507 |
| Score | 2.5586882 |
| Snippet | Emotion recognition is essential in the diagnosis and rehabilitation of various mental diseases. In the last decade, electroencephalogram (EEG)-based emotion... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 9070 |
| SubjectTerms | Convolutional neural networks Electrodes Electroencephalogram Electroencephalography Emotion recognition Feature extraction graph convolutional network Knowledge engineering knowledge-based modelling Scalp |
| Title | PGCN: Pyramidal Graph Convolutional Network for EEG Emotion Recognition |
| URI | https://ieeexplore.ieee.org/document/10496191 |
| Volume | 26 |
| WOSCitedRecordID | wos001297535300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0077 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014507 issn: 1520-9210 databaseCode: RIE dateStart: 19990101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86POjB6Zw4v8jBi4du_UiaxZuMrl5WhkzYraRpAgNtZW4D_3tf0nb0ouCthDwo7-Xx3svL-_0Qehhr4kmqM4dzqhwiqOdkVadQZmGgicwCYckmWJKMl0s-r4fV7SyMUso-PlND82l7-Xkpt-aqDDyccEj4odg5ZCyshrX2LQNC7Ww0xCPX4VDIND1Jl48WsxlUgj4ZQj1GQwMv0opBLVIVG1Om3X_-zRk6rZNH_FxZ-xwdqKKHug0xA679tIdOWiiDFyiex5PkCc-_1-JjlYN8bECq8aQsdvW5g7Wkeg6OIYfFURTjqKL3wa_NA6Oy6KO3abSYvDg1f4IjIc3ZOIqCt0pPc01dlRNGcpoRkQktlGdglX2dh5pzDSkrVcwnTIShZFoJAWrKCQ0uUacoC3WFsJReAGbzmRQukVrw3Fc6hFJQBZDiaTVAo0ajqazBxQ3HxXtqiwyXp2CD1NggrW0wQI97ic8KWOOPvX2j_ta-SvPXv6zfoGMjXt2U3KLOZr1Vd-hI7jarr_W9PTY_1vLAEg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBfXgdCrOzxy8eOjWj6RdvMnYOnErQybsVtI0gYG2MreB_70vTTt6UfBWQhLKe3nk9_I-fgjd9xRxBFWJxRiVFuHUsRITKRSJ7ykiEo8XZBNBFPXmczYti9WLWhgpZZF8Jjv6s4jlp7lY66cysHDCAPCDs7NLCXFtU661DRoQWlRHw41kWwxcmSoqabPubDIBX9AlHfDIqK8bjNRuoRqtSnGrDJv__J9jdFTCR_xk9H2CdmTWQs2KmgGXltpCh7U-g6conIb96BFPv5f8Y5HC-lC3qcb9PNuUJw_GIpMQjgHF4sEgxAND8INfqxSjPDtDb8PBrD-ySgYFSwDQWVmSgr0KRzFFbZmSgKQ0ITzhiktHN1Z2VeorxhSAVioDlwTc90WgJOcgppRQ7xw1sjyTFwgL4XigODcQ3CZCcZa6UvngDEoPQJ6SbdStJBqLsr24Zrl4jws3w2Yx6CDWOohLHbTRw3bFp2mt8cfcMy3-2jwj-ctfxu_Q_mg2Gcfj5-jlCh3orcy7yTVqrJZreYP2xGa1-FreFkfoBwGiw1k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PGCN%3A+Pyramidal+Graph+Convolutional+Network+for+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+multimedia&rft.au=Jin%2C+Ming&rft.au=Du%2C+Changde&rft.au=He%2C+Huiguang&rft.au=Cai%2C+Ting&rft.date=2024&rft.pub=IEEE&rft.issn=1520-9210&rft.volume=26&rft.spage=9070&rft.epage=9082&rft_id=info:doi/10.1109%2FTMM.2024.3385676&rft.externalDocID=10496191 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-9210&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-9210&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-9210&client=summon |