Improved Approximation Algorithms for Index Coding

The index coding problem is concerned with broadcasting encoded information to a collection of receivers in a way that enables each receiver to discover its required data based on its side information, which comprises the data required by some of the others. Given the side information map, represent...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 70; no. 11; pp. 8266 - 8275
Main Authors: Chawin, Dror, Haviv, Ishay
Format: Journal Article
Language:English
Published: IEEE 01.11.2024
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The index coding problem is concerned with broadcasting encoded information to a collection of receivers in a way that enables each receiver to discover its required data based on its side information, which comprises the data required by some of the others. Given the side information map, represented by a graph in the symmetric case and by a digraph otherwise, the goal is to devise a coding scheme of minimum broadcast length. We present a general method for developing efficient algorithms for approximating the index coding rate for prescribed families of instances. As applications, we obtain polynomial-time algorithms that approximate the index coding rate of graphs and digraphs on n vertices to within factors of <inline-formula> <tex-math notation="LaTeX">O(n/\log ^{2} n) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">O(n/\log n) </tex-math></inline-formula> respectively. This improves on the approximation factors of <inline-formula> <tex-math notation="LaTeX">O(n/\log n) </tex-math></inline-formula> for graphs and <inline-formula> <tex-math notation="LaTeX">O(n \cdot \log \log n/\log n) </tex-math></inline-formula> for digraphs achieved by Blasiak, Kleinberg, and Lubetzky. For the family of quasi-line graphs, we exhibit a polynomial-time algorithm that approximates the index coding rate to within a factor of 2. This improves on the approximation factor of <inline-formula> <tex-math notation="LaTeX">O(n^{2/3}) </tex-math></inline-formula> achieved by Arbabjolfaei and Kim for graphs on n vertices taken from certain sub-families of quasi-line graphs. Our approach is applicable for approximating a variety of additional graph and digraph quantities to within the same approximation factors. Specifically, it captures every graph quantity sandwiched between the independence number and the clique cover number and every digraph quantity sandwiched between the maximum size of an acyclic induced sub-digraph and the directed clique cover number.
AbstractList The index coding problem is concerned with broadcasting encoded information to a collection of receivers in a way that enables each receiver to discover its required data based on its side information, which comprises the data required by some of the others. Given the side information map, represented by a graph in the symmetric case and by a digraph otherwise, the goal is to devise a coding scheme of minimum broadcast length. We present a general method for developing efficient algorithms for approximating the index coding rate for prescribed families of instances. As applications, we obtain polynomial-time algorithms that approximate the index coding rate of graphs and digraphs on n vertices to within factors of <inline-formula> <tex-math notation="LaTeX">O(n/\log ^{2} n) </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">O(n/\log n) </tex-math></inline-formula> respectively. This improves on the approximation factors of <inline-formula> <tex-math notation="LaTeX">O(n/\log n) </tex-math></inline-formula> for graphs and <inline-formula> <tex-math notation="LaTeX">O(n \cdot \log \log n/\log n) </tex-math></inline-formula> for digraphs achieved by Blasiak, Kleinberg, and Lubetzky. For the family of quasi-line graphs, we exhibit a polynomial-time algorithm that approximates the index coding rate to within a factor of 2. This improves on the approximation factor of <inline-formula> <tex-math notation="LaTeX">O(n^{2/3}) </tex-math></inline-formula> achieved by Arbabjolfaei and Kim for graphs on n vertices taken from certain sub-families of quasi-line graphs. Our approach is applicable for approximating a variety of additional graph and digraph quantities to within the same approximation factors. Specifically, it captures every graph quantity sandwiched between the independence number and the clique cover number and every digraph quantity sandwiched between the maximum size of an acyclic induced sub-digraph and the directed clique cover number.
Author Haviv, Ishay
Chawin, Dror
Author_xml – sequence: 1
  givenname: Dror
  surname: Chawin
  fullname: Chawin, Dror
  organization: School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel
– sequence: 2
  givenname: Ishay
  orcidid: 0000-0002-2903-076X
  surname: Haviv
  fullname: Haviv, Ishay
  email: ishayhav@mta.ac.il
  organization: School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv, Israel
BookMark eNp9kLFOwzAQhi1UJNLCzsCQF0iwnYudjFEFNFIlljBHjnMuRkkcOREqb09KOyAGprsbvrv7_jVZDW5AQu4ZjRmj-WNVVjGnHOIEQFBKr0jA0lRGuUhhRQJKWRblANkNWU_TxzJCynhAeNmP3n1iGxbj0hxtr2brhrDoDs7b-b2fQuN8WA4tHsOta-1wuCXXRnUT3l3qhrw9P1XbXbR_fSm3xT7SXMAcNQYUZ9A0KjPYthJQQp4r1IJqzBWkqm2EQUORS20yqRLQWjLZSJ0IzDDZEHreq72bJo-mHv3ynv-qGa1PzvXiXJ-c64vzgog_iLbzj9Dsle3-Ax_OoEXEX3dEsmSWJt_JO2c-
CODEN IETTAW
CitedBy_id crossref_primary_10_1016_j_jcta_2025_106059
Cites_doi 10.1016/j.dam.2014.03.016
10.1109/TIT.2010.2094910
10.1109/TIT.2013.2264472
10.1137/S089548010240415X
10.4064/cm-16-1-253-256
10.1016/0097-3165(92)90100-9
10.1017/CBO9780511987045
10.1002/0471722154
10.1016/0020-0190(93)90246-6
10.1109/TIT.2006.874540
10.1007/BF01994876
10.1109/FOCS.2008.41
10.1007/978-0-8176-4842-8_3
10.4086/toc.2007.v003a006
10.1109/TIT.1956.1056798
10.1109/ISIT.2016.7541680
10.1017/cbo9780511734885.008
10.1016/0097-3165(78)90022-5
10.1002/jgt.22689
10.1109/TIT.2010.2103753
10.1137/23M155760X
10.1109/TIT.2023.3347296
10.1561/0100000094
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2024.3446000
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 8275
ExternalDocumentID 10_1109_TIT_2024_3446000
10639445
Genre orig-research
GrantInformation_xml – fundername: Israel Science Foundation
  grantid: 1218/20
  funderid: 10.13039/501100003977
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c264t-bf4a214bba8fedd74e7499aec60ce9a45adb6fef0e27cf87a34cc717b7c36e8e3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001343340800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sat Nov 29 03:31:52 EST 2025
Tue Nov 18 22:28:51 EST 2025
Wed Aug 27 02:14:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-bf4a214bba8fedd74e7499aec60ce9a45adb6fef0e27cf87a34cc717b7c36e8e3
ORCID 0000-0002-2903-076X
PageCount 10
ParticipantIDs crossref_primary_10_1109_TIT_2024_3446000
crossref_citationtrail_10_1109_TIT_2024_3446000
ieee_primary_10639445
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
Haemers (ref19) 1978; 25
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref18
Erdõs (ref16) 1964; 9
ref24
Awasthi (ref5)
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref7
  doi: 10.1016/j.dam.2014.03.016
– ident: ref22
  doi: 10.1109/TIT.2010.2094910
– ident: ref9
  doi: 10.1109/TIT.2013.2264472
– volume: 25
  start-page: 267
  volume-title: Colloquia Mathematica Societatis János Bolyai
  year: 1978
  ident: ref19
  article-title: An upper bound for the Shannon capacity of a graph
– ident: ref18
  doi: 10.1137/S089548010240415X
– ident: ref15
  doi: 10.4064/cm-16-1-253-256
– ident: ref21
  doi: 10.1016/0097-3165(92)90100-9
– ident: ref25
  doi: 10.1017/CBO9780511987045
– ident: ref2
  doi: 10.1002/0471722154
– volume: 9
  start-page: 125
  year: 1964
  ident: ref16
  article-title: On the representation of directed graphs as unions of orderings
  publication-title: Magyar Tud. Akad. Mat. Kutató Int. Közl.
– ident: ref20
  doi: 10.1016/0020-0190(93)90246-6
– ident: ref8
  doi: 10.1109/TIT.2006.874540
– ident: ref10
  doi: 10.1007/BF01994876
– ident: ref1
  doi: 10.1109/FOCS.2008.41
– ident: ref17
  doi: 10.1007/978-0-8176-4842-8_3
– ident: ref26
  doi: 10.4086/toc.2007.v003a006
– ident: ref24
  doi: 10.1109/TIT.1956.1056798
– ident: ref3
  doi: 10.1109/ISIT.2016.7541680
– ident: ref13
  doi: 10.1017/cbo9780511734885.008
– ident: ref23
  doi: 10.1016/0097-3165(78)90022-5
– ident: ref14
  doi: 10.1002/jgt.22689
– ident: ref6
  doi: 10.1109/TIT.2010.2103753
– ident: ref11
  doi: 10.1137/23M155760X
– ident: ref12
  doi: 10.1109/TIT.2023.3347296
– ident: ref4
  doi: 10.1561/0100000094
– start-page: 754
  volume-title: Proc. 31st Int. Symp. Comput. Geometry
  ident: ref5
  article-title: The hardness of approximation of Euclidean k-means
SSID ssj0014512
Score 2.4748435
Snippet The index coding problem is concerned with broadcasting encoded information to a collection of receivers in a way that enables each receiver to discover its...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 8266
SubjectTerms Approximation algorithms
clique cover
Codes
Encoding
Index coding
Indexes
Receivers
Size measurement
Upper bound
Title Improved Approximation Algorithms for Index Coding
URI https://ieeexplore.ieee.org/document/10639445
Volume 70
WOSCitedRecordID wos001343340800028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCBQimifMkDC0PafDixM1YVFV0qhiJ1ixz7DJVKg9oU8fM5x2mVBSS2KLKV6MWnu2fnvSPkgSNbw2WkvRAUeEwr3xMSMK5yick-D4xQumo2wadTMZ-nL7VYvdLCAED18xn07WV1lq8LtbVbZRjhidVxxofkkPPEibX2RwYsDpw1eIBPQtKxO5P008FsMkMmGLJ-hOTHt2K2Rg5qNFWpcsq4_c-3OSOndfFIh-5rn5MDWHVIe9eYgdZx2iEnDZfBCxK6jQPQdGgNxL8XTq1Ih8u3Yr0o3z82FCtXOrG-iXRU2GTWJa_jp9no2atbJXgKK5rSyw2TYcDyXAoDWnMGHKmMBJX4ClLJYmnldmB8CLkygsuIKYVMLucqSkBAdElaq2IFV4SK1EAIEAdJqDC7GyETzPom5xrpmvSTHhnswMtU7SNu21kss4pP-GmGcGcW7qyGu0ce9zM-nYfGH2O7FunGOAfy9S_3b8ixne7UgbekVa63cEeO1Fe52KzvqxXyA9H5uZc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEJ0omqgHUcSInz148VBoy7bdHgmRQETioSbcmu12VkmQGijGn-9sW0gvmnhrmu1HXnfy9u30zQDc-6TWaBolpoMSTZZIy-QCKa5iQWQf24rLJG824U8mfDoNXkqzeu6FQcT85zNs68M8l5-kcq23yijCPe3jdHdhz2XMsQq71jZpwFy7KA5u07NIdmyyklbQCUchaUGHtbskfyxtZ6uwUKWtSs4qg_o_3-cEjsvlo9Ervvcp7OCiAfVNawajjNQGHFXqDJ6BU2wdYGL0dAnx71nhVzR687d0OcveP1YGrV2Nka6caPRTTWdNeB08hv2hWTZLMCWtaTIzVkw4NotjwRUmic_QJzEjUHqWxEAwV2jDHSoLHV8q7osuk5K0XOzLroccu-dQW6QLvACDBwodRNf2HEn8rrjwiPdV7Cck2ITltaCzAS-SZSVx3dBiHuWKwgoigjvScEcl3C142F7xWVTR-GNsUyNdGVeAfPnL-Ts4GIbP42g8mjxdwaG-VeEVvIZatlzjDezLr2y2Wt7ms-UHqCm83g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Approximation+Algorithms+for+Index+Coding&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Chawin%2C+Dror&rft.au=Haviv%2C+Ishay&rft.date=2024-11-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=70&rft.issue=11&rft.spage=8266&rft.epage=8275&rft_id=info:doi/10.1109%2FTIT.2024.3446000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2024_3446000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon