Dynamic Distributed and Parallel Machine Learning algorithms for big data mining processing
PurposeThis work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other distributed systems such as P2P networks, clusters, clouds computing or other technologies.Design/methodology/approachIn the age of Big Data, all compa...
Uloženo v:
| Vydáno v: | Data technologies and applications Ročník 56; číslo 4; s. 558 - 601 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bingley
Emerald Publishing Limited
23.08.2022
Emerald Group Publishing Limited |
| Témata: | |
| ISSN: | 2514-9288, 2514-9318 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | PurposeThis work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other distributed systems such as P2P networks, clusters, clouds computing or other technologies.Design/methodology/approachIn the age of Big Data, all companies want to benefit from large amounts of data. These data can help them understand their internal and external environment and anticipate associated phenomena, as the data turn into knowledge that can be used for prediction later. Thus, this knowledge becomes a great asset in companies' hands. This is precisely the objective of data mining. But with the production of a large amount of data and knowledge at a faster pace, the authors are now talking about Big Data mining. For this reason, the authors’ proposed works mainly aim at solving the problem of volume, veracity, validity and velocity when classifying Big Data using distributed and parallel processing techniques. So, the problem that the authors are raising in this work is how the authors can make machine learning algorithms work in a distributed and parallel way at the same time without losing the accuracy of classification results. To solve this problem, the authors propose a system called Dynamic Distributed and Parallel Machine Learning (DDPML) algorithms. To build it, the authors divided their work into two parts. In the first, the authors propose a distributed architecture that is controlled by Map-Reduce algorithm which in turn depends on random sampling technique. So, the distributed architecture that the authors designed is specially directed to handle big data processing that operates in a coherent and efficient manner with the sampling strategy proposed in this work. This architecture also helps the authors to actually verify the classification results obtained using the representative learning base (RLB). In the second part, the authors have extracted the representative learning base by sampling at two levels using the stratified random sampling method. This sampling method is also applied to extract the shared learning base (SLB) and the partial learning base for the first level (PLBL1) and the partial learning base for the second level (PLBL2). The experimental results show the efficiency of our solution that the authors provided without significant loss of the classification results. Thus, in practical terms, the system DDPML is generally dedicated to big data mining processing, and works effectively in distributed systems with a simple structure, such as client-server networks.FindingsThe authors got very satisfactory classification results.Originality/valueDDPML system is specially designed to smoothly handle big data mining classification. |
|---|---|
| AbstractList | PurposeThis work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other distributed systems such as P2P networks, clusters, clouds computing or other technologies.Design/methodology/approachIn the age of Big Data, all companies want to benefit from large amounts of data. These data can help them understand their internal and external environment and anticipate associated phenomena, as the data turn into knowledge that can be used for prediction later. Thus, this knowledge becomes a great asset in companies' hands. This is precisely the objective of data mining. But with the production of a large amount of data and knowledge at a faster pace, the authors are now talking about Big Data mining. For this reason, the authors’ proposed works mainly aim at solving the problem of volume, veracity, validity and velocity when classifying Big Data using distributed and parallel processing techniques. So, the problem that the authors are raising in this work is how the authors can make machine learning algorithms work in a distributed and parallel way at the same time without losing the accuracy of classification results. To solve this problem, the authors propose a system called Dynamic Distributed and Parallel Machine Learning (DDPML) algorithms. To build it, the authors divided their work into two parts. In the first, the authors propose a distributed architecture that is controlled by Map-Reduce algorithm which in turn depends on random sampling technique. So, the distributed architecture that the authors designed is specially directed to handle big data processing that operates in a coherent and efficient manner with the sampling strategy proposed in this work. This architecture also helps the authors to actually verify the classification results obtained using the representative learning base (RLB). In the second part, the authors have extracted the representative learning base by sampling at two levels using the stratified random sampling method. This sampling method is also applied to extract the shared learning base (SLB) and the partial learning base for the first level (PLBL1) and the partial learning base for the second level (PLBL2). The experimental results show the efficiency of our solution that the authors provided without significant loss of the classification results. Thus, in practical terms, the system DDPML is generally dedicated to big data mining processing, and works effectively in distributed systems with a simple structure, such as client-server networks.FindingsThe authors got very satisfactory classification results.Originality/valueDDPML system is specially designed to smoothly handle big data mining classification. Purpose>This work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other distributed systems such as P2P networks, clusters, clouds computing or other technologies.Design/methodology/approach>In the age of Big Data, all companies want to benefit from large amounts of data. These data can help them understand their internal and external environment and anticipate associated phenomena, as the data turn into knowledge that can be used for prediction later. Thus, this knowledge becomes a great asset in companies' hands. This is precisely the objective of data mining. But with the production of a large amount of data and knowledge at a faster pace, the authors are now talking about Big Data mining. For this reason, the authors’ proposed works mainly aim at solving the problem of volume, veracity, validity and velocity when classifying Big Data using distributed and parallel processing techniques. So, the problem that the authors are raising in this work is how the authors can make machine learning algorithms work in a distributed and parallel way at the same time without losing the accuracy of classification results. To solve this problem, the authors propose a system called Dynamic Distributed and Parallel Machine Learning (DDPML) algorithms. To build it, the authors divided their work into two parts. In the first, the authors propose a distributed architecture that is controlled by Map-Reduce algorithm which in turn depends on random sampling technique. So, the distributed architecture that the authors designed is specially directed to handle big data processing that operates in a coherent and efficient manner with the sampling strategy proposed in this work. This architecture also helps the authors to actually verify the classification results obtained using the representative learning base (RLB). In the second part, the authors have extracted the representative learning base by sampling at two levels using the stratified random sampling method. This sampling method is also applied to extract the shared learning base (SLB) and the partial learning base for the first level (PLBL1) and the partial learning base for the second level (PLBL2). The experimental results show the efficiency of our solution that the authors provided without significant loss of the classification results. Thus, in practical terms, the system DDPML is generally dedicated to big data mining processing, and works effectively in distributed systems with a simple structure, such as client-server networks.Findings>The authors got very satisfactory classification results.Originality/value>DDPML system is specially designed to smoothly handle big data mining classification. |
| Author | Djafri, Laouni |
| Author_xml | – sequence: 1 givenname: Laouni orcidid: 0000-0001-7403-9176 surname: Djafri fullname: Djafri, Laouni email: djaafri29tp@gmail.com |
| BookMark | eNptkDtPwzAUhS1UJErpzmiJOdTXsRNnrFpeUhEM3RgsJ75uXeVR7HTovyelMCAx3SPd85C-azJquxYJuQV2D8DUbLmeJyxLOOOQMJDpBRlzCSIpUlCjX82VuiLTGHeMMc5knio5Jh_LY2saX9Glj33w5aFHS01r6bsJpq6xpq-m2voW6QpNaH27oabedMH32yZS1wVa-g21pje08d_vfegqjHGQN-TSmTri9OdOyPrxYb14TlZvTy-L-SqpeCb6xLhSKCELCYVwxkrulLNWKkCX5wIqUwGCy8EiyxGLNDMKmChYKaWBFNMJuTvXDsufB4y93nWH0A6LmueQCcFzyQYXO7uq0MUY0Ol98I0JRw1MnyDqAaJmmT5B1CeIQ2R2jmCDAwz7X-IP9vQL6bB0aw |
| Cites_doi | 10.1007/s00134-017-5034-3 10.1016/j.procs.2015.07.250 10.1007/s13337-020-00610-1 10.1007/s10586-019-02921-5 10.2307/2529310 10.17700/jai.2016.7.1.266 10.1002/cpe.3813 10.1371/journal.pone.0239474 10.1016/j.compbiomed.2020.103795 10.1093/jssam/smaa037 10.1016/j.neucom.2015.08.112 10.3390/atmos11080870 10.2307/2345174 10.1016/j.jclepro.2017.04.172 10.15406/bbij.2017.05.00149 10.1177/0890334420906850 10.1007/978-3-319-08976-8_16 10.14257/ijseia.2015.9.5.03 10.1109/ACCESS.2020.3009328 10.1016/j.procs.2018.10.156 10.1016/j.jksuci.2017.06.001 10.1136/eb-2014-101747 10.1038/s41598-018-37741-x 10.4103/IJPSYM.IJPSYM_504_19 10.1016/j.future.2017.08.011 10.21037/jtd.2017.05.75 10.1108/DTA-08-2019-0146 10.1101/2020.02.27.20028027 10.1016/j.jksuci.2017.12.007 10.2307/23042796 10.1109/CSCI.2014.140 10.1109/ACCESS.2020.2988120 10.1158/1055-9965.EPI-18-0797 10.1007/s10994-019-05800-7 10.4103/00195049.190623 10.3390/sym11060748 10.4018/978-1-7998-0106-1.ch008 10.1093/poq/nfy038 10.1016/j.knosys.2018.09.007 10.1016/j.bdr.2017.01.001 10.1109/ACCESS.2019.2955754 10.1186/s12889-020-09793-0 10.1109/HPCC-SmartCity-DSS.2016.8 10.1186/s13677-019-0139-6 10.1109/TVCG.2012.219 10.1111/head.13707 10.1186/s40537-015-0028-x 10.1016/j.procs.2020.01.079 10.1007/s11227-020-03328-5 10.1016/j.compbiomed.2020.103792 10.1080/0951192X.2019.1610578 10.1155/2015/496179 10.1007/s00607-016-0508-7 10.1101/2020.04.02.20051136 10.1109/IPDPSW50202.2020.00057 10.1007/s41060-018-0102-5 10.1145/2517349.2522737 10.1016/j.jcv.2020.104431 10.1016/j.chaos.2020.110059 10.1007/978-981-15-3325-9_9 10.1007/s11036-013-0489-0 10.1016/j.jpdc.2014.08.003 10.1016/j.jpdc.2014.01.003 10.3390/app11010149 10.4103/jpcs.jpcs_62_19 10.1016/j.jpdc.2017.05.009 10.5194/isprs-archives-XLIIIB4-2020-103-2020 10.1109/access.2018.2880694 10.1016/j.jspi.2010.06.029 10.1007/s41019-016-0022-0 10.1186/s40490-016-0071-1 10.1080/23270012.2020.1728403 10.1186/s40537-019-0206-3 10.1186/s40537-020-00345-2 10.1080/17445760.2018.1446210 10.2307/j.ctvggx33b.13 10.1007/s12652-017-0561-x 10.21307/stattrans-2020-001 10.1186/s12874-020-01067-y 10.1007/s11227-015-1615-5 10.1109/TKDE.2013.109 10.15713/ins.idmjar.9 10.1038/s41598-020-75767-2 10.7812/TPP/18.308 10.1007/s11227-020-03162-9 10.1007/s11222-019-09857-1 10.1007/s00500-017-2739-8 10.1142/s1793005717400014 10.1016/j.ins.2018.04.053 10.1109/IPDPSW50202.2020.00073 10.26599/BDMA.2019.9020015 10.1080/10691898.2020.1851159 10.1038/s41598-018-33980-0 10.1108/IDD-02-2018-0002 10.1109/access.2020.2980942 10.1109/mis.2017.38 10.1016/j.rse.2017.06.041 10.1109/LDAV.2017.8231848 10.1080/00401706.2016.1142900 10.1590/S0102695X2012005000091 10.1109/BigData.7364082 10.1007/s42979-020-00394-7 10.1080/10691898.2020.1720552 10.1109/access.2020.3027675 10.1007/s42979-020-0099-4 10.1016/S10036326(13)624875 10.1007/s1104201526350 10.1145/3377454 10.1109/COMST.2017.2727878 |
| ContentType | Journal Article |
| Copyright | Emerald Publishing Limited Emerald Publishing Limited. |
| Copyright_xml | – notice: Emerald Publishing Limited – notice: Emerald Publishing Limited. |
| DBID | AAYXX CITATION 0-V 7SC 7WY 7WZ 7XB 8FD 8FE 8FG ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CJNVE CNYFK DWQXO E3H F2A F~G GNUQQ HCIFZ JQ2 K6~ K7- L.- L7M L~C L~D M0C M0N M0P M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQEDU PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PYYUZ Q9U |
| DOI | 10.1108/DTA-06-2021-0153 |
| DatabaseName | CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Education Collection Library & Information Science Collection ProQuest Central Korea Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Education Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China One Social Sciences ABI/INFORM Collection China ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest One Education ABI/INFORM Global (Corporate) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Library Science ProQuest Central Korea Library & Information Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest Computing Education Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest Education Journals ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest One Education |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science Architecture |
| EISSN | 2514-9318 |
| EndPage | 601 |
| ExternalDocumentID | 10_1108_DTA_06_2021_0153 10.1108/DTA-06-2021-0153 |
| GroupedDBID | 3FY 7WY 9F- AAMCF AAPBV AAUDR ABIJV ABSDC ACGFS ADOMW AEUCW AFZLO AJEBP ALMA_UNASSIGNED_HOLDINGS ALSLI ARAPS ASMFL BENPR BVLZF EBS ECCUG GEI GQ. H13 HCIFZ K7- KBGRL KLENG M0P M1O SLOBJ TGG TMF TMI TMT X0 Z12 .X0 0-V 8FE 8FG AAYXX ABJNI ABUWG ABYQI ACXJU AFFHD AFKRA AHAFT AHMHQ AODMV ARALO AZQEC BEZIV BGLVJ BPHCQ CCPQU CITATION CJNVE CNYFK DWQXO GNUQQ K6V K6~ M0C M42 P62 PHGZM PHGZT PQBIZ PQEDU PQGLB PQQKQ PROAC PRQQA SCAQC Z11 Z21 -~X 0R~ 123 1JL 29P 2RR 4.4 5VS 70U 77I 77K 7SC 7XB 8FD 8NV 8R4 8R5 9E0 AAOWE AAPSD ABEAN ABHCV ADMHG AEBZA AEDOK AEMMR AETHF AFNZV AIAFM AJFKA APPLU ATGMP E3H F2A FNNZZ GEA GEC GMM GMN IJT J1Y JI- JL0 JQ2 L.- L7M L~C L~D M0N O9- OXR P2P PKEHL PQEST PQUKI PRINS Q2X Q9U SQT TDX TEM TET TMD TMK TMX Z22 |
| ID | FETCH-LOGICAL-c264t-afb484595194fad52f8fdd581ef7741cac1e1f71de07ee936a810490b55a13e3 |
| IEDL.DBID | TMT |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732965000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2514-9288 |
| IngestDate | Sat Nov 29 02:23:08 EST 2025 Sat Nov 29 07:43:12 EST 2025 Tue Aug 23 01:30:31 EDT 2022 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Big data mining Big data platforms Distributed and parallel processing Statistical sampling Machine learning Map-reduce |
| Language | English |
| License | Licensed re-use rights only https://www.emerald.com/insight/site-policies |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c264t-afb484595194fad52f8fdd581ef7741cac1e1f71de07ee936a810490b55a13e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7403-9176 |
| PQID | 2716442750 |
| PQPubID | 12296 |
| PageCount | 44 |
| ParticipantIDs | proquest_journals_2716442750 emerald_primary_10_1108_DTA-06-2021-0153 crossref_primary_10_1108_DTA_06_2021_0153 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-23 |
| PublicationDateYYYYMMDD | 2022-08-23 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | Bingley |
| PublicationPlace_xml | – name: Bingley |
| PublicationTitle | Data technologies and applications |
| PublicationYear | 2022 |
| Publisher | Emerald Publishing Limited Emerald Group Publishing Limited |
| Publisher_xml | – name: Emerald Publishing Limited – name: Emerald Group Publishing Limited |
| References | (key2022082217162993300_ref092) 2020 (key2022082217162993300_ref039) 2018; 141 (key2022082217162993300_ref036) 2016; 3 (key2022082217162993300_ref050) 2020; 8 (key2022082217162993300_ref055) 2015 (key2022082217162993300_ref143) 2015 (key2022082217162993300_ref072) 2013; 1 (key2022082217162993300_ref123) 2016 (key2022082217162993300_ref035) 2018; 8 (key2022082217162993300_ref052) 2012; 22 (key2022082217162993300_ref159) 2020; 21 (key2022082217162993300_ref077) 2015; 9 (key2022082217162993300_ref089) 1977; 33 (key2022082217162993300_ref082) 2013 (key2022082217162993300_ref062) 2012 (key2022082217162993300_ref163) 2017; 159 (key2022082217162993300_ref028) 2014; 19 (key2022082217162993300_ref008) 1967 IBM (key2022082217162993300_ref070) 2014 (key2022082217162993300_ref032) 1977 (key2022082217162993300_ref091) 2017; 32 key2022082217162993300_ref145 (key2022082217162993300_ref128) 2020 (key2022082217162993300_ref005) 2011; 141 key2022082217162993300_ref021 (key2022082217162993300_ref022) 2014; 2 HLG-BAS (key2022082217162993300_ref066) 2011 (key2022082217162993300_ref093) 2020; 8 (key2022082217162993300_ref129) 2016 (key2022082217162993300_ref099) 2016; 72 (key2022082217162993300_ref046) 2013; 23 (key2022082217162993300_ref110) 2015; 20 (key2022082217162993300_ref126) 2013 (key2022082217162993300_ref152) 2020; 11 (key2022082217162993300_ref020) 2017 (key2022082217162993300_ref058) 2020; 76 (key2022082217162993300_ref014) 2019; 5 (key2022082217162993300_ref088) 2020; 139 (key2022082217162993300_ref105) 2020; 31 (key2022082217162993300_ref135) 2012 (key2022082217162993300_ref161) 2020; 23 (key2022082217162993300_ref132) 2019; 29 (key2022082217162993300_ref060) 2014 (key2022082217162993300_ref067) 2014; 5 (key2022082217162993300_ref083) 2018 (key2022082217162993300_ref073) 2020; 7 (key2022082217162993300_ref094) 2020 (key2022082217162993300_ref137) 2014; 2 (key2022082217162993300_ref154) 2016; 46 (key2022082217162993300_ref016) 2016; 2 (key2022082217162993300_ref024) 2019; 1187 (key2022082217162993300_ref049) 2005 (key2022082217162993300_ref142) 2016 (key2022082217162993300_ref104) 2020; 2 (key2022082217162993300_ref102) 2014; 17 (key2022082217162993300_ref120) 2014; 155 (key2022082217162993300_ref138) 2020; 29 (key2022082217162993300_ref027) 2013 (key2022082217162993300_ref125) 2017 (key2022082217162993300_ref136) 2020 (key2022082217162993300_ref153) 2018; 6 (key2022082217162993300_ref156) 2014; 26 (key2022082217162993300_ref018) 2015; 126 (key2022082217162993300_ref030) 2019; 7 (key2022082217162993300_ref113) 2019; 8 key2022082217162993300_ref048 (key2022082217162993300_ref080) 2012; 18 (key2022082217162993300_ref108) 2017 (key2022082217162993300_ref043) 2019 (key2022082217162993300_ref038) 2013 (key2022082217162993300_ref056) 2020; 28 (key2022082217162993300_ref085) 2017; 19 (key2022082217162993300_ref002) 2020; 8 (key2022082217162993300_ref101) 2017 (key2022082217162993300_ref026) 2017 (key2022082217162993300_ref037) 2020 (key2022082217162993300_ref119) 2016; 7 (key2022082217162993300_ref044) 2014; 108 (key2022082217162993300_ref157) 2020; 8 key2022082217162993300_ref114 (key2022082217162993300_ref009) 2018; 44 (key2022082217162993300_ref100) 2016; 17 (key2022082217162993300_ref059) 2020 (key2022082217162993300_ref112) 2019; 31 (key2022082217162993300_ref019) 2020 (key2022082217162993300_ref042) 2016; 64 (key2022082217162993300_ref130) 2011; 35 (key2022082217162993300_ref164) 2019; 163 (key2022082217162993300_ref004) 2020; 42 (key2022082217162993300_ref124) 2020 (key2022082217162993300_ref131) 2020 (key2022082217162993300_ref071) 2020; 9 (key2022082217162993300_ref146) 2016; 1 (key2022082217162993300_ref141) 2020 (key2022082217162993300_ref015) 2016; 90 Y.Lee, J. and H.Kim, B. (key2022082217162993300_ref078) 2019; 32 (key2022082217162993300_ref144) 1977 (key2022082217162993300_ref013) 2020 (key2022082217162993300_ref087) 2014; 4 (key2022082217162993300_ref107) 2015; 2 (key2022082217162993300_ref017) 2007 (key2022082217162993300_ref064) 2013 (key2022082217162993300_ref041) 2016; 195 (key2022082217162993300_ref053) 2017; 5 (key2022082217162993300_ref011) 2019; 34 (key2022082217162993300_ref012) 2020; 36 (key2022082217162993300_ref001) 2014 (key2022082217162993300_ref054) 2019; 496 (key2022082217162993300_ref149) 2020; 53 (key2022082217162993300_ref084) 2015 (key2022082217162993300_ref065) 2019; 44 (key2022082217162993300_ref158) 2007 (key2022082217162993300_ref081) 2013 (key2022082217162993300_ref160) 2016; 75 (key2022082217162993300_ref115) 1976; 139 (key2022082217162993300_ref075) 2015; 56 (key2022082217162993300_ref098) 2017; 9 (key2022082217162993300_ref076) 2019; 11 (key2022082217162993300_ref148) 2019; 165 (key2022082217162993300_ref106) 2019; 9 (key2022082217162993300_ref116) 2020; 8 (key2022082217162993300_ref111) 2017; 203 (key2022082217162993300_ref117) 2016; 19 (key2022082217162993300_ref122) 2020; 8 (key2022082217162993300_ref040) 2013 (key2022082217162993300_ref068) 2020; 20 (key2022082217162993300_ref109) 2020 (key2022082217162993300_ref063) 2015; 1 (key2022082217162993300_ref090) 2020 (key2022082217162993300_ref147) 2016; 98 (key2022082217162993300_ref097) 2020; 118 (key2022082217162993300_ref023) 2016; 7 (key2022082217162993300_ref025) 2013; 13 (key2022082217162993300_ref057) 2013 (key2022082217162993300_ref069) 2019; 28 (key2022082217162993300_ref121) 2016; 3 (key2022082217162993300_ref151) 2008 (key2022082217162993300_ref061) 2020; 15 (key2022082217162993300_ref103) 2020 (key2022082217162993300_ref007) 2015; 79 (key2022082217162993300_ref047) 2013 (key2022082217162993300_ref045) 2018; 46 (key2022082217162993300_ref118) 2017; 21 (key2022082217162993300_ref127) 2019; 108 (key2022082217162993300_ref031) 2020; 11 (key2022082217162993300_ref034) 2015 (key2022082217162993300_ref162) 2020; 29 (key2022082217162993300_ref010) 2018; 79 (key2022082217162993300_ref095) 2018; 82 (key2022082217162993300_ref096) 2020; 3 (key2022082217162993300_ref074) 2013 (key2022082217162993300_ref086) 2012 (key2022082217162993300_ref029) 2016 (key2022082217162993300_ref003) 2020; 10 (key2022082217162993300_ref006) 2020; 121 Concurrency-Computat:Pract.Exper (key2022082217162993300_ref033) 2016 (key2022082217162993300_ref139) 2017 (key2022082217162993300_ref079) 2014; 74 (key2022082217162993300_ref133) 2019; 11 (key2022082217162993300_ref134) 2020; 24 (key2022082217162993300_ref150) 2020; 7 (key2022082217162993300_ref155) 2020 (key2022082217162993300_ref140) 2017; 13 (key2022082217162993300_ref051) 2016 |
| References_xml | – start-page: 1 year: 2013 ident: key2022082217162993300_ref047 article-title: From big data to big data mining: challenges, issues, and opportunities – year: 2011 ident: key2022082217162993300_ref066 article-title: Strategic vision of the high-level group for strategic developments in business architecture in statistics – volume: 1 start-page: 218 issue: 4 year: 2013 ident: key2022082217162993300_ref072 article-title: Review on parallel and distributed computing publication-title: Scholars Journal of Engineering and Technology – volume: 44 start-page: 1524 year: 2018 ident: key2022082217162993300_ref009 article-title: What's new in icu in 2050: big data and machine learning publication-title: Intensive Care Med doi: 10.1007/s00134-017-5034-3 – volume-title: The Top Five Ways to Get Started with Big Data year: 2014 ident: key2022082217162993300_ref070 – volume: 56 start-page: 592 year: 2015 ident: key2022082217162993300_ref075 article-title: The internet of energy: smart sensor networks and big data management for smart grid publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.07.250 – volume: 31 start-page: 204 year: 2020 ident: key2022082217162993300_ref105 article-title: Statistical analysis and visualization of the potential cases of pandemic coronavirus publication-title: VirusDis doi: 10.1007/s13337-020-00610-1 – volume: 23 issue: 1 year: 2020 ident: key2022082217162993300_ref161 article-title: On construction of an energy monitoring service using big data technology for the smart campus publication-title: Cluster Computing doi: 10.1007/s10586-019-02921-5 – volume: 33 start-page: 159 issue: 1 year: 1977 ident: key2022082217162993300_ref089 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – start-page: 1351 year: 2005 ident: key2022082217162993300_ref049 article-title: The sampling lens: making sense of saturated visualisations – volume: 7 start-page: 53 issue: 1 year: 2016 ident: key2022082217162993300_ref023 article-title: Efficiency of random sampling based data size reduction on computing time and validity of clustering in data mining publication-title: Journal of Agricultural Informatics doi: 10.17700/jai.2016.7.1.266 – volume: 8 start-page: 1 issue: 1 year: 2020 ident: key2022082217162993300_ref002 article-title: Solution approach to big data regarding parameter estimation problems in predictive analytics model publication-title: Research Journal of Computer and Information Technology Sciences – volume-title: Parallel and Distributed Computing for Big Data Applications year: 2016 ident: key2022082217162993300_ref033 doi: 10.1002/cpe.3813 – volume: 15 issue: 9 year: 2020 ident: key2022082217162993300_ref061 article-title: A machine learning algorithm to increase covid-19 inpatient diagnostic capacity publication-title: PLoS ONE doi: 10.1371/journal.pone.0239474 – volume: 121 year: 2020 ident: key2022082217162993300_ref006 article-title: Application of deep learning technique to manage covid-19 in routine clinical practice using ct images: Re- sults of 10 convolutional neural networks publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103795 – year: 2020 ident: key2022082217162993300_ref124 article-title: Blending probability and nonprobability samples with applications to a survey of military caregivers publication-title: Journal of Survey Statistics and Methodology doi: 10.1093/jssam/smaa037 – volume: 126 start-page: 67 year: 2015 ident: key2022082217162993300_ref018 article-title: Random sample, quota sample: the teachings of the evs 2008 survey in France publication-title: BMS: Bulletin of Sociological Methodology/Bulletin De Méthodologie Sociologique – volume: 195 start-page: 143 year: 2016 ident: key2022082217162993300_ref041 article-title: Efficient knn classification algorithm for big data publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.112 – volume: 11 year: 2020 ident: key2022082217162993300_ref152 article-title: Typhoon quantitative rainfall prediction from big data analytics by using the Apache hadoop spark parallel computing framework publication-title: Atmosphere doi: 10.3390/atmos11080870 – start-page: 15 volume-title: Springer Texts in Statistics year: 2013 ident: key2022082217162993300_ref074 article-title: Statistical learning.in: an introduction to statistical learning – volume: 139 start-page: 183 issue: 2 year: 1976 ident: key2022082217162993300_ref115 article-title: The foundations of survey sampling: a review publication-title: Journal of the Royal Statistical Society doi: 10.2307/2345174 – volume: 159 start-page: 229 year: 2017 ident: key2022082217162993300_ref163 article-title: A framework for big data driven product lifecycle management publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2017.04.172 – volume: 5 start-page: 138 issue: 6 year: 2017 ident: key2022082217162993300_ref053 article-title: Sampling and sampling methods publication-title: Biometrics and Biostatistics International Journal doi: 10.15406/bbij.2017.05.00149 – year: 2013 ident: key2022082217162993300_ref027 article-title: From big data to big data mining: challenges, issues, and opportunities publication-title: Database Systems for Advanced Applications – volume: 8 issue: 11 year: 2019 ident: key2022082217162993300_ref113 article-title: Optimized sampling strategy for big data mining through stratified sampling publication-title: International Journal of Scientific and Technology Research – volume: 29 start-page: 6633 issue: 5 year: 2020 ident: key2022082217162993300_ref138 article-title: Hadoop ecosystem analytics and big data for advanced computing platforms publication-title: International Journal of Advanced Science and Technology – volume: 36 start-page: 224 issue: 2 year: 2020 ident: key2022082217162993300_ref012 article-title: Sampling methods publication-title: Journal of Human Lactation doi: 10.1177/0890334420906850 – ident: key2022082217162993300_ref048 doi: 10.1007/978-3-319-08976-8_16 – volume: 9 start-page: 21 issue: 5 year: 2015 ident: key2022082217162993300_ref077 article-title: A divided regression analysis for big data publication-title: International Journal of Software Engineering and Its Applications doi: 10.14257/ijseia.2015.9.5.03 – volume: 2 issue: 5 year: 2016 ident: key2022082217162993300_ref016 article-title: Big data and Apache spark: a review publication-title: International Journal of Engineering Research Science – volume: 8 start-page: 130820 year: 2020 ident: key2022082217162993300_ref116 article-title: Artificial intelligence (ai) and big data for coronavirus (covid-19) pandemic: a survey on the state-of-the-arts publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009328 – volume: 141 start-page: 112 year: 2018 ident: key2022082217162993300_ref039 article-title: Cloud platform using big data and hpc technologies for distributed and parallels treatments publication-title: Procedia Computer Science doi: 10.1016/j.procs.2018.10.156 – year: 2017 ident: key2022082217162993300_ref108 article-title: Big data technologies: a survey publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2017.06.001 – volume-title: Spark Tutorial:learn Spark Programming year: 2020 ident: key2022082217162993300_ref037 – volume: 17 start-page: 32 issue: 2 year: 2014 ident: key2022082217162993300_ref102 article-title: Selecting the sample publication-title: Evidence Based Nursing doi: 10.1136/eb-2014-101747 – volume: 9 issue: 1 year: 2019 ident: key2022082217162993300_ref106 article-title: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning publication-title: Scientific Reports doi: 10.1038/s41598-018-37741-x – volume: 29 start-page: 4106 issue: 4 year: 2020 ident: key2022082217162993300_ref162 article-title: Optimizing mapreduce model for big data analytics using subtractive clustering algorithm publication-title: International Journal of Advanced Science and Technology – volume: 42 start-page: 102 issue: 1 year: 2020 ident: key2022082217162993300_ref004 article-title: Sample size and its importance in research publication-title: Indian Journal of Psychological Medicine doi: 10.4103/IJPSYM.IJPSYM_504_19 – volume: 79 start-page: 1 year: 2018 ident: key2022082217162993300_ref010 article-title: Configuring in-memory cluster computing using random forest publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2017.08.011 – volume: 9 start-page: 1730 issue: 6 year: 2017 ident: key2022082217162993300_ref098 article-title: Types of biological variables publication-title: Journal of Thoracic Disease doi: 10.21037/jtd.2017.05.75 – year: 2020 ident: key2022082217162993300_ref128 article-title: Chicken swarm foraging algorithm for big data classification using the deep belief network classifier publication-title: Data Technologies and Applications doi: 10.1108/DTA-08-2019-0146 – volume-title: A Machine Learning-Based Model for Survival Prediction in Patients with Severe Covid19 Infection year: 2020 ident: key2022082217162993300_ref092 doi: 10.1101/2020.02.27.20028027 – volume: 31 start-page: 415 issue: 4 year: 2019 ident: key2022082217162993300_ref112 article-title: Implications of big data analytics in developing healthcare frameworks – a review publication-title: Journal of King Saud University – Computer and Information Sciences doi: 10.1016/j.jksuci.2017.12.007 – volume: 35 start-page: 553 year: 2011 ident: key2022082217162993300_ref130 article-title: Predictive analytics in information systems research publication-title: Management Information Systems doi: 10.2307/23042796 – start-page: 288 year: 2014 ident: key2022082217162993300_ref001 article-title: Hadoop architecture and its issues doi: 10.1109/CSCI.2014.140 – volume: 8 start-page: 72713 year: 2020 ident: key2022082217162993300_ref093 article-title: Mpling for big data profiling: a survey publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2988120 – volume: 2 start-page: 63 issue: 3 year: 2015 ident: key2022082217162993300_ref107 article-title: Efficiency of some sampling techniques publication-title: Journal of Scientific Research and Studies – volume: 28 start-page: 471 issue: 3 year: 2019 ident: key2022082217162993300_ref069 article-title: Weighting nonprobability and probability sample surveys in describing cancer catchment areas publication-title: Cancer Epidemiol Biomarkers Prev doi: 10.1158/1055-9965.EPI-18-0797 – volume: 19 issue: 11 year: 2016 ident: key2022082217162993300_ref117 article-title: A journey from big data towards prescriptive analytics publication-title: Arpn Journal of Engineering and Applied Sciences – volume: 108 year: 2019 ident: key2022082217162993300_ref127 article-title: Engineering fast multilevel support vector machines publication-title: Machine Learning doi: 10.1007/s10994-019-05800-7 – volume: 5 start-page: 6238 issue: 5 year: 2014 ident: key2022082217162993300_ref067 article-title: The hadoop distributed file system publication-title: International Journal of Computer Science and Information Technologies – volume: 90 start-page: 662 issue: 9 year: 2016 ident: key2022082217162993300_ref015 article-title: Basic statistical tools in research and data analysis publication-title: Indian Journal of Anaesthesia doi: 10.4103/00195049.190623 – volume-title: Statistics, an Introductory Analysis year: 1967 ident: key2022082217162993300_ref008 – volume: 11 issue: 6 year: 2019 ident: key2022082217162993300_ref076 article-title: An efficient mapreduce based parallel processing framework for user based collaborative filtering publication-title: Symmetry doi: 10.3390/sym11060748 – volume: 3 year: 2016 ident: key2022082217162993300_ref121 article-title: A survey on: predictive analytics for credit risk assessment publication-title: International Research Journal of Engineering and Technology – start-page: 1 volume-title: The Big-Data Revolution in Us Health Care: Accelerating Value and Innovation year: 2013 ident: key2022082217162993300_ref082 – volume-title: Enhanced Logistic Regression (Elr) Model for Big-Data year: 2019 ident: key2022082217162993300_ref043 doi: 10.4018/978-1-7998-0106-1.ch008 – volume: 82 start-page: 707 issue: 4 year: 2018 ident: key2022082217162993300_ref095 article-title: The accuracy of measurements with probability and nonprobability survey samples: replication and extension publication-title: Public Opinion Quarterly doi: 10.1093/poq/nfy038 – volume: 163 start-page: 416 year: 2019 ident: key2022082217162993300_ref164 article-title: A stratified sampling based clustering algorithm for large-scale data publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2018.09.007 – volume-title: Applying Parallel Computing Techniques to Analyze Terabyte Atmospheric Boundary Layer Model Outputs year: 2017 ident: key2022082217162993300_ref139 doi: 10.1016/j.bdr.2017.01.001 – volume: 8 start-page: 28808 year: 2020 ident: key2022082217162993300_ref157 article-title: Medical health big data classification based on knn classification algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2955754 – volume: 108 issue: 12 year: 2014 ident: key2022082217162993300_ref044 article-title: Big data analytics using hadoop publication-title: International Journal of Computer Applications – volume: 2 start-page: 1 issue: 1 year: 2014 ident: key2022082217162993300_ref022 article-title: Critical insight for mapreduce optimization in hadoop publication-title: International Journal of Computer Science and Control Engineering – volume: 20 year: 2020 ident: key2022082217162993300_ref068 article-title: Area based stratified random sampling using geospatial technology in a community-based survey publication-title: BMC Public Health doi: 10.1186/s12889-020-09793-0 – year: 2016 ident: key2022082217162993300_ref123 article-title: Big data: the v's of the game changer paradigm doi: 10.1109/HPCC-SmartCity-DSS.2016.8 – volume-title: Enterprise Information Protection- the Impact of Big Data year: 2013 ident: key2022082217162993300_ref057 – volume: 9 issue: 8 year: 2020 ident: key2022082217162993300_ref071 article-title: Improvement of job completion time in data-intensive cloud computing applications publication-title: Journal of Cloud Computing doi: 10.1186/s13677-019-0139-6 – start-page: 599 year: 2014 ident: key2022082217162993300_ref060 article-title: Graphx: graph processing in a distributed dataflow framework – start-page: 1 year: 2015 ident: key2022082217162993300_ref143 article-title: An influence assessment method based on co-occurrence for topologi- cally reduced big data sets publication-title: Soft Computing – volume: 18 start-page: 2917 issue: 12 year: 2012 ident: key2022082217162993300_ref080 article-title: Enterprise data analysis and visualization: an interview study publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2012.219 – volume-title: Practical Statistics for Data Scientists year: 2017 ident: key2022082217162993300_ref020 – ident: key2022082217162993300_ref145 doi: 10.1111/head.13707 – volume: 13 start-page: 1 issue: 2 year: 2013 ident: key2022082217162993300_ref025 article-title: An architecture for big data analytics publication-title: Communications of the IIMA – volume: 20 issue: 2 year: 2015 ident: key2022082217162993300_ref110 article-title: Big data in manufacturing: a systematic mapping study publication-title: Journal of Big Data doi: 10.1186/s40537-015-0028-x – volume: 165 start-page: 104 year: 2019 ident: key2022082217162993300_ref148 article-title: A review of dimensionality reduction techniques for efficient computation publication-title: Procedia Computer Science doi: 10.1016/j.procs.2020.01.079 – volume-title: Exploratory Data Analysis year: 1977 ident: key2022082217162993300_ref144 – volume: 4 issue: 5 year: 2014 ident: key2022082217162993300_ref087 article-title: Survey on hadoop and introduction to yarn publication-title: International Journal of Emerging Technology and Advanced Engineering – year: 2020 ident: key2022082217162993300_ref103 article-title: Investigating the performance of hadoop and spark platforms on machine learning algorithms publication-title: The Journal of Supercomputing doi: 10.1007/s11227-020-03328-5 – year: 2020 ident: key2022082217162993300_ref109 article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103792 – volume: 32 start-page: 723 year: 2019 ident: key2022082217162993300_ref078 article-title: Cloud-based big data analytics platform using algorithm templates for the manufacturing industry publication-title: International Journal of Computer Integrated Manufacturing doi: 10.1080/0951192X.2019.1610578 – year: 2015 ident: key2022082217162993300_ref055 article-title: Study on a stratified sampling investigation method for resident travel and the sampling rate publication-title: Discrete Dynamics in Nature and Society doi: 10.1155/2015/496179 – volume-title: Chapter 6: Unequal Probability Sampling year: 2012 ident: key2022082217162993300_ref086 article-title: Sampling – volume: 2 start-page: 1 issue: 11 year: 2014 ident: key2022082217162993300_ref137 article-title: Sampling techniques and determination of sample size in applied statistics research: an overview publication-title: International Journal of Economics, Commerce and Management – volume: 98 start-page: 967 year: 2016 ident: key2022082217162993300_ref147 article-title: A brief introduction to distributed systems publication-title: Computing doi: 10.1007/s00607-016-0508-7 – volume-title: Rapid and Accurate Identification of Covid-19 Infection through Machine Learning Based on Clinical Available Blood Test Results year: 2020 ident: key2022082217162993300_ref155 doi: 10.1101/2020.04.02.20051136 – volume-title: Big Data Fundamentals: Concepts, Drivers and Techniques year: 2016 ident: key2022082217162993300_ref051 – year: 2020 ident: key2022082217162993300_ref019 article-title: A framework for the evaluation of parallel and distributed computing educational resources doi: 10.1109/IPDPSW50202.2020.00057 – volume: 6 start-page: 189 year: 2018 ident: key2022082217162993300_ref153 article-title: Data science: the impact of statistics publication-title: International Journal of Data Science and Analytics doi: 10.1007/s41060-018-0102-5 – volume: 3 issue: 3 year: 2016 ident: key2022082217162993300_ref036 article-title: Classification of machine learning algorithms publication-title: International Journal of Innovative Research in Advanced Engineering – start-page: 171 volume-title: The Recruitment, Sampling, and Enrollment Plan Epidemiology: Principles and Practical Guidelines year: 2013 ident: key2022082217162993300_ref040 – start-page: 404 year: 2013 ident: key2022082217162993300_ref081 article-title: Big data: issues, challenges, tools and good practices – start-page: 515 year: 2016 ident: key2022082217162993300_ref029 article-title: Gpu computations on hadoop clusters for massive data processing – start-page: 125 year: 2012 ident: key2022082217162993300_ref062 article-title: Selecting research participants publication-title: Behavior Research Methods – year: 2013 ident: key2022082217162993300_ref064 article-title: Discretized streams: fault- tolerant streaming computation at scale doi: 10.1145/2517349.2522737 – year: 2020 ident: key2022082217162993300_ref141 article-title: Combination of four clinical indicators predicts the severe/critical symptom of patients infected covid-19 publication-title: Journal of Clinical Virology doi: 10.1016/j.jcv.2020.104431 – volume: 139 issue: C year: 2020 ident: key2022082217162993300_ref088 article-title: Applications of machine learning and artificial intelligence for covid-19 (sars-cov-2) pandemic: a review publication-title: Chaos, Solitons and Fractals doi: 10.1016/j.chaos.2020.110059 – ident: key2022082217162993300_ref114 doi: 10.1007/978-981-15-3325-9_9 – volume: 19 start-page: 171 issue: 2 year: 2014 ident: key2022082217162993300_ref028 article-title: Big data: a survey publication-title: Mobile Networks and Application doi: 10.1007/s11036-013-0489-0 – volume: 79 start-page: 3 year: 2015 ident: key2022082217162993300_ref007 article-title: Big data computing and clouds: trends and future directions publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2014.08.003 – volume: 74 start-page: 2561 issue: 7 year: 2014 ident: key2022082217162993300_ref079 article-title: Trends in big data analytics publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2014.01.003 – volume-title: Harness the Power of Big Data: The Ibm Big Data Platform year: 2013 ident: key2022082217162993300_ref126 – volume: 11 issue: 1 year: 2020 ident: key2022082217162993300_ref031 article-title: Minimizing resource waste in heterogeneous resource allocation for data stream processing on clouds publication-title: Applied Sciences doi: 10.3390/app11010149 – volume: 5 start-page: 157 issue: 3 year: 2019 ident: key2022082217162993300_ref014 article-title: Types of sampling in research publication-title: Journal of the Practice of Cardiovascular Sciences doi: 10.4103/jpcs.jpcs_62_19 – year: 2017 ident: key2022082217162993300_ref101 article-title: A scalable method for link prediction in large real world networks publication-title: Journal of Parallel and Distributed Computing doi: 10.1016/j.jpdc.2017.05.009 – start-page: 103 year: 2020 ident: key2022082217162993300_ref059 article-title: Area estimation of multi-temporal global impervious land cover based on stratified random sampling publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences doi: 10.5194/isprs-archives-XLIIIB4-2020-103-2020 – volume: 7 year: 2019 ident: key2022082217162993300_ref030 article-title: Progress on artificial neural networks for big data analytics: a survey publication-title: IEEE Access doi: 10.1109/access.2018.2880694 – volume: 1187 issue: 5 year: 2019 ident: key2022082217162993300_ref024 article-title: Big data mining for investor sentiment publication-title: Journal of Physics: Conference Series – volume: 11 issue: 4 year: 2019 ident: key2022082217162993300_ref133 article-title: Data mining classification techniques – comparison for better accuracy in prediction of cardiovascular disease publication-title: International Journal of Data Analysis Techniques and Strategies – volume: 141 start-page: 597 issue: 1 year: 2011 ident: key2022082217162993300_ref005 article-title: Simple random sampling with over-replacement publication-title: Journal of Statistical Planning and Inference doi: 10.1016/j.jspi.2010.06.029 – volume: 155 issue: 4 year: 2014 ident: key2022082217162993300_ref120 article-title: Analysing large datasets of functional data: a survey sampling point of view publication-title: Journal de la Société Francaise de Statistique – volume: 1 start-page: 265 year: 2016 ident: key2022082217162993300_ref146 article-title: Big data reduction methods: a survey publication-title: Data Science and Engineering doi: 10.1007/s41019-016-0022-0 – volume: 46 issue: 15 year: 2016 ident: key2022082217162993300_ref154 article-title: Simple random sampling of individual items in the absence of a sampling frame that lists the individuals publication-title: New Zealand Journal of Forestry Science doi: 10.1186/s40490-016-0071-1 – volume: 7 start-page: 424 issue: 3 year: 2020 ident: key2022082217162993300_ref150 article-title: Big data analytics for retail industry using mapreduce-apriori framework publication-title: Journal of Management Analytics doi: 10.1080/23270012.2020.1728403 – volume: 44 issue: 6 year: 2019 ident: key2022082217162993300_ref065 article-title: Uncertainty in big data analytics: survey, opportunities, and challenges publication-title: Journal of Big Data doi: 10.1186/s40537-019-0206-3 – year: 2016 ident: key2022082217162993300_ref142 article-title: Sampling methods in research methodology; how to choose a sampling technique for research publication-title: International Journal of Academic Research in Management – volume: 7 issue: 1 year: 2020 ident: key2022082217162993300_ref073 article-title: Prediction of probable backorder scenarios in the supply chain using distributed random forest and gradient boosting machine learning techniques publication-title: Journal of Big Data doi: 10.1186/s40537-020-00345-2 – volume: 34 issue: 6 year: 2019 ident: key2022082217162993300_ref011 article-title: Parallel and distributed clustering framework for big spatial data mining publication-title: International Journal of Parallel, Emergent and Distributed Systems doi: 10.1080/17445760.2018.1446210 – volume-title: The Hadoop Distributed File System: Architecture and Design year: 2007 ident: key2022082217162993300_ref017 – ident: key2022082217162993300_ref021 doi: 10.2307/j.ctvggx33b.13 – year: 2017 ident: key2022082217162993300_ref026 article-title: Advancement and applicability of classifiers for variant exponential model to optimize the accuracy for deep learning publication-title: Journal of Ambient Intelligence and Humanized Computing doi: 10.1007/s12652-017-0561-x – volume: 21 start-page: 1 issue: 1 year: 2020 ident: key2022082217162993300_ref159 article-title: Estimation of finite population mean using two auxiliary variables under stratified random sampling publication-title: Statistics in Transition New Series doi: 10.21307/stattrans-2020-001 – year: 2020 ident: key2022082217162993300_ref090 article-title: Recruiting a representative sample of urban south australian aboriginal adults for a survey on alcohol consumption publication-title: BMC Medical Research Methodology doi: 10.1186/s12874-020-01067-y – volume: 72 start-page: 3489 year: 2016 ident: key2022082217162993300_ref099 article-title: Real time intrusion detection system for ultra-high-speed big data environments publication-title: Journal of Supercomputing doi: 10.1007/s11227-015-1615-5 – volume: 26 start-page: 97 issue: 1 year: 2014 ident: key2022082217162993300_ref156 article-title: Data mining with big data publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2013.109 – volume-title: Bhandari, Introduction to the Hadoop Ecosystem for Big Data and Data Engineering year: 2020 ident: key2022082217162993300_ref013 – start-page: 4 volume-title: Sampling Techniques year: 1977 ident: key2022082217162993300_ref032 – volume: 1 year: 2015 ident: key2022082217162993300_ref063 article-title: Estimation of sample size in dental research publication-title: International Dental and Medical Journal of Advanced Research doi: 10.15713/ins.idmjar.9 – volume: 10 year: 2020 ident: key2022082217162993300_ref003 article-title: Machine learning prediction for mortality of patients diagnosed with covid-19: a nationwide Korean cohort study publication-title: Scientific Reports doi: 10.1038/s41598-020-75767-2 – volume: 24 year: 2020 ident: key2022082217162993300_ref134 article-title: On the use of sampling weights for retrospective medical record reviews publication-title: The Permanente Journal doi: 10.7812/TPP/18.308 – volume-title: Interconnection Networks for Parallel Computers year: 2008 ident: key2022082217162993300_ref151 – volume: 76 start-page: 7177 year: 2020 ident: key2022082217162993300_ref058 article-title: Designing a mapreduce performance model in distributed heterogeneous platforms based on benchmarking approach publication-title: The Journal of Supercomputing doi: 10.1007/s11227-020-03162-9 – volume: 29 start-page: 1095 year: 2019 ident: key2022082217162993300_ref132 article-title: Learning bayesian networks from big data with greedy search: computational complexity and efficient implementation publication-title: Statistics and Computing doi: 10.1007/s11222-019-09857-1 – volume: 21 start-page: 4497 issue: 16 year: 2017 ident: key2022082217162993300_ref118 article-title: AutoCompBD: Autonomic computing and big data platforms publication-title: Soft Computing doi: 10.1007/s00500-017-2739-8 – year: 2020 ident: key2022082217162993300_ref136 article-title: Comparison of regression and classification models for user-independent and personal stress detection publication-title: Sensors – volume: 13 issue: 2 year: 2017 ident: key2022082217162993300_ref140 article-title: A mathematical foundation of big data publication-title: New Mathematics and Natural Computation doi: 10.1142/s1793005717400014 – volume: 496 start-page: 300 year: 2019 ident: key2022082217162993300_ref054 article-title: A multi-factor monitoring fault tolerance model based on a gpu cluster for big data processing publication-title: Information Sciences doi: 10.1016/j.ins.2018.04.053 – start-page: 203 year: 2018 ident: key2022082217162993300_ref083 article-title: 10 vs, issues and challenges of big data – year: 2020 ident: key2022082217162993300_ref094 article-title: Workshop 7: hpbdc high-performance big data and cloud computing doi: 10.1109/IPDPSW50202.2020.00073 – volume: 17 start-page: 1 issue: 34 year: 2016 ident: key2022082217162993300_ref100 article-title: Mllib: machine learning in Apache spark publication-title: Journal of Machine Learning Research – volume: 3 start-page: 85 issue: 2 year: 2020 ident: key2022082217162993300_ref096 article-title: A survey of data partitioning and sampling methods to support big data analysis publication-title: Big Data Mining and Analytics doi: 10.26599/BDMA.2019.9020015 – year: 2020 ident: key2022082217162993300_ref131 article-title: Data science in 2020: computing, cur- ricula, and challenges for the next 10 years publication-title: Journal of Statistics Education doi: 10.1080/10691898.2020.1851159 – volume: 8 issue: 1 year: 2018 ident: key2022082217162993300_ref035 article-title: Predicting the need for a reduced drug dose at first prescription publication-title: Scientific Reports doi: 10.1038/s41598-018-33980-0 – volume: 46 start-page: 147 issue: 3 year: 2018 ident: key2022082217162993300_ref045 article-title: Big data analytics for prediction: parallel process- ing of the big learning base with the possibility of improving the final result of the prediction publication-title: Information Discovery and Delivery doi: 10.1108/IDD-02-2018-0002 – volume: 8 start-page: 54776 year: 2020 ident: key2022082217162993300_ref122 article-title: Analysis of dimensionality reduction techniques on big data publication-title: IEEE Access doi: 10.1109/access.2020.2980942 – volume: 32 start-page: 9 issue: 2 year: 2017 ident: key2022082217162993300_ref091 article-title: Challenges of feature selection for big data analytics publication-title: IEEE Intelligent Systems doi: 10.1109/mis.2017.38 – volume: 203 start-page: 240 year: 2017 ident: key2022082217162993300_ref111 article-title: Stratification and sample allocation for reference burned area data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2017.06.041 – year: 2017 ident: key2022082217162993300_ref125 article-title: Sampling techniques to improve big data exploration doi: 10.1109/LDAV.2017.8231848 – year: 2016 ident: key2022082217162993300_ref129 article-title: Online updating of statistical inference in the big data setting publication-title: Technometrics doi: 10.1080/00401706.2016.1142900 – volume: 22 issue: 6 year: 2012 ident: key2022082217162993300_ref052 article-title: Probability sampling design in ethnobotanical surveys of medicinal plants publication-title: Revista Brasileira de Farmacognosia doi: 10.1590/S0102695X2012005000091 – year: 2015 ident: key2022082217162993300_ref084 article-title: Lambda architecture for cost effective batch and speed big data processing doi: 10.1109/BigData.7364082 – volume: 64 year: 2016 ident: key2022082217162993300_ref042 article-title: Data types publication-title: Journal of The Association of Physicians of India – volume: 2 issue: 1 year: 2020 ident: key2022082217162993300_ref104 article-title: Supervised machine learning models for prediction of covid-19 infection using epidemiology dataset publication-title: SN Computer Science doi: 10.1007/s42979-020-00394-7 – year: 2015 ident: key2022082217162993300_ref034 article-title: Heterogeneous architectures for parallel acceleration – volume: 28 start-page: 18 issue: 1 year: 2020 ident: key2022082217162993300_ref056 article-title: Introducing undergraduates to concepts of survey data analysis publication-title: Journal of Statistics Education doi: 10.1080/10691898.2020.1720552 – volume: 8 start-page: 178526 year: 2020 ident: key2022082217162993300_ref050 article-title: Distributed data strategies to support large-scale data analysis across geo-distributed data centers publication-title: IEEE Access doi: 10.1109/access.2020.3027675 – volume: 118 issue: 1 year: 2020 ident: key2022082217162993300_ref097 article-title: Machine learning techniques to identify dementia publication-title: SN Comput Sci doi: 10.1007/s42979-020-0099-4 – volume-title: Keeping up with the Quants year: 2013 ident: key2022082217162993300_ref038 – volume: 23 start-page: 472 year: 2013 ident: key2022082217162993300_ref046 article-title: Prediction of rockburst classification using random forest publication-title: Transactions of Nonferrous Metals Society of China doi: 10.1016/S10036326(13)624875 – volume: 7 start-page: 80 issue: 2 year: 2016 ident: key2022082217162993300_ref119 article-title: Comparison of mapreduce and spark programming frameworks for big data analytics on hdfs publication-title: International Journal of Computer Science Communication – year: 2012 ident: key2022082217162993300_ref135 article-title: Data management challenges and opportunities in cloud computing – volume: 75 start-page: 11763 year: 2016 ident: key2022082217162993300_ref160 article-title: Comparison of random forest, random ferns and support vector machine for eye state classification publication-title: Multimedia Tools and Applications doi: 10.1007/s1104201526350 – volume: 53 issue: 2 year: 2020 ident: key2022082217162993300_ref149 article-title: A survey on distributed machine learning publication-title: ACM Computing Surveys doi: 10.1145/3377454 – volume: 19 start-page: 2392 issue: 4 year: 2017 ident: key2022082217162993300_ref085 article-title: A survey of machine learning techniques applied to self-organizing cellular networks publication-title: IEEE Communications Surveys and Tutorials doi: 10.1109/COMST.2017.2727878 – volume-title: Knowledge Discovery and Data Mining: Challenges and Realities year: 2007 ident: key2022082217162993300_ref158 |
| SSID | ssj0002057385 ssj0017386 |
| Score | 2.2141752 |
| Snippet | PurposeThis work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other... Purpose>This work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other... |
| SourceID | proquest crossref emerald |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 558 |
| SubjectTerms | Activity Units Algorithms Architecture Artificial Intelligence Big Data Classification Cloud computing Companies Computer architecture Computer networks Data analysis Data mining Data processing Data science Datasets Information retrieval Information sources Internet of Things Knowledge Learning Processes Machine learning Motion Parallel processing Probability Random sampling Sampling Sampling methods Shared learning System effectiveness Talking Teaching Methods Validity Velocity Work Writers |
| SummonAdditionalLinks | – databaseName: ABI/INFORM Global dbid: M0C link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60ehDBR1WstpKDiB6WZt_Zk5TW4sGWHooUPCx5bS30ZVv9_Wa2qbUiXrwt7LIEvmTmm8zjA7iWwrjVjFIH1VWdQCruCONZDCCR2TGR9JO8kfb5KW63Wa-XdOyF29yWVa5sYm6o1UTiHXnVQ2If4DTy--mbg6pRmF21EhrbsIPMBkv6WrT-lUVAQUsUlzOkwEk8xlZpSsqqjW4NC348rFAwHtHfcEs_enPX9jl3Os3D_y73CA4s3SS15f44hi09LsJ-7Vv2oAgV27tAbohtTkKwiD31J_DSWKrWkwYO2UV9LK0IHyvS4TNUYhmSVl6RqYkd1tonfNg3i1m8jubE_JCIQZ9gKSoZ5XIUZLrsTjCPp9BtPnTrj47VZHCkoU4Lh2ciYEFoeFkSZFyFXsYypULm6swQSVdy6Wo3i12laax14kecuZhcFGHI8cL1DArjyVifAxEx5YkUSnmRMEGsL4Tn6SBWJqDEIfdhCe5WiKTT5eSNNI9YKEsNeimNUkQvRfRKcGsh--3TDaBLUF4BltrjOk_XaF38_foS9jzsf6DGvPhlKCxm77oCu_JjMZjPrvLd9wl4dN6p priority: 102 providerName: ProQuest |
| Title | Dynamic Distributed and Parallel Machine Learning algorithms for big data mining processing |
| URI | https://www.emerald.com/insight/content/doi/10.1108/DTA-06-2021-0153/full/html https://www.proquest.com/docview/2716442750 |
| Volume | 56 |
| WOSCitedRecordID | wos000732965000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVMCB databaseName: Emerald Management 120 customDbUrl: eissn: 2514-9318 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9288 databaseCode: TMT dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.emerald.com/insight providerName: Emerald – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 2514-9318 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9288 databaseCode: 7WY dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 2514-9318 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9288 databaseCode: M0C dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2514-9318 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9288 databaseCode: P5Z dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2514-9318 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9288 databaseCode: K7- dateStart: 20180101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Education Database customDbUrl: eissn: 2514-9318 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9288 databaseCode: M0P dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/education providerName: ProQuest – providerCode: PRVPQU databaseName: Library Science Database customDbUrl: eissn: 2514-9318 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9288 databaseCode: M1O dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/libraryscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2514-9318 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0002057385 issn: 2514-9288 databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB7x6IELrxYRCtEeEGoPVtbr95ESEBIkWMhqgR6sXe86REoMSlx-f2fWDgjEgQOXkS1ZK3lmd147Mx_AYaHQrJacO4Su6viFlo5Cy4ICCXHHhIWX2Eba35fRcBjf3CTpEgwXvTC2rLJJx1g9Pa7mFKT2qHAbtfDzwAFCr-lnx1S0I6jKAK2a16OMde--nk6sSuZ0TrNB9pxyETT8z4J0olH3nUTE8eLi8p3VXhmqN926LxrbmqGzjc_-gU1Ybx1SdtzsoC1YMtU2HLTtDOyItf1KJD_WKoKv8LffANmzPs3dJcgso5msNEvljMBZJmxgizQNa-e3jpicjB5m4_p-Ome4IFPjEaPqVDa1CBXssWlYwMdvkJ2dZifnTgvT4BToTdWOLJUf-wG6aolfSh2IMi61DmLXlOhbuoUsXOOWkasNj4xJvFDGLt03qiCQlIPdgZXqoTK7wFTEZVIorUWoMK71lBLC-JHGGJPm3gcd-LkQSf7YDOPIbRDD4xx5mfMwJ17mxMsO_GjF8N6nr9jegf2FUPP2BM9zQYGkT9Pv9z6-0ndYE9QewVH7ePuwUs_-mQP4UjzV4_msC8vRn9surP46HabX-HYROUgH_MTSlKh7hTQN7rp25_4HBjHp6w |
| linkProvider | Emerald |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1La9tAEB7SpNBSaNq0Jc6j3UNb2sMSafVaHUoxcUKCHZODKYEeln3JNcSKY7sJ-VH5j5mRpeZB6S2H3gQSCyt9mm9m5_EBfLQGabUIAk7qqjy2TnODzIIfJEXEpDbKq0baH72s35cnJ_nxElw3vTBUVtnYxMpQuzNLZ-Q7ghz7mKaRf5-cc1KNouxqI6GxgEXXX11iyDb7dtjB7_tJiP29we4Br1UFuEXyn3NdmFjGCXoWeVxol4hCFs4lMvQFukKh1Tb0YZGFzgeZ93mUahlSeswkiaYjQ1z2CazEkczot-pm_E_SgvQzScsOfRCeCymbrGggdzqDNtUXCSqIQAKO7rHgg1bgWzqoOG5_9T97O6_gZe1Ms_YC_a9hyZdr8KJ9JzeyBtt1Zwb7zOrWK4Iiq23aG_jZuSr1eGRZh0YIk_qXd0yXjh3rKenMnLKjqt7Us3oU7ZDp0yHuff5rPGO4IDOjIaNCWzauxDbYZNF7gZdvYfAYu38Hy-VZ6deBmSzQuTXOidRgiB4ZI4SPM4fhMo3wT1rwtQGAmizmiqgqHgukQrCoIFUEFkVgacGXGiF_e_Qerlqw1eBD1cZopm7BsfHv2x_g2cHgqKd6h_3uJjwX1OkRoCGNtmB5Pv3tt-GpvZiPZtP3FfAZqEeG0g2TRDtF |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghBCKlCKSB-wB0BwsGKvX-sDQhFuRNUS5RChCg6rfTlEatyQpK360_h3zDhr2iLErQdulmxZsvfbeezMNx_AK6PRrVZhGJC6apAYqwKNngUXJEPEZCYuGiLtl6N8MBDHx8VwDX62XBhqq2xtYmOo7amhM_Iup8A-oWnk3cq3RQzL_ofZj4AUpKjS2spprCBy6C4vMH1bvD8oca1fc97fH338FHiFgcBgILAMVKUTkaQYZRRJpWzKK1FZm4rIVRgWRUaZyEVVHlkX5s4VcaZERKUynaaKjg_xtXfgbo4pJnUTDtOvvwsYpKVJunYYjwQFF6KtkIaiW4561GvEqTkCnXF8wyP-QQu-cg2Nv-s_-o__1GPY8EE26612xRNYc_UmPOxdq5lswp5nbLA3zFOyCKLM27qn8K28rNV0YlhJo4VJFcxZpmrLhmpO-jMn7HPTh-qYH1E7ZupkjN--_D5dMHwh05MxowZcNm1EONhsxcnAyy0Y3cbXP4P1-rR2z4HpPFSF0dbyTGPqHmvNuUtyi2k0jfZPO_CuBYOcreaNyCZPC4VE4MgwkwQcScDpwFuPlr89egNjHdhtsSK9kVrIK6Bs__v2S7iPCJJHB4PDHXjAiQASon2Nd2F9OT9ze3DPnC8ni_mLZg8wkLeMpF83wkRp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Distributed+and+Parallel+Machine+Learning+algorithms+for+big+data+mining+processing&rft.jtitle=Data+technologies+and+applications&rft.au=Djafri%2C+Laouni&rft.date=2022-08-23&rft.pub=Emerald+Publishing+Limited&rft.issn=2514-9288&rft.eissn=2514-9318&rft.volume=56&rft.issue=4&rft.spage=558&rft.epage=601&rft_id=info:doi/10.1108%2FDTA-06-2021-0153&rft.externalDocID=10.1108%2FDTA-06-2021-0153 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2514-9288&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2514-9288&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2514-9288&client=summon |