A Cα-dominance-based solution estimation evolutionary algorithm for many-objective optimization

Balancing convergence and diversity is a key issue for many-objective optimization problems (MaOPs), which is a great challenge to the classical Pareto-based multi-objective algorithms due to its severe lack of selection pressure. To relieve the above challenge, a Cα-dominance-based solution estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems Jg. 248; S. 108738
Hauptverfasser: Liu, Junhua, Wang, Yuping, Cheung, Yiu-ming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 19.07.2022
Elsevier Science Ltd
Schlagworte:
ISSN:0950-7051, 1872-7409
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Balancing convergence and diversity is a key issue for many-objective optimization problems (MaOPs), which is a great challenge to the classical Pareto-based multi-objective algorithms due to its severe lack of selection pressure. To relieve the above challenge, a Cα-dominance-based solution estimation evolutionary algorithm is proposed for MaOPs. In the proposed algorithm, a new dominance method, called Cα-dominance, is proposed to provide reasonable selection pressure for MaOPs. By designing a nonlinear function to transform the original objectives, Cα-dominance expands the dominated area where dominance resistant solutions located, while remains the solutions to be non-dominated in area close to Pareto optimal solutions. Furthermore, an adaptive parameter adjustment mechanism on the unique parameter α of Cα-dominance is designed to control the expansion degree of the dominance area based on the number of objectives and the stages of evolution. Finally, a new solution estimation scheme based on Cα-dominance is designed to evaluate the quality of each solution, which incorporates convergence information and diversity information of each solution. The experimental results on widely used benchmark problems having 5–20 objectives have shown the proposed algorithm is more effective in terms of both convergence enhancement and diversity maintenance.
AbstractList Balancing convergence and diversity is a key issue for many-objective optimization problems (MaOPs), which is a great challenge to the classical Pareto-based multi-objective algorithms due to its severe lack of selection pressure. To relieve the above challenge, a Cα-dominance-based solution estimation evolutionary algorithm is proposed for MaOPs. In the proposed algorithm, a new dominance method, called Cα-dominance, is proposed to provide reasonable selection pressure for MaOPs. By designing a nonlinear function to transform the original objectives, Cα-dominance expands the dominated area where dominance resistant solutions located, while remains the solutions to be non-dominated in area close to Pareto optimal solutions. Furthermore, an adaptive parameter adjustment mechanism on the unique parameter α of Cα-dominance is designed to control the expansion degree of the dominance area based on the number of objectives and the stages of evolution. Finally, a new solution estimation scheme based on Cα-dominance is designed to evaluate the quality of each solution, which incorporates convergence information and diversity information of each solution. The experimental results on widely used benchmark problems having 5–20 objectives have shown the proposed algorithm is more effective in terms of both convergence enhancement and diversity maintenance.
ArticleNumber 108738
Author Wang, Yuping
Liu, Junhua
Cheung, Yiu-ming
Author_xml – sequence: 1
  givenname: Junhua
  surname: Liu
  fullname: Liu, Junhua
  email: liujunhua@xpu.edu.cn
  organization: School of Computer Science, Xi’an Polytechnic University, Xi’an, 710048, China
– sequence: 2
  givenname: Yuping
  orcidid: 0000-0001-6868-0004
  surname: Wang
  fullname: Wang, Yuping
  email: ywang@xidian.edu.cn
  organization: School of Computer Science and Technology, Xidian University, Xi’an, 710071, China
– sequence: 3
  givenname: Yiu-ming
  orcidid: 0000-0001-7629-4648
  surname: Cheung
  fullname: Cheung, Yiu-ming
  email: ymc@comp.hkbu.edu.hk
  organization: Department of Computer Science, Hong Kong Baptist University, Hong Kong Special Administrative Region of China
BookMark eNqFkE9PwyAYh4mZidv0G3ho4rkTaAvUg8my-C9Z4kXPCBSU2pUJ3ZL6rfwifibZupMHPUHe_J4Xfs8EjFrXagDOEZwhiMhlPXtvXejDDEOM44jRjB2BMWIUpzSH5QiMYVnAlMICnYBJCDWEMYnYGLzMk8X3V1q5lW1Fq3QqRdBVElyz6axrEx06uxLDdXsYCt8nonl13nZvq8Q4n6xE26dO1lp1dqsTt46Q_dxjp-DYiCbos8M5Bc-3N0-L-3T5ePewmC9ThUnepRUlslSFNrAwMs8EQbiSpjCZyIyEMteGlJCyLJeM5YVWpTIUUSOE1lhmssym4GLYu_buYxO_zWu38W18kmPCCEaIEhRT-ZBS3oXgteFrH_v5niPIdy55zQeXfOeSDy4jdvULU7bb1-u8sM1_8PUA61h_a7XnQVkdXVfWR2G8cvbvBT-Tqphp
CitedBy_id crossref_primary_10_1007_s40032_024_01104_5
crossref_primary_10_1016_j_eswa_2024_123949
crossref_primary_10_3934_math_2025625
crossref_primary_10_1109_JSEN_2024_3409459
crossref_primary_10_1016_j_asoc_2025_113669
crossref_primary_10_1016_j_ins_2025_122671
crossref_primary_10_1016_j_ins_2023_01_073
crossref_primary_10_1007_s11227_024_06553_4
crossref_primary_10_1016_j_asoc_2024_111505
crossref_primary_10_1016_j_eswa_2023_121244
crossref_primary_10_1016_j_swevo_2025_102137
crossref_primary_10_1117_1_JEI_33_5_053061
crossref_primary_10_4018_IJSIR_323422
Cites_doi 10.1109/ISME.2010.274
10.1109/TEVC.2018.2866854
10.1109/TCYB.2018.2819360
10.1109/MCI.2017.2742868
10.1080/10798587.2009.10643036
10.1109/TEVC.2012.2227145
10.1109/4235.797969
10.1109/4235.996017
10.1109/TEVC.2016.2592479
10.1109/TEVC.2005.861417
10.1109/TEVC.2015.2420112
10.1137/S1052623496307510
10.1016/j.ins.2020.06.028
10.1162/EVCO_a_00009
10.1162/106365602760234108
10.1016/j.infsof.2020.106334
10.1016/j.ins.2011.08.027
10.1109/TEVC.2016.2519758
10.1109/TEVC.2018.2791283
10.1109/CEC.2008.4631121
10.1109/TEVC.2013.2281535
10.1109/TEVC.2017.2695579
10.1109/TEVC.2016.2587749
10.1109/TEVC.2018.2882166
10.1109/TEVC.2020.2978158
10.1016/j.swevo.2016.12.002
10.1007/978-3-540-30217-9_84
10.1109/CEC.2013.6557868
10.1109/TEVC.2014.2373386
10.1109/TSMC.2017.2654301
10.1016/j.advwatres.2020.103531
10.1016/j.asoc.2020.106661
10.1016/j.ins.2019.03.062
10.1145/2576768.2598342
10.1109/TEVC.2015.2504730
10.1109/TEVC.2017.2749619
10.1145/2330163.2330235
10.1109/TSMCB.2008.926329
10.1016/j.knosys.2020.105518
10.1109/TEVC.2013.2281525
10.1109/TEVC.2017.2767023
10.1109/TEVC.2016.2519378
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 19, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 19, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2022.108738
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_108738
S0950705122003422
GrantInformation_xml – fundername: Special Plan for Technological and Innovation Guidance of Shaanxi Province, China
  grantid: 2020CGXNG-012
– fundername: Natural Science Basic Research Program of Shaanxi Province of China
  grantid: 2022JQ-624
– fundername: National Natural Science Foundation of China
  grantid: 61872281; 61672444
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c264t-d76b9c5ef05fb43a612dbf5f3a3fb0b4ef6907834b8845ec9cf717faaee2b3b93
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799850400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:51:05 EST 2025
Sat Nov 29 07:06:26 EST 2025
Tue Nov 18 22:30:28 EST 2025
Fri Feb 23 02:40:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Selection pressure
Many-objective optimization
Cα-dominance method
Evolutionary algorithm
Solution estimation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c264t-d76b9c5ef05fb43a612dbf5f3a3fb0b4ef6907834b8845ec9cf717faaee2b3b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6868-0004
0000-0001-7629-4648
PQID 2686211761
PQPubID 2035257
ParticipantIDs proquest_journals_2686211761
crossref_primary_10_1016_j_knosys_2022_108738
crossref_citationtrail_10_1016_j_knosys_2022_108738
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108738
PublicationCentury 2000
PublicationDate 2022-07-19
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-19
  day: 19
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Ishibuchi, Setoguchi, Masuda, Nojima (b42) 2017; 21
Jiang, Yang (b32) 2017; 21
Yang, Li, Liu, Zheng (b47) 2013; 17
Deb, Thiele, Laumanns, Zitzler (b49) 2002
Kim, Lee (b9) 2020; 125
Nguyen, Thiruvady, Zhang, Alahakoon (b58) 2021
Li, Kwong, Cao, Li, Zheng, Shen (b28) 2012; 182
Zitzler, Thiele (b54) 1999; 3
H.-L. Liu, F.-q. Gu, Y.-m. Cheung, T-moea/d: Moea/d with objective transform in multi-objective problems, in: 2010 International Conference of Information Science and Management Engineering, Vol. 2, 2010, pp. 282–285.
Zitzler, Künzli (b27) 2004; 3242
Dai, Wang, Ye (b17) 2014; 245
Deb, Kalyanmoy (b1) 2001
Zhao, Zhang, Zhang (b38) 2020; 540
Bechikh, Elarbi, Said (b13) 2017
Zhou, Xiang, Chen, He, Wang (b34) 2019; 49
Guo, Tian, Fang, Xu (b12) 2020; 138
Cheung, Gu, Liu (b10) 2016; 20
Deb, Goyal (b45) 1996; 26
Chankong, Haimes (b57) 1983
E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization, in: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, September 19-21, Athens, Greece, 2002, pp. 95–100.
H. Ishibuchi, N. Tsukamoto, Y. Nojima, Evolutionary many-objective optimization: A short review, in: 2008 IEEE Congress on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 2008, pp. 2419–2426.
Ikeda, Kita, Kobayashi (b16) 2001
Hadka, Reed (b19) 2013
Sun, Xue, Zhang, Yen (b23) 2019; 23
Zou, Chen, Liu, Kang (b22) 2008; 38
Rostami, Neri (b31) 2017; 34
Deb, Agrawal (b44) 1994; 9
Tian, Cheng, Zhang, Su, Jin (b18) 2019; 23
Li, Deb, Zhang, Kwong (b33) 2015; 19
Huband, Hingston, Barone, While (b50) 2006; 10
Kalboussi, Bechikh, Kessentini, Said (b11) 2013
Laumanns, Thiele, Deb, Zitzler (b21) 2002; 10
Das, Dennis (b43) 2006; 8
Sun, Yen, Yi (b26) 2019; 23
g.V. Cynthia A. Rodr, C.A.C. Coello, A new multi-objective evolutionary algorithm based on a performance assessment indicator, in: Conference on Genetic and Evolutionary Computation, 2012, pp. 505–512.
Antonio, Coello (b7) 2018; 22
Deb, Jain (b39) 2014; 18
Han, Du, Du, Jin, Wu (b36) 2019; 491
Ma, Yu, Li, Qi, Zhu (b8) 2020; 24
Li, Yang, Liu (b51) 2016; 20
Deb, Pratap, Agarwal, Meyarivan (b4) 2002; 6
Y. Yuan, H. Xu, B. Wang, An improved NSGA-III procedure for evolutionary many-objective optimization, in: 16th Genetic and Evolutionary Computation Conference, GECCO, Jul 12-16, Vancouver, Canada, 2014, pp. 661–668.
R.H. Gómez, C.A.C. Coello, MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator, in: 2013 IEEE Congress on Evolutionary Computation, 2013, pp. 2488–2495.
Li, Li, Chang (b20) 2020; 96
Van Veldhuizen, Lamont (b55) 1999
Tian, Cheng, Zhang, Cheng, Jin (b25) 2018; 22
Russo, Francisco (b56) 2014; 18
Liu, Liu, Zhou, Lian, Bian (b37) 2020; 194
Liu, Wang, Cheung (b3) 2009; 15
Tian, Cheng, Zhang, Jin (b48) 2017; 12
Cheng, Li, Tian, Zhang, Yang, Jin, Yao (b52) 2017
Bader, Zitzler (b30) 2014; 19
Corne, Jerram, Knowles, Oates (b6) 2001
Elarbi, Bechikh, Gupta, Said, Ong (b41) 2018; 48
Yuan, Xu, Wang, Yao (b40) 2016; 20
Sato, Aguirre, Tanaka (b15) 2007
Cheng, Jin, Olhofer, Sendhoff (b24) 2016; 20
Gu, Cheung (b35) 2018; 22
10.1016/j.knosys.2022.108738_b29
Das (10.1016/j.knosys.2022.108738_b43) 2006; 8
Corne (10.1016/j.knosys.2022.108738_b6) 2001
Hadka (10.1016/j.knosys.2022.108738_b19) 2013
Russo (10.1016/j.knosys.2022.108738_b56) 2014; 18
10.1016/j.knosys.2022.108738_b5
Yang (10.1016/j.knosys.2022.108738_b47) 2013; 17
Van Veldhuizen (10.1016/j.knosys.2022.108738_b55) 1999
10.1016/j.knosys.2022.108738_b2
Ma (10.1016/j.knosys.2022.108738_b8) 2020; 24
Tian (10.1016/j.knosys.2022.108738_b18) 2019; 23
Yuan (10.1016/j.knosys.2022.108738_b40) 2016; 20
Zhao (10.1016/j.knosys.2022.108738_b38) 2020; 540
Deb (10.1016/j.knosys.2022.108738_b44) 1994; 9
Liu (10.1016/j.knosys.2022.108738_b3) 2009; 15
Cheung (10.1016/j.knosys.2022.108738_b10) 2016; 20
Tian (10.1016/j.knosys.2022.108738_b48) 2017; 12
Li (10.1016/j.knosys.2022.108738_b33) 2015; 19
Dai (10.1016/j.knosys.2022.108738_b17) 2014; 245
Elarbi (10.1016/j.knosys.2022.108738_b41) 2018; 48
Liu (10.1016/j.knosys.2022.108738_b37) 2020; 194
Tian (10.1016/j.knosys.2022.108738_b25) 2018; 22
10.1016/j.knosys.2022.108738_b53
Cheng (10.1016/j.knosys.2022.108738_b24) 2016; 20
Li (10.1016/j.knosys.2022.108738_b51) 2016; 20
Sato (10.1016/j.knosys.2022.108738_b15) 2007
10.1016/j.knosys.2022.108738_b14
Nguyen (10.1016/j.knosys.2022.108738_b58) 2021
Kalboussi (10.1016/j.knosys.2022.108738_b11) 2013
Chankong (10.1016/j.knosys.2022.108738_b57) 1983
Kim (10.1016/j.knosys.2022.108738_b9) 2020; 125
Sun (10.1016/j.knosys.2022.108738_b23) 2019; 23
Bader (10.1016/j.knosys.2022.108738_b30) 2014; 19
Guo (10.1016/j.knosys.2022.108738_b12) 2020; 138
Li (10.1016/j.knosys.2022.108738_b20) 2020; 96
Zou (10.1016/j.knosys.2022.108738_b22) 2008; 38
Deb (10.1016/j.knosys.2022.108738_b4) 2002; 6
Rostami (10.1016/j.knosys.2022.108738_b31) 2017; 34
Jiang (10.1016/j.knosys.2022.108738_b32) 2017; 21
Cheng (10.1016/j.knosys.2022.108738_b52) 2017
Han (10.1016/j.knosys.2022.108738_b36) 2019; 491
10.1016/j.knosys.2022.108738_b46
Huband (10.1016/j.knosys.2022.108738_b50) 2006; 10
Zhou (10.1016/j.knosys.2022.108738_b34) 2019; 49
Bechikh (10.1016/j.knosys.2022.108738_b13) 2017
Deb (10.1016/j.knosys.2022.108738_b39) 2014; 18
Laumanns (10.1016/j.knosys.2022.108738_b21) 2002; 10
Ishibuchi (10.1016/j.knosys.2022.108738_b42) 2017; 21
Antonio (10.1016/j.knosys.2022.108738_b7) 2018; 22
Deb (10.1016/j.knosys.2022.108738_b49) 2002
Zitzler (10.1016/j.knosys.2022.108738_b54) 1999; 3
Deb (10.1016/j.knosys.2022.108738_b45) 1996; 26
Ikeda (10.1016/j.knosys.2022.108738_b16) 2001
Li (10.1016/j.knosys.2022.108738_b28) 2012; 182
Sun (10.1016/j.knosys.2022.108738_b26) 2019; 23
Deb (10.1016/j.knosys.2022.108738_b1) 2001
Zitzler (10.1016/j.knosys.2022.108738_b27) 2004; 3242
Gu (10.1016/j.knosys.2022.108738_b35) 2018; 22
References_xml – volume: 48
  start-page: 1191
  year: 2018
  end-page: 1210
  ident: b41
  article-title: A new decomposition-based NSGA-II for many-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybern. A
– start-page: 245
  year: 2013
  end-page: 250
  ident: b11
  article-title: Preference-Based Many-Objective Evolutionary Testing Generates Harder Test Cases for Autonomous Agents
– start-page: 957
  year: 2001
  end-page: 962
  ident: b16
  article-title: Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal?
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 2
– volume: 10
  start-page: 477
  year: 2006
  end-page: 506
  ident: b50
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 5
  year: 2007
  end-page: 20
  ident: b15
  article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs
  publication-title: International Conference on Evolutionary Multi-Criterion Optimization
– volume: 20
  start-page: 755
  year: 2016
  end-page: 772
  ident: b10
  article-title: Objective extraction for many-objective optimization problems: Algorithm and test problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 12
  start-page: 73
  year: 2017
  end-page: 87
  ident: b48
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
– volume: 20
  start-page: 645
  year: 2016
  end-page: 665
  ident: b51
  article-title: Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 331
  year: 2019
  end-page: 345
  ident: b18
  article-title: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 10
  start-page: 263
  year: 2002
  end-page: 282
  ident: b21
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
– year: 2017
  ident: b52
  article-title: Benchmark Functions for the CEC’2017 Competition on Evolutionary Many-Objective Optimization
– volume: 34
  start-page: 50
  year: 2017
  end-page: 67
  ident: b31
  article-title: A fast hypervolume driven selection mechanism for many-objective optimisation problems
  publication-title: Swarm Evol. Comput.
– volume: 194
  year: 2020
  ident: b37
  article-title: A region division based decomposition approach for evolutionary many-objective optimization
  publication-title: Knowl.-Based Syst.
– volume: 21
  start-page: 329
  year: 2017
  end-page: 346
  ident: b32
  article-title: A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 231
  year: 2013
  end-page: 259
  ident: b19
  article-title: Borg: An Auto-Adaptive Many-Objective Evolutionary Computing Framework
– reference: Y. Yuan, H. Xu, B. Wang, An improved NSGA-III procedure for evolutionary many-objective optimization, in: 16th Genetic and Evolutionary Computation Conference, GECCO, Jul 12-16, Vancouver, Canada, 2014, pp. 661–668.
– year: 2017
  ident: b13
  article-title: Many-Objective Optimization using Evolutionary Algorithms: A Survey
– reference: E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization, in: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, September 19-21, Athens, Greece, 2002, pp. 95–100.
– volume: 21
  start-page: 169
  year: 2017
  end-page: 190
  ident: b42
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
– volume: 9
  start-page: 115
  year: 1994
  end-page: 148
  ident: b44
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 3242
  start-page: 832
  year: 2004
  end-page: 842
  ident: b27
  article-title: Indicator-based selection in multiobjective search
  publication-title: Lecture Notes in Comput. Sci.
– volume: 245
  start-page: 191
  year: 2014
  end-page: 205
  ident: b17
  article-title: A new evolutionary algorithm based on contraction method for many-objective optimization problems
  publication-title: Appl. Math. Comput.
– volume: 20
  start-page: 16
  year: 2016
  end-page: 37
  ident: b40
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 351
  year: 1999
  end-page: 357
  ident: b55
  article-title: Multiobjective evolutionary algorithm test suites
  publication-title: Proceedings of the 1999 ACM Symposium on Applied Computing
– reference: R.H. Gómez, C.A.C. Coello, MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator, in: 2013 IEEE Congress on Evolutionary Computation, 2013, pp. 2488–2495.
– volume: 96
  year: 2020
  ident: b20
  article-title: A many-objective particle swarm optimization with grid dominance ranking and clustering
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 721
  year: 2013
  end-page: 736
  ident: b47
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 182
  start-page: 220
  year: 2012
  end-page: 242
  ident: b28
  article-title: Achieving balance between proximity and diversity in multi-objective evolutionary algorithm
  publication-title: Inform. Sci.
– volume: 540
  start-page: 435
  year: 2020
  end-page: 448
  ident: b38
  article-title: A decomposition-based many-objective ant colony optimization algorithm with adaptive reference points
  publication-title: Inform. Sci.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b4
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 38
  start-page: 1402
  year: 2008
  end-page: 1412
  ident: b22
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b54
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
– year: 1983
  ident: b57
  article-title: Multiobjective Decision Making: Theory and Methodology
– volume: 15
  start-page: 361
  year: 2009
  end-page: 384
  ident: b3
  article-title: A multi-objective evolutionary algorithm using min-max strategy and sphere coordinate transformation
  publication-title: Intell. Autom. Soft Comput.
– reference: H. Ishibuchi, N. Tsukamoto, Y. Nojima, Evolutionary many-objective optimization: A short review, in: 2008 IEEE Congress on Evolutionary Computation, IEEE World Congress on Computational Intelligence, 2008, pp. 2419–2426.
– volume: 23
  start-page: 173
  year: 2019
  end-page: 187
  ident: b26
  article-title: Igd indicator-based evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 45
  year: 2014
  end-page: 76
  ident: b30
  article-title: HypE: AN algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
– start-page: 1
  year: 2021
  end-page: 14.
  ident: b58
  article-title: Automated design of multipass heuristics for resource-constrained job scheduling with self-competitive genetic programming
  publication-title: IEEE Trans. Cybern.
– reference: g.V. Cynthia A. Rodr, C.A.C. Coello, A new multi-objective evolutionary algorithm based on a performance assessment indicator, in: Conference on Genetic and Evolutionary Computation, 2012, pp. 505–512.
– volume: 18
  start-page: 481
  year: 2014
  end-page: 502
  ident: b56
  article-title: Quick hypervolume
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 30
  year: 1996
  end-page: 45
  ident: b45
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput. Sci. Inform.
– volume: 24
  start-page: 634
  year: 2020
  end-page: 649
  ident: b8
  article-title: A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
– year: 2001
  ident: b1
  article-title: Multi-Objective Optimization using Evolutionary Algorithms
– volume: 8
  start-page: 631
  year: 2006
  end-page: 657
  ident: b43
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
– volume: 22
  start-page: 211
  year: 2018
  end-page: 225
  ident: b35
  article-title: Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 825
  year: 2002
  end-page: 830
  ident: b49
  article-title: Scalable multi-objective optimization test problems
  publication-title: Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02, Honolulu, HI, USA, USA, 12-17 May 2002, Vol. 1
– start-page: 283
  year: 2001
  end-page: 290
  ident: b6
  article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization
  publication-title: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation
– volume: 23
  start-page: 748
  year: 2019
  end-page: 761
  ident: b23
  article-title: A new two-stage evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 138
  year: 2020
  ident: b12
  article-title: Many-objective optimization with improved shuffled frog leaping algorithm for inter-basin water transfers
  publication-title: Adv. Water Resour.
– volume: 22
  start-page: 609
  year: 2018
  end-page: 622
  ident: b25
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
– volume: 491
  start-page: 204
  year: 2019
  end-page: 222
  ident: b36
  article-title: An adaptive decomposition-based evolutionary algorithm for many-objective optimization
  publication-title: Inform. Sci.
– reference: H.-L. Liu, F.-q. Gu, Y.-m. Cheung, T-moea/d: Moea/d with objective transform in multi-objective problems, in: 2010 International Conference of Information Science and Management Engineering, Vol. 2, 2010, pp. 282–285.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b39
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– volume: 22
  start-page: 851
  year: 2018
  end-page: 865
  ident: b7
  article-title: Coevolutionary multiobjective evolutionary algorithms: Survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
– volume: 125
  year: 2020
  ident: b9
  article-title: ManQ: Many-Objective optimization-based automatic query reduction for IR-based bug localization
  publication-title: Inf. Softw. Technol.
– volume: 20
  start-page: 773
  year: 2016
  end-page: 791
  ident: b24
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 19
  start-page: 694
  year: 2015
  end-page: 716
  ident: b33
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 49
  start-page: 2073
  year: 2019
  end-page: 2084
  ident: b34
  article-title: A scalar projection and angle-based evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Cybern.
– ident: 10.1016/j.knosys.2022.108738_b2
  doi: 10.1109/ISME.2010.274
– volume: 23
  start-page: 331
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2022.108738_b18
  article-title: A strengthened dominance relation considering convergence and diversity for evolutionary many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2866854
– start-page: 5
  year: 2007
  ident: 10.1016/j.knosys.2022.108738_b15
  article-title: Controlling dominance area of solutions and its impact on the performance of MOEAs
– volume: 49
  start-page: 2073
  issue: 6
  year: 2019
  ident: 10.1016/j.knosys.2022.108738_b34
  article-title: A scalar projection and angle-based evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2819360
– ident: 10.1016/j.knosys.2022.108738_b5
– volume: 12
  start-page: 73
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2022.108738_b48
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– start-page: 351
  year: 1999
  ident: 10.1016/j.knosys.2022.108738_b55
  article-title: Multiobjective evolutionary algorithm test suites
– volume: 15
  start-page: 361
  issue: 3
  year: 2009
  ident: 10.1016/j.knosys.2022.108738_b3
  article-title: A multi-objective evolutionary algorithm using min-max strategy and sphere coordinate transformation
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.1080/10798587.2009.10643036
– volume: 17
  start-page: 721
  issue: 5
  year: 2013
  ident: 10.1016/j.knosys.2022.108738_b47
  article-title: A grid-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2012.2227145
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  ident: 10.1016/j.knosys.2022.108738_b54
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.knosys.2022.108738_b4
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 21
  start-page: 329
  issue: 3
  year: 2017
  ident: 10.1016/j.knosys.2022.108738_b32
  article-title: A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2592479
– volume: 10
  start-page: 477
  issue: 5
  year: 2006
  ident: 10.1016/j.knosys.2022.108738_b50
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 20
  start-page: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.knosys.2022.108738_b40
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2420112
– volume: 8
  start-page: 631
  issue: 3
  year: 2006
  ident: 10.1016/j.knosys.2022.108738_b43
  article-title: Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 540
  start-page: 435
  year: 2020
  ident: 10.1016/j.knosys.2022.108738_b38
  article-title: A decomposition-based many-objective ant colony optimization algorithm with adaptive reference points
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.06.028
– volume: 19
  start-page: 45
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2022.108738_b30
  article-title: HypE: AN algorithm for fast hypervolume-based many-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00009
– volume: 10
  start-page: 263
  issue: 3
  year: 2002
  ident: 10.1016/j.knosys.2022.108738_b21
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/106365602760234108
– volume: 125
  year: 2020
  ident: 10.1016/j.knosys.2022.108738_b9
  article-title: ManQ: Many-Objective optimization-based automatic query reduction for IR-based bug localization
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/j.infsof.2020.106334
– volume: 182
  start-page: 220
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2022.108738_b28
  article-title: Achieving balance between proximity and diversity in multi-objective evolutionary algorithm
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.08.027
– volume: 20
  start-page: 755
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2022.108738_b10
  article-title: Objective extraction for many-objective optimization problems: Algorithm and test problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519758
– year: 2017
  ident: 10.1016/j.knosys.2022.108738_b52
– volume: 23
  start-page: 173
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2022.108738_b26
  article-title: Igd indicator-based evolutionary algorithm for many-objective optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2791283
– ident: 10.1016/j.knosys.2022.108738_b14
  doi: 10.1109/CEC.2008.4631121
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.knosys.2022.108738_b39
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 22
  start-page: 211
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2022.108738_b35
  article-title: Self-organizing map-based weight design for decomposition-based many-objective evolutionary algorithm
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2695579
– year: 2017
  ident: 10.1016/j.knosys.2022.108738_b13
– volume: 21
  start-page: 169
  issue: 2
  year: 2017
  ident: 10.1016/j.knosys.2022.108738_b42
  article-title: Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2587749
– volume: 23
  start-page: 748
  issue: 5
  year: 2019
  ident: 10.1016/j.knosys.2022.108738_b23
  article-title: A new two-stage evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2882166
– volume: 24
  start-page: 634
  issue: 4
  year: 2020
  ident: 10.1016/j.knosys.2022.108738_b8
  article-title: A survey of weight vector adjustment methods for decomposition-based multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2020.2978158
– volume: 34
  start-page: 50
  year: 2017
  ident: 10.1016/j.knosys.2022.108738_b31
  article-title: A fast hypervolume driven selection mechanism for many-objective optimisation problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.12.002
– volume: 9
  start-page: 115
  issue: 3
  year: 1994
  ident: 10.1016/j.knosys.2022.108738_b44
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– start-page: 283
  year: 2001
  ident: 10.1016/j.knosys.2022.108738_b6
  article-title: PESA-II: Region-based selection in evolutionary multiobjective optimization
– start-page: 825
  year: 2002
  ident: 10.1016/j.knosys.2022.108738_b49
  article-title: Scalable multi-objective optimization test problems
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.108738_b58
  article-title: Automated design of multipass heuristics for resource-constrained job scheduling with self-competitive genetic programming
  publication-title: IEEE Trans. Cybern.
– volume: 3242
  start-page: 832
  year: 2004
  ident: 10.1016/j.knosys.2022.108738_b27
  article-title: Indicator-based selection in multiobjective search
  publication-title: Lecture Notes in Comput. Sci.
  doi: 10.1007/978-3-540-30217-9_84
– volume: 26
  start-page: 30
  issue: 4
  year: 1996
  ident: 10.1016/j.knosys.2022.108738_b45
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput. Sci. Inform.
– ident: 10.1016/j.knosys.2022.108738_b53
  doi: 10.1109/CEC.2013.6557868
– volume: 19
  start-page: 694
  issue: 5
  year: 2015
  ident: 10.1016/j.knosys.2022.108738_b33
  article-title: An evolutionary many-objective optimization algorithm based on dominance and decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2373386
– volume: 48
  start-page: 1191
  issue: 7
  year: 2018
  ident: 10.1016/j.knosys.2022.108738_b41
  article-title: A new decomposition-based NSGA-II for many-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybern. A
  doi: 10.1109/TSMC.2017.2654301
– year: 1983
  ident: 10.1016/j.knosys.2022.108738_b57
– volume: 138
  year: 2020
  ident: 10.1016/j.knosys.2022.108738_b12
  article-title: Many-objective optimization with improved shuffled frog leaping algorithm for inter-basin water transfers
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103531
– volume: 96
  year: 2020
  ident: 10.1016/j.knosys.2022.108738_b20
  article-title: A many-objective particle swarm optimization with grid dominance ranking and clustering
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106661
– volume: 491
  start-page: 204
  year: 2019
  ident: 10.1016/j.knosys.2022.108738_b36
  article-title: An adaptive decomposition-based evolutionary algorithm for many-objective optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.03.062
– start-page: 231
  year: 2013
  ident: 10.1016/j.knosys.2022.108738_b19
– ident: 10.1016/j.knosys.2022.108738_b46
  doi: 10.1145/2576768.2598342
– volume: 20
  start-page: 645
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2022.108738_b51
  article-title: Pareto or non-Pareto: Bi-criterion evolution in multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504730
– volume: 22
  start-page: 609
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2022.108738_b25
  article-title: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2749619
– ident: 10.1016/j.knosys.2022.108738_b29
  doi: 10.1145/2330163.2330235
– volume: 38
  start-page: 1402
  issue: 5
  year: 2008
  ident: 10.1016/j.knosys.2022.108738_b22
  article-title: A new evolutionary algorithm for solving many-objective optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2008.926329
– start-page: 245
  year: 2013
  ident: 10.1016/j.knosys.2022.108738_b11
– volume: 194
  year: 2020
  ident: 10.1016/j.knosys.2022.108738_b37
  article-title: A region division based decomposition approach for evolutionary many-objective optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105518
– volume: 18
  start-page: 481
  issue: 4
  year: 2014
  ident: 10.1016/j.knosys.2022.108738_b56
  article-title: Quick hypervolume
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281525
– volume: 245
  start-page: 191
  year: 2014
  ident: 10.1016/j.knosys.2022.108738_b17
  article-title: A new evolutionary algorithm based on contraction method for many-objective optimization problems
  publication-title: Appl. Math. Comput.
– start-page: 957
  year: 2001
  ident: 10.1016/j.knosys.2022.108738_b16
  article-title: Failure of Pareto-based MOEAs: Does non-dominated really mean near to optimal?
– volume: 22
  start-page: 851
  issue: 6
  year: 2018
  ident: 10.1016/j.knosys.2022.108738_b7
  article-title: Coevolutionary multiobjective evolutionary algorithms: Survey of the state-of-the-art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2767023
– volume: 20
  start-page: 773
  issue: 5
  year: 2016
  ident: 10.1016/j.knosys.2022.108738_b24
  article-title: A reference vector guided evolutionary algorithm for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2519378
– year: 2001
  ident: 10.1016/j.knosys.2022.108738_b1
SSID ssj0002218
Score 2.4264657
Snippet Balancing convergence and diversity is a key issue for many-objective optimization problems (MaOPs), which is a great challenge to the classical Pareto-based...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108738
SubjectTerms Algorithms
C[formula omitted]-dominance method
Convergence
Dominance
Estimation
Evolutionary algorithm
Evolutionary algorithms
Genetic algorithms
Many-objective optimization
Multiple objective analysis
Nonlinear analysis
Objectives
Optimization
Parameters
Pareto optimum
Selection pressure
Solution estimation
Title A Cα-dominance-based solution estimation evolutionary algorithm for many-objective optimization
URI https://dx.doi.org/10.1016/j.knosys.2022.108738
https://www.proquest.com/docview/2686211761
Volume 248
WOSCitedRecordID wos000799850400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZg48CFb8RgIB_YKXKVxHFsH0tVxIc0cRhSd4pix2bt1qTqmml_iz-y3zQ7ttOuE4wduESVk9hW3yfP--bN-wHARx3nSqY8QSLNCcqUxEgkpUJcVJoQInSuRNdsgh4essmE__BfTM-7dgK0rtnlJV_8V1GbMSNsmzp7D3H3k5oB89sI3RyN2M3xnwQ_jEbRwWh88CmJUNV0kS5SIautrIfcrRzZ2houaTFSF37Qxs-VZ7-a5XR1Mu_CD-eGKVAjZo4Uo8bQy9znbW4atd-DXy6sslEF3cb6TFuX_1GftGsl4P3Ux-0iKM8uyEB58jmetmgeznivRNpFsHruC-7FGNHYF5P1TJu6opqeK5OYUVfZ5RaNO4_CbHBaN2bLA7vAYH35zarZW9qsjzEM4Wuzws1S2FkKN8tDsJtSwg0L7g6_jiffet2dpp1HuN99SLbsIgJv7-ZPxsyWWu9slaNn4Il_yYBDB47n4IGqX4CnoYEH9Hz-EoghHMGr33AbJzDgBK5xAjdxAnucQIMTeBMncBMnr8DPz-Oj0Rfkm24gaWzjFapoLrgkSsdEiwyXxgKuhCYal1iLWGRKW38Kw5lgLCNKcqlpQnVZKpUKLDh-DXbqplZvAIwrrJimrCSMZ7piXCqthLFPY1yZt1SyB3D49wrpK9Lbxihnxd9ktwdQf9fCVWS543oaBFN4q9JZi4VB2x137gc5Fv4BN-dtSlWS0Dx5e8-NvAOP10_KPthZLVv1HjySF6vp-fKDR-I1TaGrGg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+C+%CE%B1+-dominance-based+solution+estimation+evolutionary+algorithm+for+many-objective+optimization&rft.jtitle=Knowledge-based+systems&rft.au=Liu%2C+Junhua&rft.au=Wang%2C+Yuping&rft.au=Cheung%2C+Yiu-ming&rft.date=2022-07-19&rft.issn=0950-7051&rft.volume=248&rft.spage=108738&rft_id=info:doi/10.1016%2Fj.knosys.2022.108738&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_knosys_2022_108738
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon