Improved Approximation Algorithms for Index Coding
The index coding problem is concerned with broadcasting encoded information to a collection of receivers in a way that enables each receiver to discover its required data based on its side information, which comprises the data required by some of the others. Given the side information map, represent...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 70; no. 11; pp. 8266 - 8275 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.11.2024
|
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The index coding problem is concerned with broadcasting encoded information to a collection of receivers in a way that enables each receiver to discover its required data based on its side information, which comprises the data required by some of the others. Given the side information map, represented by a graph in the symmetric case and by a digraph otherwise, the goal is to devise a coding scheme of minimum broadcast length. We present a general method for developing efficient algorithms for approximating the index coding rate for prescribed families of instances. As applications, we obtain polynomial-time algorithms that approximate the index coding rate of graphs and digraphs on n vertices to within factors of <inline-formula> <tex-math notation="LaTeX">O(n/\log ^{2} n) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">O(n/\log n) </tex-math></inline-formula> respectively. This improves on the approximation factors of <inline-formula> <tex-math notation="LaTeX">O(n/\log n) </tex-math></inline-formula> for graphs and <inline-formula> <tex-math notation="LaTeX">O(n \cdot \log \log n/\log n) </tex-math></inline-formula> for digraphs achieved by Blasiak, Kleinberg, and Lubetzky. For the family of quasi-line graphs, we exhibit a polynomial-time algorithm that approximates the index coding rate to within a factor of 2. This improves on the approximation factor of <inline-formula> <tex-math notation="LaTeX">O(n^{2/3}) </tex-math></inline-formula> achieved by Arbabjolfaei and Kim for graphs on n vertices taken from certain sub-families of quasi-line graphs. Our approach is applicable for approximating a variety of additional graph and digraph quantities to within the same approximation factors. Specifically, it captures every graph quantity sandwiched between the independence number and the clique cover number and every digraph quantity sandwiched between the maximum size of an acyclic induced sub-digraph and the directed clique cover number. |
|---|---|
| AbstractList | The index coding problem is concerned with broadcasting encoded information to a collection of receivers in a way that enables each receiver to discover its required data based on its side information, which comprises the data required by some of the others. Given the side information map, represented by a graph in the symmetric case and by a digraph otherwise, the goal is to devise a coding scheme of minimum broadcast length. We present a general method for developing efficient algorithms for approximating the index coding rate for prescribed families of instances. As applications, we obtain polynomial-time algorithms that approximate the index coding rate of graphs and digraphs on n vertices to within factors of <inline-formula> <tex-math notation="LaTeX">O(n/\log ^{2} n) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">O(n/\log n) </tex-math></inline-formula> respectively. This improves on the approximation factors of <inline-formula> <tex-math notation="LaTeX">O(n/\log n) </tex-math></inline-formula> for graphs and <inline-formula> <tex-math notation="LaTeX">O(n \cdot \log \log n/\log n) </tex-math></inline-formula> for digraphs achieved by Blasiak, Kleinberg, and Lubetzky. For the family of quasi-line graphs, we exhibit a polynomial-time algorithm that approximates the index coding rate to within a factor of 2. This improves on the approximation factor of <inline-formula> <tex-math notation="LaTeX">O(n^{2/3}) </tex-math></inline-formula> achieved by Arbabjolfaei and Kim for graphs on n vertices taken from certain sub-families of quasi-line graphs. Our approach is applicable for approximating a variety of additional graph and digraph quantities to within the same approximation factors. Specifically, it captures every graph quantity sandwiched between the independence number and the clique cover number and every digraph quantity sandwiched between the maximum size of an acyclic induced sub-digraph and the directed clique cover number. |
| Author | Haviv, Ishay Chawin, Dror |
| Author_xml | – sequence: 1 givenname: Dror surname: Chawin fullname: Chawin, Dror organization: School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel – sequence: 2 givenname: Ishay orcidid: 0000-0002-2903-076X surname: Haviv fullname: Haviv, Ishay email: ishayhav@mta.ac.il organization: School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel |
| BookMark | eNp9kLFOwzAQhi1UJNLCzsCQF0iwnYudjFEFNFIlljBHjnMuRkkcOREqb09KOyAGprsbvrv7_jVZDW5AQu4ZjRmj-WNVVjGnHOIEQFBKr0jA0lRGuUhhRQJKWRblANkNWU_TxzJCynhAeNmP3n1iGxbj0hxtr2brhrDoDs7b-b2fQuN8WA4tHsOta-1wuCXXRnUT3l3qhrw9P1XbXbR_fSm3xT7SXMAcNQYUZ9A0KjPYthJQQp4r1IJqzBWkqm2EQUORS20yqRLQWjLZSJ0IzDDZEHreq72bJo-mHv3ynv-qGa1PzvXiXJ-c64vzgog_iLbzj9Dsle3-Ax_OoEXEX3dEsmSWJt_JO2c- |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1016_j_jcta_2025_106059 |
| Cites_doi | 10.1016/j.dam.2014.03.016 10.1109/TIT.2010.2094910 10.1109/TIT.2013.2264472 10.1137/S089548010240415X 10.4064/cm-16-1-253-256 10.1016/0097-3165(92)90100-9 10.1017/CBO9780511987045 10.1002/0471722154 10.1016/0020-0190(93)90246-6 10.1109/TIT.2006.874540 10.1007/BF01994876 10.1109/FOCS.2008.41 10.1007/978-0-8176-4842-8_3 10.4086/toc.2007.v003a006 10.1109/TIT.1956.1056798 10.1109/ISIT.2016.7541680 10.1017/cbo9780511734885.008 10.1016/0097-3165(78)90022-5 10.1002/jgt.22689 10.1109/TIT.2010.2103753 10.1137/23M155760X 10.1109/TIT.2023.3347296 10.1561/0100000094 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TIT.2024.3446000 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 8275 |
| ExternalDocumentID | 10_1109_TIT_2024_3446000 10639445 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Israel Science Foundation grantid: 1218/20 funderid: 10.13039/501100003977 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION |
| ID | FETCH-LOGICAL-c264t-bf4a214bba8fedd74e7499aec60ce9a45adb6fef0e27cf87a34cc717b7c36e8e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001343340800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Sat Nov 29 03:31:52 EST 2025 Tue Nov 18 22:28:51 EST 2025 Wed Aug 27 02:14:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c264t-bf4a214bba8fedd74e7499aec60ce9a45adb6fef0e27cf87a34cc717b7c36e8e3 |
| ORCID | 0000-0002-2903-076X |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TIT_2024_3446000 crossref_citationtrail_10_1109_TIT_2024_3446000 ieee_primary_10639445 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 Haemers (ref19) 1978; 25 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref18 Erdõs (ref16) 1964; 9 ref24 Awasthi (ref5) ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 |
| References_xml | – ident: ref7 doi: 10.1016/j.dam.2014.03.016 – ident: ref22 doi: 10.1109/TIT.2010.2094910 – ident: ref9 doi: 10.1109/TIT.2013.2264472 – volume: 25 start-page: 267 volume-title: Colloquia Mathematica Societatis János Bolyai year: 1978 ident: ref19 article-title: An upper bound for the Shannon capacity of a graph – ident: ref18 doi: 10.1137/S089548010240415X – ident: ref15 doi: 10.4064/cm-16-1-253-256 – ident: ref21 doi: 10.1016/0097-3165(92)90100-9 – ident: ref25 doi: 10.1017/CBO9780511987045 – ident: ref2 doi: 10.1002/0471722154 – volume: 9 start-page: 125 year: 1964 ident: ref16 article-title: On the representation of directed graphs as unions of orderings publication-title: Magyar Tud. Akad. Mat. Kutató Int. Közl. – ident: ref20 doi: 10.1016/0020-0190(93)90246-6 – ident: ref8 doi: 10.1109/TIT.2006.874540 – ident: ref10 doi: 10.1007/BF01994876 – ident: ref1 doi: 10.1109/FOCS.2008.41 – ident: ref17 doi: 10.1007/978-0-8176-4842-8_3 – ident: ref26 doi: 10.4086/toc.2007.v003a006 – ident: ref24 doi: 10.1109/TIT.1956.1056798 – ident: ref3 doi: 10.1109/ISIT.2016.7541680 – ident: ref13 doi: 10.1017/cbo9780511734885.008 – ident: ref23 doi: 10.1016/0097-3165(78)90022-5 – ident: ref14 doi: 10.1002/jgt.22689 – ident: ref6 doi: 10.1109/TIT.2010.2103753 – ident: ref11 doi: 10.1137/23M155760X – ident: ref12 doi: 10.1109/TIT.2023.3347296 – ident: ref4 doi: 10.1561/0100000094 – start-page: 754 volume-title: Proc. 31st Int. Symp. Comput. Geometry ident: ref5 article-title: The hardness of approximation of Euclidean k-means |
| SSID | ssj0014512 |
| Score | 2.4748435 |
| Snippet | The index coding problem is concerned with broadcasting encoded information to a collection of receivers in a way that enables each receiver to discover its... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 8266 |
| SubjectTerms | Approximation algorithms clique cover Codes Encoding Index coding Indexes Receivers Size measurement Upper bound |
| Title | Improved Approximation Algorithms for Index Coding |
| URI | https://ieeexplore.ieee.org/document/10639445 |
| Volume | 70 |
| WOSCitedRecordID | wos001343340800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCBQimifMkDC0PafDixM1YVFV0qhiJ1ixz7DJVKg9oU8fM5x2mVBSS2KLKV6MWnu2fnvSPkgSNbw2WkvRAUeEwr3xMSMK5yick-D4xQumo2wadTMZ-nL7VYvdLCAED18xn07WV1lq8LtbVbZRjhidVxxofkkPPEibX2RwYsDpw1eIBPQtKxO5P008FsMkMmGLJ-hOTHt2K2Rg5qNFWpcsq4_c-3OSOndfFIh-5rn5MDWHVIe9eYgdZx2iEnDZfBCxK6jQPQdGgNxL8XTq1Ih8u3Yr0o3z82FCtXOrG-iXRU2GTWJa_jp9no2atbJXgKK5rSyw2TYcDyXAoDWnMGHKmMBJX4ClLJYmnldmB8CLkygsuIKYVMLucqSkBAdElaq2IFV4SK1EAIEAdJqDC7GyETzPom5xrpmvSTHhnswMtU7SNu21kss4pP-GmGcGcW7qyGu0ce9zM-nYfGH2O7FunGOAfy9S_3b8ixne7UgbekVa63cEeO1Fe52KzvqxXyA9H5uZc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0omqgHUcSInz148VBoy7bdHgmRQETioSbcmu12VkmQGijGn-9sW0gvmnhrmu1HXnfy9u30zQDc-6TWaBolpoMSTZZIy-QCKa5iQWQf24rLJG824U8mfDoNXkqzeu6FQcT85zNs68M8l5-kcq23yijCPe3jdHdhz2XMsQq71jZpwFy7KA5u07NIdmyyklbQCUchaUGHtbskfyxtZ6uwUKWtSs4qg_o_3-cEjsvlo9Ervvcp7OCiAfVNawajjNQGHFXqDJ6BU2wdYGL0dAnx71nhVzR687d0OcveP1YGrV2Nka6caPRTTWdNeB08hv2hWTZLMCWtaTIzVkw4NotjwRUmic_QJzEjUHqWxEAwV2jDHSoLHV8q7osuk5K0XOzLroccu-dQW6QLvACDBwodRNf2HEn8rrjwiPdV7Cck2ITltaCzAS-SZSVx3dBiHuWKwgoigjvScEcl3C142F7xWVTR-GNsUyNdGVeAfPnL-Ts4GIbP42g8mjxdwaG-VeEVvIZatlzjDezLr2y2Wt7ms-UHqCm83g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Approximation+Algorithms+for+Index+Coding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Chawin%2C+Dror&rft.au=Haviv%2C+Ishay&rft.date=2024-11-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=70&rft.issue=11&rft.spage=8266&rft.epage=8275&rft_id=info:doi/10.1109%2FTIT.2024.3446000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2024_3446000 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |