Dynamic Distributed and Parallel Machine Learning algorithms for big data mining processing

PurposeThis work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other distributed systems such as P2P networks, clusters, clouds computing or other technologies.Design/methodology/approachIn the age of Big Data, all compa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Data technologies and applications Ročník 56; číslo 4; s. 558 - 601
Hlavní autor: Djafri, Laouni
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bingley Emerald Publishing Limited 23.08.2022
Emerald Group Publishing Limited
Témata:
ISSN:2514-9288, 2514-9318
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract PurposeThis work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other distributed systems such as P2P networks, clusters, clouds computing or other technologies.Design/methodology/approachIn the age of Big Data, all companies want to benefit from large amounts of data. These data can help them understand their internal and external environment and anticipate associated phenomena, as the data turn into knowledge that can be used for prediction later. Thus, this knowledge becomes a great asset in companies' hands. This is precisely the objective of data mining. But with the production of a large amount of data and knowledge at a faster pace, the authors are now talking about Big Data mining. For this reason, the authors’ proposed works mainly aim at solving the problem of volume, veracity, validity and velocity when classifying Big Data using distributed and parallel processing techniques. So, the problem that the authors are raising in this work is how the authors can make machine learning algorithms work in a distributed and parallel way at the same time without losing the accuracy of classification results. To solve this problem, the authors propose a system called Dynamic Distributed and Parallel Machine Learning (DDPML) algorithms. To build it, the authors divided their work into two parts. In the first, the authors propose a distributed architecture that is controlled by Map-Reduce algorithm which in turn depends on random sampling technique. So, the distributed architecture that the authors designed is specially directed to handle big data processing that operates in a coherent and efficient manner with the sampling strategy proposed in this work. This architecture also helps the authors to actually verify the classification results obtained using the representative learning base (RLB). In the second part, the authors have extracted the representative learning base by sampling at two levels using the stratified random sampling method. This sampling method is also applied to extract the shared learning base (SLB) and the partial learning base for the first level (PLBL1) and the partial learning base for the second level (PLBL2). The experimental results show the efficiency of our solution that the authors provided without significant loss of the classification results. Thus, in practical terms, the system DDPML is generally dedicated to big data mining processing, and works effectively in distributed systems with a simple structure, such as client-server networks.FindingsThe authors got very satisfactory classification results.Originality/valueDDPML system is specially designed to smoothly handle big data mining classification.
AbstractList PurposeThis work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other distributed systems such as P2P networks, clusters, clouds computing or other technologies.Design/methodology/approachIn the age of Big Data, all companies want to benefit from large amounts of data. These data can help them understand their internal and external environment and anticipate associated phenomena, as the data turn into knowledge that can be used for prediction later. Thus, this knowledge becomes a great asset in companies' hands. This is precisely the objective of data mining. But with the production of a large amount of data and knowledge at a faster pace, the authors are now talking about Big Data mining. For this reason, the authors’ proposed works mainly aim at solving the problem of volume, veracity, validity and velocity when classifying Big Data using distributed and parallel processing techniques. So, the problem that the authors are raising in this work is how the authors can make machine learning algorithms work in a distributed and parallel way at the same time without losing the accuracy of classification results. To solve this problem, the authors propose a system called Dynamic Distributed and Parallel Machine Learning (DDPML) algorithms. To build it, the authors divided their work into two parts. In the first, the authors propose a distributed architecture that is controlled by Map-Reduce algorithm which in turn depends on random sampling technique. So, the distributed architecture that the authors designed is specially directed to handle big data processing that operates in a coherent and efficient manner with the sampling strategy proposed in this work. This architecture also helps the authors to actually verify the classification results obtained using the representative learning base (RLB). In the second part, the authors have extracted the representative learning base by sampling at two levels using the stratified random sampling method. This sampling method is also applied to extract the shared learning base (SLB) and the partial learning base for the first level (PLBL1) and the partial learning base for the second level (PLBL2). The experimental results show the efficiency of our solution that the authors provided without significant loss of the classification results. Thus, in practical terms, the system DDPML is generally dedicated to big data mining processing, and works effectively in distributed systems with a simple structure, such as client-server networks.FindingsThe authors got very satisfactory classification results.Originality/valueDDPML system is specially designed to smoothly handle big data mining classification.
Purpose>This work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other distributed systems such as P2P networks, clusters, clouds computing or other technologies.Design/methodology/approach>In the age of Big Data, all companies want to benefit from large amounts of data. These data can help them understand their internal and external environment and anticipate associated phenomena, as the data turn into knowledge that can be used for prediction later. Thus, this knowledge becomes a great asset in companies' hands. This is precisely the objective of data mining. But with the production of a large amount of data and knowledge at a faster pace, the authors are now talking about Big Data mining. For this reason, the authors’ proposed works mainly aim at solving the problem of volume, veracity, validity and velocity when classifying Big Data using distributed and parallel processing techniques. So, the problem that the authors are raising in this work is how the authors can make machine learning algorithms work in a distributed and parallel way at the same time without losing the accuracy of classification results. To solve this problem, the authors propose a system called Dynamic Distributed and Parallel Machine Learning (DDPML) algorithms. To build it, the authors divided their work into two parts. In the first, the authors propose a distributed architecture that is controlled by Map-Reduce algorithm which in turn depends on random sampling technique. So, the distributed architecture that the authors designed is specially directed to handle big data processing that operates in a coherent and efficient manner with the sampling strategy proposed in this work. This architecture also helps the authors to actually verify the classification results obtained using the representative learning base (RLB). In the second part, the authors have extracted the representative learning base by sampling at two levels using the stratified random sampling method. This sampling method is also applied to extract the shared learning base (SLB) and the partial learning base for the first level (PLBL1) and the partial learning base for the second level (PLBL2). The experimental results show the efficiency of our solution that the authors provided without significant loss of the classification results. Thus, in practical terms, the system DDPML is generally dedicated to big data mining processing, and works effectively in distributed systems with a simple structure, such as client-server networks.Findings>The authors got very satisfactory classification results.Originality/value>DDPML system is specially designed to smoothly handle big data mining classification.
Author Djafri, Laouni
Author_xml – sequence: 1
  givenname: Laouni
  orcidid: 0000-0001-7403-9176
  surname: Djafri
  fullname: Djafri, Laouni
  email: djaafri29tp@gmail.com
BookMark eNptkDtPwzAUhS1UJErpzmiJOdTXsRNnrFpeUhEM3RgsJ75uXeVR7HTovyelMCAx3SPd85C-azJquxYJuQV2D8DUbLmeJyxLOOOQMJDpBRlzCSIpUlCjX82VuiLTGHeMMc5knio5Jh_LY2saX9Glj33w5aFHS01r6bsJpq6xpq-m2voW6QpNaH27oabedMH32yZS1wVa-g21pje08d_vfegqjHGQN-TSmTri9OdOyPrxYb14TlZvTy-L-SqpeCb6xLhSKCELCYVwxkrulLNWKkCX5wIqUwGCy8EiyxGLNDMKmChYKaWBFNMJuTvXDsufB4y93nWH0A6LmueQCcFzyQYXO7uq0MUY0Ol98I0JRw1MnyDqAaJmmT5B1CeIQ2R2jmCDAwz7X-IP9vQL6bB0aw
Cites_doi 10.1007/s00134-017-5034-3
10.1016/j.procs.2015.07.250
10.1007/s13337-020-00610-1
10.1007/s10586-019-02921-5
10.2307/2529310
10.17700/jai.2016.7.1.266
10.1002/cpe.3813
10.1371/journal.pone.0239474
10.1016/j.compbiomed.2020.103795
10.1093/jssam/smaa037
10.1016/j.neucom.2015.08.112
10.3390/atmos11080870
10.2307/2345174
10.1016/j.jclepro.2017.04.172
10.15406/bbij.2017.05.00149
10.1177/0890334420906850
10.1007/978-3-319-08976-8_16
10.14257/ijseia.2015.9.5.03
10.1109/ACCESS.2020.3009328
10.1016/j.procs.2018.10.156
10.1016/j.jksuci.2017.06.001
10.1136/eb-2014-101747
10.1038/s41598-018-37741-x
10.4103/IJPSYM.IJPSYM_504_19
10.1016/j.future.2017.08.011
10.21037/jtd.2017.05.75
10.1108/DTA-08-2019-0146
10.1101/2020.02.27.20028027
10.1016/j.jksuci.2017.12.007
10.2307/23042796
10.1109/CSCI.2014.140
10.1109/ACCESS.2020.2988120
10.1158/1055-9965.EPI-18-0797
10.1007/s10994-019-05800-7
10.4103/00195049.190623
10.3390/sym11060748
10.4018/978-1-7998-0106-1.ch008
10.1093/poq/nfy038
10.1016/j.knosys.2018.09.007
10.1016/j.bdr.2017.01.001
10.1109/ACCESS.2019.2955754
10.1186/s12889-020-09793-0
10.1109/HPCC-SmartCity-DSS.2016.8
10.1186/s13677-019-0139-6
10.1109/TVCG.2012.219
10.1111/head.13707
10.1186/s40537-015-0028-x
10.1016/j.procs.2020.01.079
10.1007/s11227-020-03328-5
10.1016/j.compbiomed.2020.103792
10.1080/0951192X.2019.1610578
10.1155/2015/496179
10.1007/s00607-016-0508-7
10.1101/2020.04.02.20051136
10.1109/IPDPSW50202.2020.00057
10.1007/s41060-018-0102-5
10.1145/2517349.2522737
10.1016/j.jcv.2020.104431
10.1016/j.chaos.2020.110059
10.1007/978-981-15-3325-9_9
10.1007/s11036-013-0489-0
10.1016/j.jpdc.2014.08.003
10.1016/j.jpdc.2014.01.003
10.3390/app11010149
10.4103/jpcs.jpcs_62_19
10.1016/j.jpdc.2017.05.009
10.5194/isprs-archives-XLIIIB4-2020-103-2020
10.1109/access.2018.2880694
10.1016/j.jspi.2010.06.029
10.1007/s41019-016-0022-0
10.1186/s40490-016-0071-1
10.1080/23270012.2020.1728403
10.1186/s40537-019-0206-3
10.1186/s40537-020-00345-2
10.1080/17445760.2018.1446210
10.2307/j.ctvggx33b.13
10.1007/s12652-017-0561-x
10.21307/stattrans-2020-001
10.1186/s12874-020-01067-y
10.1007/s11227-015-1615-5
10.1109/TKDE.2013.109
10.15713/ins.idmjar.9
10.1038/s41598-020-75767-2
10.7812/TPP/18.308
10.1007/s11227-020-03162-9
10.1007/s11222-019-09857-1
10.1007/s00500-017-2739-8
10.1142/s1793005717400014
10.1016/j.ins.2018.04.053
10.1109/IPDPSW50202.2020.00073
10.26599/BDMA.2019.9020015
10.1080/10691898.2020.1851159
10.1038/s41598-018-33980-0
10.1108/IDD-02-2018-0002
10.1109/access.2020.2980942
10.1109/mis.2017.38
10.1016/j.rse.2017.06.041
10.1109/LDAV.2017.8231848
10.1080/00401706.2016.1142900
10.1590/S0102695X2012005000091
10.1109/BigData.7364082
10.1007/s42979-020-00394-7
10.1080/10691898.2020.1720552
10.1109/access.2020.3027675
10.1007/s42979-020-0099-4
10.1016/S10036326(13)624875
10.1007/s1104201526350
10.1145/3377454
10.1109/COMST.2017.2727878
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
0-V
7SC
7WY
7WZ
7XB
8FD
8FE
8FG
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CJNVE
CNYFK
DWQXO
E3H
F2A
F~G
GNUQQ
HCIFZ
JQ2
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M0P
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PYYUZ
Q9U
DOI 10.1108/DTA-06-2021-0153
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
Education Collection
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Education Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
One Social Sciences
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest One Education
ABI/INFORM Global (Corporate)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Library Science
ProQuest Central Korea
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest Computing
Education Collection
ProQuest One Social Sciences
ProQuest Central Basic
ProQuest Education Journals
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest One Education
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Architecture
EISSN 2514-9318
EndPage 601
ExternalDocumentID 10_1108_DTA_06_2021_0153
10.1108/DTA-06-2021-0153
GroupedDBID 3FY
7WY
9F-
AAMCF
AAPBV
AAUDR
ABIJV
ABSDC
ACGFS
ADOMW
AEUCW
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARAPS
ASMFL
BENPR
BVLZF
EBS
ECCUG
GEI
GQ.
H13
HCIFZ
K7-
KBGRL
KLENG
M0P
M1O
SLOBJ
TGG
TMF
TMI
TMT
X0
Z12
.X0
0-V
8FE
8FG
AAYXX
ABJNI
ABUWG
ABYQI
ACXJU
AFFHD
AFKRA
AHAFT
AHMHQ
AODMV
ARALO
AZQEC
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
CJNVE
CNYFK
DWQXO
GNUQQ
K6V
K6~
M0C
M42
P62
PHGZM
PHGZT
PQBIZ
PQEDU
PQGLB
PQQKQ
PROAC
PRQQA
SCAQC
Z11
Z21
-~X
0R~
123
1JL
29P
2RR
4.4
5VS
70U
77I
77K
7SC
7XB
8FD
8NV
8R4
8R5
9E0
AAOWE
AAPSD
ABEAN
ABHCV
ADMHG
AEBZA
AEDOK
AEMMR
AETHF
AFNZV
AIAFM
AJFKA
APPLU
ATGMP
E3H
F2A
FNNZZ
GEA
GEC
GMM
GMN
IJT
J1Y
JI-
JL0
JQ2
L.-
L7M
L~C
L~D
M0N
O9-
OXR
P2P
PKEHL
PQEST
PQUKI
PRINS
Q2X
Q9U
SQT
TDX
TEM
TET
TMD
TMK
TMX
Z22
ID FETCH-LOGICAL-c264t-afb484595194fad52f8fdd581ef7741cac1e1f71de07ee936a810490b55a13e3
IEDL.DBID TMT
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732965000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2514-9288
IngestDate Sat Nov 29 02:23:08 EST 2025
Sat Nov 29 07:43:12 EST 2025
Tue Aug 23 01:30:31 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Big data mining
Big data platforms
Distributed and parallel processing
Statistical sampling
Machine learning
Map-reduce
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-afb484595194fad52f8fdd581ef7741cac1e1f71de07ee936a810490b55a13e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7403-9176
PQID 2716442750
PQPubID 12296
PageCount 44
ParticipantIDs proquest_journals_2716442750
emerald_primary_10_1108_DTA-06-2021-0153
crossref_primary_10_1108_DTA_06_2021_0153
PublicationCentury 2000
PublicationDate 2022-08-23
PublicationDateYYYYMMDD 2022-08-23
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-23
  day: 23
PublicationDecade 2020
PublicationPlace Bingley
PublicationPlace_xml – name: Bingley
PublicationTitle Data technologies and applications
PublicationYear 2022
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2022082217162993300_ref092) 2020
(key2022082217162993300_ref039) 2018; 141
(key2022082217162993300_ref036) 2016; 3
(key2022082217162993300_ref050) 2020; 8
(key2022082217162993300_ref055) 2015
(key2022082217162993300_ref143) 2015
(key2022082217162993300_ref072) 2013; 1
(key2022082217162993300_ref123) 2016
(key2022082217162993300_ref035) 2018; 8
(key2022082217162993300_ref052) 2012; 22
(key2022082217162993300_ref159) 2020; 21
(key2022082217162993300_ref077) 2015; 9
(key2022082217162993300_ref089) 1977; 33
(key2022082217162993300_ref082) 2013
(key2022082217162993300_ref062) 2012
(key2022082217162993300_ref163) 2017; 159
(key2022082217162993300_ref028) 2014; 19
(key2022082217162993300_ref008) 1967
IBM (key2022082217162993300_ref070) 2014
(key2022082217162993300_ref032) 1977
(key2022082217162993300_ref091) 2017; 32
key2022082217162993300_ref145
(key2022082217162993300_ref128) 2020
(key2022082217162993300_ref005) 2011; 141
key2022082217162993300_ref021
(key2022082217162993300_ref022) 2014; 2
HLG-BAS (key2022082217162993300_ref066) 2011
(key2022082217162993300_ref093) 2020; 8
(key2022082217162993300_ref129) 2016
(key2022082217162993300_ref099) 2016; 72
(key2022082217162993300_ref046) 2013; 23
(key2022082217162993300_ref110) 2015; 20
(key2022082217162993300_ref126) 2013
(key2022082217162993300_ref152) 2020; 11
(key2022082217162993300_ref020) 2017
(key2022082217162993300_ref058) 2020; 76
(key2022082217162993300_ref014) 2019; 5
(key2022082217162993300_ref088) 2020; 139
(key2022082217162993300_ref105) 2020; 31
(key2022082217162993300_ref135) 2012
(key2022082217162993300_ref161) 2020; 23
(key2022082217162993300_ref132) 2019; 29
(key2022082217162993300_ref060) 2014
(key2022082217162993300_ref067) 2014; 5
(key2022082217162993300_ref083) 2018
(key2022082217162993300_ref073) 2020; 7
(key2022082217162993300_ref094) 2020
(key2022082217162993300_ref137) 2014; 2
(key2022082217162993300_ref154) 2016; 46
(key2022082217162993300_ref016) 2016; 2
(key2022082217162993300_ref024) 2019; 1187
(key2022082217162993300_ref049) 2005
(key2022082217162993300_ref142) 2016
(key2022082217162993300_ref104) 2020; 2
(key2022082217162993300_ref102) 2014; 17
(key2022082217162993300_ref120) 2014; 155
(key2022082217162993300_ref138) 2020; 29
(key2022082217162993300_ref027) 2013
(key2022082217162993300_ref125) 2017
(key2022082217162993300_ref136) 2020
(key2022082217162993300_ref153) 2018; 6
(key2022082217162993300_ref156) 2014; 26
(key2022082217162993300_ref018) 2015; 126
(key2022082217162993300_ref030) 2019; 7
(key2022082217162993300_ref113) 2019; 8
key2022082217162993300_ref048
(key2022082217162993300_ref080) 2012; 18
(key2022082217162993300_ref108) 2017
(key2022082217162993300_ref043) 2019
(key2022082217162993300_ref038) 2013
(key2022082217162993300_ref056) 2020; 28
(key2022082217162993300_ref085) 2017; 19
(key2022082217162993300_ref002) 2020; 8
(key2022082217162993300_ref101) 2017
(key2022082217162993300_ref026) 2017
(key2022082217162993300_ref037) 2020
(key2022082217162993300_ref119) 2016; 7
(key2022082217162993300_ref044) 2014; 108
(key2022082217162993300_ref157) 2020; 8
key2022082217162993300_ref114
(key2022082217162993300_ref009) 2018; 44
(key2022082217162993300_ref100) 2016; 17
(key2022082217162993300_ref059) 2020
(key2022082217162993300_ref112) 2019; 31
(key2022082217162993300_ref019) 2020
(key2022082217162993300_ref042) 2016; 64
(key2022082217162993300_ref130) 2011; 35
(key2022082217162993300_ref164) 2019; 163
(key2022082217162993300_ref004) 2020; 42
(key2022082217162993300_ref124) 2020
(key2022082217162993300_ref131) 2020
(key2022082217162993300_ref071) 2020; 9
(key2022082217162993300_ref146) 2016; 1
(key2022082217162993300_ref141) 2020
(key2022082217162993300_ref015) 2016; 90
Y.Lee, J. and H.Kim, B. (key2022082217162993300_ref078) 2019; 32
(key2022082217162993300_ref144) 1977
(key2022082217162993300_ref013) 2020
(key2022082217162993300_ref087) 2014; 4
(key2022082217162993300_ref107) 2015; 2
(key2022082217162993300_ref017) 2007
(key2022082217162993300_ref064) 2013
(key2022082217162993300_ref041) 2016; 195
(key2022082217162993300_ref053) 2017; 5
(key2022082217162993300_ref011) 2019; 34
(key2022082217162993300_ref012) 2020; 36
(key2022082217162993300_ref001) 2014
(key2022082217162993300_ref054) 2019; 496
(key2022082217162993300_ref149) 2020; 53
(key2022082217162993300_ref084) 2015
(key2022082217162993300_ref065) 2019; 44
(key2022082217162993300_ref158) 2007
(key2022082217162993300_ref081) 2013
(key2022082217162993300_ref160) 2016; 75
(key2022082217162993300_ref115) 1976; 139
(key2022082217162993300_ref075) 2015; 56
(key2022082217162993300_ref098) 2017; 9
(key2022082217162993300_ref076) 2019; 11
(key2022082217162993300_ref148) 2019; 165
(key2022082217162993300_ref106) 2019; 9
(key2022082217162993300_ref116) 2020; 8
(key2022082217162993300_ref111) 2017; 203
(key2022082217162993300_ref117) 2016; 19
(key2022082217162993300_ref122) 2020; 8
(key2022082217162993300_ref040) 2013
(key2022082217162993300_ref068) 2020; 20
(key2022082217162993300_ref109) 2020
(key2022082217162993300_ref063) 2015; 1
(key2022082217162993300_ref090) 2020
(key2022082217162993300_ref147) 2016; 98
(key2022082217162993300_ref097) 2020; 118
(key2022082217162993300_ref023) 2016; 7
(key2022082217162993300_ref025) 2013; 13
(key2022082217162993300_ref057) 2013
(key2022082217162993300_ref069) 2019; 28
(key2022082217162993300_ref121) 2016; 3
(key2022082217162993300_ref151) 2008
(key2022082217162993300_ref061) 2020; 15
(key2022082217162993300_ref103) 2020
(key2022082217162993300_ref007) 2015; 79
(key2022082217162993300_ref047) 2013
(key2022082217162993300_ref045) 2018; 46
(key2022082217162993300_ref118) 2017; 21
(key2022082217162993300_ref127) 2019; 108
(key2022082217162993300_ref031) 2020; 11
(key2022082217162993300_ref034) 2015
(key2022082217162993300_ref162) 2020; 29
(key2022082217162993300_ref010) 2018; 79
(key2022082217162993300_ref095) 2018; 82
(key2022082217162993300_ref096) 2020; 3
(key2022082217162993300_ref074) 2013
(key2022082217162993300_ref086) 2012
(key2022082217162993300_ref029) 2016
(key2022082217162993300_ref003) 2020; 10
(key2022082217162993300_ref006) 2020; 121
Concurrency-Computat:Pract.Exper (key2022082217162993300_ref033) 2016
(key2022082217162993300_ref139) 2017
(key2022082217162993300_ref079) 2014; 74
(key2022082217162993300_ref133) 2019; 11
(key2022082217162993300_ref134) 2020; 24
(key2022082217162993300_ref150) 2020; 7
(key2022082217162993300_ref155) 2020
(key2022082217162993300_ref140) 2017; 13
(key2022082217162993300_ref051) 2016
References_xml – start-page: 1
  year: 2013
  ident: key2022082217162993300_ref047
  article-title: From big data to big data mining: challenges, issues, and opportunities
– year: 2011
  ident: key2022082217162993300_ref066
  article-title: Strategic vision of the high-level group for strategic developments in business architecture in statistics
– volume: 1
  start-page: 218
  issue: 4
  year: 2013
  ident: key2022082217162993300_ref072
  article-title: Review on parallel and distributed computing
  publication-title: Scholars Journal of Engineering and Technology
– volume: 44
  start-page: 1524
  year: 2018
  ident: key2022082217162993300_ref009
  article-title: What's new in icu in 2050: big data and machine learning
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-017-5034-3
– volume-title: The Top Five Ways to Get Started with Big Data
  year: 2014
  ident: key2022082217162993300_ref070
– volume: 56
  start-page: 592
  year: 2015
  ident: key2022082217162993300_ref075
  article-title: The internet of energy: smart sensor networks and big data management for smart grid
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.07.250
– volume: 31
  start-page: 204
  year: 2020
  ident: key2022082217162993300_ref105
  article-title: Statistical analysis and visualization of the potential cases of pandemic coronavirus
  publication-title: VirusDis
  doi: 10.1007/s13337-020-00610-1
– volume: 23
  issue: 1
  year: 2020
  ident: key2022082217162993300_ref161
  article-title: On construction of an energy monitoring service using big data technology for the smart campus
  publication-title: Cluster Computing
  doi: 10.1007/s10586-019-02921-5
– volume: 33
  start-page: 159
  issue: 1
  year: 1977
  ident: key2022082217162993300_ref089
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– start-page: 1351
  year: 2005
  ident: key2022082217162993300_ref049
  article-title: The sampling lens: making sense of saturated visualisations
– volume: 7
  start-page: 53
  issue: 1
  year: 2016
  ident: key2022082217162993300_ref023
  article-title: Efficiency of random sampling based data size reduction on computing time and validity of clustering in data mining
  publication-title: Journal of Agricultural Informatics
  doi: 10.17700/jai.2016.7.1.266
– volume: 8
  start-page: 1
  issue: 1
  year: 2020
  ident: key2022082217162993300_ref002
  article-title: Solution approach to big data regarding parameter estimation problems in predictive analytics model
  publication-title: Research Journal of Computer and Information Technology Sciences
– volume-title: Parallel and Distributed Computing for Big Data Applications
  year: 2016
  ident: key2022082217162993300_ref033
  doi: 10.1002/cpe.3813
– volume: 15
  issue: 9
  year: 2020
  ident: key2022082217162993300_ref061
  article-title: A machine learning algorithm to increase covid-19 inpatient diagnostic capacity
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0239474
– volume: 121
  year: 2020
  ident: key2022082217162993300_ref006
  article-title: Application of deep learning technique to manage covid-19 in routine clinical practice using ct images: Re- sults of 10 convolutional neural networks
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103795
– year: 2020
  ident: key2022082217162993300_ref124
  article-title: Blending probability and nonprobability samples with applications to a survey of military caregivers
  publication-title: Journal of Survey Statistics and Methodology
  doi: 10.1093/jssam/smaa037
– volume: 126
  start-page: 67
  year: 2015
  ident: key2022082217162993300_ref018
  article-title: Random sample, quota sample: the teachings of the evs 2008 survey in France
  publication-title: BMS: Bulletin of Sociological Methodology/Bulletin De Méthodologie Sociologique
– volume: 195
  start-page: 143
  year: 2016
  ident: key2022082217162993300_ref041
  article-title: Efficient knn classification algorithm for big data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.112
– volume: 11
  year: 2020
  ident: key2022082217162993300_ref152
  article-title: Typhoon quantitative rainfall prediction from big data analytics by using the Apache hadoop spark parallel computing framework
  publication-title: Atmosphere
  doi: 10.3390/atmos11080870
– start-page: 15
  volume-title: Springer Texts in Statistics
  year: 2013
  ident: key2022082217162993300_ref074
  article-title: Statistical learning.in: an introduction to statistical learning
– volume: 139
  start-page: 183
  issue: 2
  year: 1976
  ident: key2022082217162993300_ref115
  article-title: The foundations of survey sampling: a review
  publication-title: Journal of the Royal Statistical Society
  doi: 10.2307/2345174
– volume: 159
  start-page: 229
  year: 2017
  ident: key2022082217162993300_ref163
  article-title: A framework for big data driven product lifecycle management
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2017.04.172
– volume: 5
  start-page: 138
  issue: 6
  year: 2017
  ident: key2022082217162993300_ref053
  article-title: Sampling and sampling methods
  publication-title: Biometrics and Biostatistics International Journal
  doi: 10.15406/bbij.2017.05.00149
– year: 2013
  ident: key2022082217162993300_ref027
  article-title: From big data to big data mining: challenges, issues, and opportunities
  publication-title: Database Systems for Advanced Applications
– volume: 8
  issue: 11
  year: 2019
  ident: key2022082217162993300_ref113
  article-title: Optimized sampling strategy for big data mining through stratified sampling
  publication-title: International Journal of Scientific and Technology Research
– volume: 29
  start-page: 6633
  issue: 5
  year: 2020
  ident: key2022082217162993300_ref138
  article-title: Hadoop ecosystem analytics and big data for advanced computing platforms
  publication-title: International Journal of Advanced Science and Technology
– volume: 36
  start-page: 224
  issue: 2
  year: 2020
  ident: key2022082217162993300_ref012
  article-title: Sampling methods
  publication-title: Journal of Human Lactation
  doi: 10.1177/0890334420906850
– ident: key2022082217162993300_ref048
  doi: 10.1007/978-3-319-08976-8_16
– volume: 9
  start-page: 21
  issue: 5
  year: 2015
  ident: key2022082217162993300_ref077
  article-title: A divided regression analysis for big data
  publication-title: International Journal of Software Engineering and Its Applications
  doi: 10.14257/ijseia.2015.9.5.03
– volume: 2
  issue: 5
  year: 2016
  ident: key2022082217162993300_ref016
  article-title: Big data and Apache spark: a review
  publication-title: International Journal of Engineering Research Science
– volume: 8
  start-page: 130820
  year: 2020
  ident: key2022082217162993300_ref116
  article-title: Artificial intelligence (ai) and big data for coronavirus (covid-19) pandemic: a survey on the state-of-the-arts
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009328
– volume: 141
  start-page: 112
  year: 2018
  ident: key2022082217162993300_ref039
  article-title: Cloud platform using big data and hpc technologies for distributed and parallels treatments
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.10.156
– year: 2017
  ident: key2022082217162993300_ref108
  article-title: Big data technologies: a survey
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2017.06.001
– volume-title: Spark Tutorial:learn Spark Programming
  year: 2020
  ident: key2022082217162993300_ref037
– volume: 17
  start-page: 32
  issue: 2
  year: 2014
  ident: key2022082217162993300_ref102
  article-title: Selecting the sample
  publication-title: Evidence Based Nursing
  doi: 10.1136/eb-2014-101747
– volume: 9
  issue: 1
  year: 2019
  ident: key2022082217162993300_ref106
  article-title: A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-37741-x
– volume: 29
  start-page: 4106
  issue: 4
  year: 2020
  ident: key2022082217162993300_ref162
  article-title: Optimizing mapreduce model for big data analytics using subtractive clustering algorithm
  publication-title: International Journal of Advanced Science and Technology
– volume: 42
  start-page: 102
  issue: 1
  year: 2020
  ident: key2022082217162993300_ref004
  article-title: Sample size and its importance in research
  publication-title: Indian Journal of Psychological Medicine
  doi: 10.4103/IJPSYM.IJPSYM_504_19
– volume: 79
  start-page: 1
  year: 2018
  ident: key2022082217162993300_ref010
  article-title: Configuring in-memory cluster computing using random forest
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2017.08.011
– volume: 9
  start-page: 1730
  issue: 6
  year: 2017
  ident: key2022082217162993300_ref098
  article-title: Types of biological variables
  publication-title: Journal of Thoracic Disease
  doi: 10.21037/jtd.2017.05.75
– year: 2020
  ident: key2022082217162993300_ref128
  article-title: Chicken swarm foraging algorithm for big data classification using the deep belief network classifier
  publication-title: Data Technologies and Applications
  doi: 10.1108/DTA-08-2019-0146
– volume-title: A Machine Learning-Based Model for Survival Prediction in Patients with Severe Covid19 Infection
  year: 2020
  ident: key2022082217162993300_ref092
  doi: 10.1101/2020.02.27.20028027
– volume: 31
  start-page: 415
  issue: 4
  year: 2019
  ident: key2022082217162993300_ref112
  article-title: Implications of big data analytics in developing healthcare frameworks – a review
  publication-title: Journal of King Saud University – Computer and Information Sciences
  doi: 10.1016/j.jksuci.2017.12.007
– volume: 35
  start-page: 553
  year: 2011
  ident: key2022082217162993300_ref130
  article-title: Predictive analytics in information systems research
  publication-title: Management Information Systems
  doi: 10.2307/23042796
– start-page: 288
  year: 2014
  ident: key2022082217162993300_ref001
  article-title: Hadoop architecture and its issues
  doi: 10.1109/CSCI.2014.140
– volume: 8
  start-page: 72713
  year: 2020
  ident: key2022082217162993300_ref093
  article-title: Mpling for big data profiling: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2988120
– volume: 2
  start-page: 63
  issue: 3
  year: 2015
  ident: key2022082217162993300_ref107
  article-title: Efficiency of some sampling techniques
  publication-title: Journal of Scientific Research and Studies
– volume: 28
  start-page: 471
  issue: 3
  year: 2019
  ident: key2022082217162993300_ref069
  article-title: Weighting nonprobability and probability sample surveys in describing cancer catchment areas
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-18-0797
– volume: 19
  issue: 11
  year: 2016
  ident: key2022082217162993300_ref117
  article-title: A journey from big data towards prescriptive analytics
  publication-title: Arpn Journal of Engineering and Applied Sciences
– volume: 108
  year: 2019
  ident: key2022082217162993300_ref127
  article-title: Engineering fast multilevel support vector machines
  publication-title: Machine Learning
  doi: 10.1007/s10994-019-05800-7
– volume: 5
  start-page: 6238
  issue: 5
  year: 2014
  ident: key2022082217162993300_ref067
  article-title: The hadoop distributed file system
  publication-title: International Journal of Computer Science and Information Technologies
– volume: 90
  start-page: 662
  issue: 9
  year: 2016
  ident: key2022082217162993300_ref015
  article-title: Basic statistical tools in research and data analysis
  publication-title: Indian Journal of Anaesthesia
  doi: 10.4103/00195049.190623
– volume-title: Statistics, an Introductory Analysis
  year: 1967
  ident: key2022082217162993300_ref008
– volume: 11
  issue: 6
  year: 2019
  ident: key2022082217162993300_ref076
  article-title: An efficient mapreduce based parallel processing framework for user based collaborative filtering
  publication-title: Symmetry
  doi: 10.3390/sym11060748
– volume: 3
  year: 2016
  ident: key2022082217162993300_ref121
  article-title: A survey on: predictive analytics for credit risk assessment
  publication-title: International Research Journal of Engineering and Technology
– start-page: 1
  volume-title: The Big-Data Revolution in Us Health Care: Accelerating Value and Innovation
  year: 2013
  ident: key2022082217162993300_ref082
– volume-title: Enhanced Logistic Regression (Elr) Model for Big-Data
  year: 2019
  ident: key2022082217162993300_ref043
  doi: 10.4018/978-1-7998-0106-1.ch008
– volume: 82
  start-page: 707
  issue: 4
  year: 2018
  ident: key2022082217162993300_ref095
  article-title: The accuracy of measurements with probability and nonprobability survey samples: replication and extension
  publication-title: Public Opinion Quarterly
  doi: 10.1093/poq/nfy038
– volume: 163
  start-page: 416
  year: 2019
  ident: key2022082217162993300_ref164
  article-title: A stratified sampling based clustering algorithm for large-scale data
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2018.09.007
– volume-title: Applying Parallel Computing Techniques to Analyze Terabyte Atmospheric Boundary Layer Model Outputs
  year: 2017
  ident: key2022082217162993300_ref139
  doi: 10.1016/j.bdr.2017.01.001
– volume: 8
  start-page: 28808
  year: 2020
  ident: key2022082217162993300_ref157
  article-title: Medical health big data classification based on knn classification algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2955754
– volume: 108
  issue: 12
  year: 2014
  ident: key2022082217162993300_ref044
  article-title: Big data analytics using hadoop
  publication-title: International Journal of Computer Applications
– volume: 2
  start-page: 1
  issue: 1
  year: 2014
  ident: key2022082217162993300_ref022
  article-title: Critical insight for mapreduce optimization in hadoop
  publication-title: International Journal of Computer Science and Control Engineering
– volume: 20
  year: 2020
  ident: key2022082217162993300_ref068
  article-title: Area based stratified random sampling using geospatial technology in a community-based survey
  publication-title: BMC Public Health
  doi: 10.1186/s12889-020-09793-0
– year: 2016
  ident: key2022082217162993300_ref123
  article-title: Big data: the v's of the game changer paradigm
  doi: 10.1109/HPCC-SmartCity-DSS.2016.8
– volume-title: Enterprise Information Protection- the Impact of Big Data
  year: 2013
  ident: key2022082217162993300_ref057
– volume: 9
  issue: 8
  year: 2020
  ident: key2022082217162993300_ref071
  article-title: Improvement of job completion time in data-intensive cloud computing applications
  publication-title: Journal of Cloud Computing
  doi: 10.1186/s13677-019-0139-6
– start-page: 599
  year: 2014
  ident: key2022082217162993300_ref060
  article-title: Graphx: graph processing in a distributed dataflow framework
– start-page: 1
  year: 2015
  ident: key2022082217162993300_ref143
  article-title: An influence assessment method based on co-occurrence for topologi- cally reduced big data sets
  publication-title: Soft Computing
– volume: 18
  start-page: 2917
  issue: 12
  year: 2012
  ident: key2022082217162993300_ref080
  article-title: Enterprise data analysis and visualization: an interview study
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2012.219
– volume-title: Practical Statistics for Data Scientists
  year: 2017
  ident: key2022082217162993300_ref020
– ident: key2022082217162993300_ref145
  doi: 10.1111/head.13707
– volume: 13
  start-page: 1
  issue: 2
  year: 2013
  ident: key2022082217162993300_ref025
  article-title: An architecture for big data analytics
  publication-title: Communications of the IIMA
– volume: 20
  issue: 2
  year: 2015
  ident: key2022082217162993300_ref110
  article-title: Big data in manufacturing: a systematic mapping study
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-015-0028-x
– volume: 165
  start-page: 104
  year: 2019
  ident: key2022082217162993300_ref148
  article-title: A review of dimensionality reduction techniques for efficient computation
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.01.079
– volume-title: Exploratory Data Analysis
  year: 1977
  ident: key2022082217162993300_ref144
– volume: 4
  issue: 5
  year: 2014
  ident: key2022082217162993300_ref087
  article-title: Survey on hadoop and introduction to yarn
  publication-title: International Journal of Emerging Technology and Advanced Engineering
– year: 2020
  ident: key2022082217162993300_ref103
  article-title: Investigating the performance of hadoop and spark platforms on machine learning algorithms
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-020-03328-5
– year: 2020
  ident: key2022082217162993300_ref109
  article-title: Automated detection of covid-19 cases using deep neural networks with x-ray images
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103792
– volume: 32
  start-page: 723
  year: 2019
  ident: key2022082217162993300_ref078
  article-title: Cloud-based big data analytics platform using algorithm templates for the manufacturing industry
  publication-title: International Journal of Computer Integrated Manufacturing
  doi: 10.1080/0951192X.2019.1610578
– year: 2015
  ident: key2022082217162993300_ref055
  article-title: Study on a stratified sampling investigation method for resident travel and the sampling rate
  publication-title: Discrete Dynamics in Nature and Society
  doi: 10.1155/2015/496179
– volume-title: Chapter 6: Unequal Probability Sampling
  year: 2012
  ident: key2022082217162993300_ref086
  article-title: Sampling
– volume: 2
  start-page: 1
  issue: 11
  year: 2014
  ident: key2022082217162993300_ref137
  article-title: Sampling techniques and determination of sample size in applied statistics research: an overview
  publication-title: International Journal of Economics, Commerce and Management
– volume: 98
  start-page: 967
  year: 2016
  ident: key2022082217162993300_ref147
  article-title: A brief introduction to distributed systems
  publication-title: Computing
  doi: 10.1007/s00607-016-0508-7
– volume-title: Rapid and Accurate Identification of Covid-19 Infection through Machine Learning Based on Clinical Available Blood Test Results
  year: 2020
  ident: key2022082217162993300_ref155
  doi: 10.1101/2020.04.02.20051136
– volume-title: Big Data Fundamentals: Concepts, Drivers and Techniques
  year: 2016
  ident: key2022082217162993300_ref051
– year: 2020
  ident: key2022082217162993300_ref019
  article-title: A framework for the evaluation of parallel and distributed computing educational resources
  doi: 10.1109/IPDPSW50202.2020.00057
– volume: 6
  start-page: 189
  year: 2018
  ident: key2022082217162993300_ref153
  article-title: Data science: the impact of statistics
  publication-title: International Journal of Data Science and Analytics
  doi: 10.1007/s41060-018-0102-5
– volume: 3
  issue: 3
  year: 2016
  ident: key2022082217162993300_ref036
  article-title: Classification of machine learning algorithms
  publication-title: International Journal of Innovative Research in Advanced Engineering
– start-page: 171
  volume-title: The Recruitment, Sampling, and Enrollment Plan Epidemiology: Principles and Practical Guidelines
  year: 2013
  ident: key2022082217162993300_ref040
– start-page: 404
  year: 2013
  ident: key2022082217162993300_ref081
  article-title: Big data: issues, challenges, tools and good practices
– start-page: 515
  year: 2016
  ident: key2022082217162993300_ref029
  article-title: Gpu computations on hadoop clusters for massive data processing
– start-page: 125
  year: 2012
  ident: key2022082217162993300_ref062
  article-title: Selecting research participants
  publication-title: Behavior Research Methods
– year: 2013
  ident: key2022082217162993300_ref064
  article-title: Discretized streams: fault- tolerant streaming computation at scale
  doi: 10.1145/2517349.2522737
– year: 2020
  ident: key2022082217162993300_ref141
  article-title: Combination of four clinical indicators predicts the severe/critical symptom of patients infected covid-19
  publication-title: Journal of Clinical Virology
  doi: 10.1016/j.jcv.2020.104431
– volume: 139
  issue: C
  year: 2020
  ident: key2022082217162993300_ref088
  article-title: Applications of machine learning and artificial intelligence for covid-19 (sars-cov-2) pandemic: a review
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2020.110059
– ident: key2022082217162993300_ref114
  doi: 10.1007/978-981-15-3325-9_9
– volume: 19
  start-page: 171
  issue: 2
  year: 2014
  ident: key2022082217162993300_ref028
  article-title: Big data: a survey
  publication-title: Mobile Networks and Application
  doi: 10.1007/s11036-013-0489-0
– volume: 79
  start-page: 3
  year: 2015
  ident: key2022082217162993300_ref007
  article-title: Big data computing and clouds: trends and future directions
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2014.08.003
– volume: 74
  start-page: 2561
  issue: 7
  year: 2014
  ident: key2022082217162993300_ref079
  article-title: Trends in big data analytics
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2014.01.003
– volume-title: Harness the Power of Big Data: The Ibm Big Data Platform
  year: 2013
  ident: key2022082217162993300_ref126
– volume: 11
  issue: 1
  year: 2020
  ident: key2022082217162993300_ref031
  article-title: Minimizing resource waste in heterogeneous resource allocation for data stream processing on clouds
  publication-title: Applied Sciences
  doi: 10.3390/app11010149
– volume: 5
  start-page: 157
  issue: 3
  year: 2019
  ident: key2022082217162993300_ref014
  article-title: Types of sampling in research
  publication-title: Journal of the Practice of Cardiovascular Sciences
  doi: 10.4103/jpcs.jpcs_62_19
– year: 2017
  ident: key2022082217162993300_ref101
  article-title: A scalable method for link prediction in large real world networks
  publication-title: Journal of Parallel and Distributed Computing
  doi: 10.1016/j.jpdc.2017.05.009
– start-page: 103
  year: 2020
  ident: key2022082217162993300_ref059
  article-title: Area estimation of multi-temporal global impervious land cover based on stratified random sampling
  publication-title: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  doi: 10.5194/isprs-archives-XLIIIB4-2020-103-2020
– volume: 7
  year: 2019
  ident: key2022082217162993300_ref030
  article-title: Progress on artificial neural networks for big data analytics: a survey
  publication-title: IEEE Access
  doi: 10.1109/access.2018.2880694
– volume: 1187
  issue: 5
  year: 2019
  ident: key2022082217162993300_ref024
  article-title: Big data mining for investor sentiment
  publication-title: Journal of Physics: Conference Series
– volume: 11
  issue: 4
  year: 2019
  ident: key2022082217162993300_ref133
  article-title: Data mining classification techniques – comparison for better accuracy in prediction of cardiovascular disease
  publication-title: International Journal of Data Analysis Techniques and Strategies
– volume: 141
  start-page: 597
  issue: 1
  year: 2011
  ident: key2022082217162993300_ref005
  article-title: Simple random sampling with over-replacement
  publication-title: Journal of Statistical Planning and Inference
  doi: 10.1016/j.jspi.2010.06.029
– volume: 155
  issue: 4
  year: 2014
  ident: key2022082217162993300_ref120
  article-title: Analysing large datasets of functional data: a survey sampling point of view
  publication-title: Journal de la Société Francaise de Statistique
– volume: 1
  start-page: 265
  year: 2016
  ident: key2022082217162993300_ref146
  article-title: Big data reduction methods: a survey
  publication-title: Data Science and Engineering
  doi: 10.1007/s41019-016-0022-0
– volume: 46
  issue: 15
  year: 2016
  ident: key2022082217162993300_ref154
  article-title: Simple random sampling of individual items in the absence of a sampling frame that lists the individuals
  publication-title: New Zealand Journal of Forestry Science
  doi: 10.1186/s40490-016-0071-1
– volume: 7
  start-page: 424
  issue: 3
  year: 2020
  ident: key2022082217162993300_ref150
  article-title: Big data analytics for retail industry using mapreduce-apriori framework
  publication-title: Journal of Management Analytics
  doi: 10.1080/23270012.2020.1728403
– volume: 44
  issue: 6
  year: 2019
  ident: key2022082217162993300_ref065
  article-title: Uncertainty in big data analytics: survey, opportunities, and challenges
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-019-0206-3
– year: 2016
  ident: key2022082217162993300_ref142
  article-title: Sampling methods in research methodology; how to choose a sampling technique for research
  publication-title: International Journal of Academic Research in Management
– volume: 7
  issue: 1
  year: 2020
  ident: key2022082217162993300_ref073
  article-title: Prediction of probable backorder scenarios in the supply chain using distributed random forest and gradient boosting machine learning techniques
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-020-00345-2
– volume: 34
  issue: 6
  year: 2019
  ident: key2022082217162993300_ref011
  article-title: Parallel and distributed clustering framework for big spatial data mining
  publication-title: International Journal of Parallel, Emergent and Distributed Systems
  doi: 10.1080/17445760.2018.1446210
– volume-title: The Hadoop Distributed File System: Architecture and Design
  year: 2007
  ident: key2022082217162993300_ref017
– ident: key2022082217162993300_ref021
  doi: 10.2307/j.ctvggx33b.13
– year: 2017
  ident: key2022082217162993300_ref026
  article-title: Advancement and applicability of classifiers for variant exponential model to optimize the accuracy for deep learning
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-017-0561-x
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: key2022082217162993300_ref159
  article-title: Estimation of finite population mean using two auxiliary variables under stratified random sampling
  publication-title: Statistics in Transition New Series
  doi: 10.21307/stattrans-2020-001
– year: 2020
  ident: key2022082217162993300_ref090
  article-title: Recruiting a representative sample of urban south australian aboriginal adults for a survey on alcohol consumption
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/s12874-020-01067-y
– volume: 72
  start-page: 3489
  year: 2016
  ident: key2022082217162993300_ref099
  article-title: Real time intrusion detection system for ultra-high-speed big data environments
  publication-title: Journal of Supercomputing
  doi: 10.1007/s11227-015-1615-5
– volume: 26
  start-page: 97
  issue: 1
  year: 2014
  ident: key2022082217162993300_ref156
  article-title: Data mining with big data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2013.109
– volume-title: Bhandari, Introduction to the Hadoop Ecosystem for Big Data and Data Engineering
  year: 2020
  ident: key2022082217162993300_ref013
– start-page: 4
  volume-title: Sampling Techniques
  year: 1977
  ident: key2022082217162993300_ref032
– volume: 1
  year: 2015
  ident: key2022082217162993300_ref063
  article-title: Estimation of sample size in dental research
  publication-title: International Dental and Medical Journal of Advanced Research
  doi: 10.15713/ins.idmjar.9
– volume: 10
  year: 2020
  ident: key2022082217162993300_ref003
  article-title: Machine learning prediction for mortality of patients diagnosed with covid-19: a nationwide Korean cohort study
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-75767-2
– volume: 24
  year: 2020
  ident: key2022082217162993300_ref134
  article-title: On the use of sampling weights for retrospective medical record reviews
  publication-title: The Permanente Journal
  doi: 10.7812/TPP/18.308
– volume-title: Interconnection Networks for Parallel Computers
  year: 2008
  ident: key2022082217162993300_ref151
– volume: 76
  start-page: 7177
  year: 2020
  ident: key2022082217162993300_ref058
  article-title: Designing a mapreduce performance model in distributed heterogeneous platforms based on benchmarking approach
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-020-03162-9
– volume: 29
  start-page: 1095
  year: 2019
  ident: key2022082217162993300_ref132
  article-title: Learning bayesian networks from big data with greedy search: computational complexity and efficient implementation
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-019-09857-1
– volume: 21
  start-page: 4497
  issue: 16
  year: 2017
  ident: key2022082217162993300_ref118
  article-title: AutoCompBD: Autonomic computing and big data platforms
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2739-8
– year: 2020
  ident: key2022082217162993300_ref136
  article-title: Comparison of regression and classification models for user-independent and personal stress detection
  publication-title: Sensors
– volume: 13
  issue: 2
  year: 2017
  ident: key2022082217162993300_ref140
  article-title: A mathematical foundation of big data
  publication-title: New Mathematics and Natural Computation
  doi: 10.1142/s1793005717400014
– volume: 496
  start-page: 300
  year: 2019
  ident: key2022082217162993300_ref054
  article-title: A multi-factor monitoring fault tolerance model based on a gpu cluster for big data processing
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.04.053
– start-page: 203
  year: 2018
  ident: key2022082217162993300_ref083
  article-title: 10 vs, issues and challenges of big data
– year: 2020
  ident: key2022082217162993300_ref094
  article-title: Workshop 7: hpbdc high-performance big data and cloud computing
  doi: 10.1109/IPDPSW50202.2020.00073
– volume: 17
  start-page: 1
  issue: 34
  year: 2016
  ident: key2022082217162993300_ref100
  article-title: Mllib: machine learning in Apache spark
  publication-title: Journal of Machine Learning Research
– volume: 3
  start-page: 85
  issue: 2
  year: 2020
  ident: key2022082217162993300_ref096
  article-title: A survey of data partitioning and sampling methods to support big data analysis
  publication-title: Big Data Mining and Analytics
  doi: 10.26599/BDMA.2019.9020015
– year: 2020
  ident: key2022082217162993300_ref131
  article-title: Data science in 2020: computing, cur- ricula, and challenges for the next 10 years
  publication-title: Journal of Statistics Education
  doi: 10.1080/10691898.2020.1851159
– volume: 8
  issue: 1
  year: 2018
  ident: key2022082217162993300_ref035
  article-title: Predicting the need for a reduced drug dose at first prescription
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-33980-0
– volume: 46
  start-page: 147
  issue: 3
  year: 2018
  ident: key2022082217162993300_ref045
  article-title: Big data analytics for prediction: parallel process- ing of the big learning base with the possibility of improving the final result of the prediction
  publication-title: Information Discovery and Delivery
  doi: 10.1108/IDD-02-2018-0002
– volume: 8
  start-page: 54776
  year: 2020
  ident: key2022082217162993300_ref122
  article-title: Analysis of dimensionality reduction techniques on big data
  publication-title: IEEE Access
  doi: 10.1109/access.2020.2980942
– volume: 32
  start-page: 9
  issue: 2
  year: 2017
  ident: key2022082217162993300_ref091
  article-title: Challenges of feature selection for big data analytics
  publication-title: IEEE Intelligent Systems
  doi: 10.1109/mis.2017.38
– volume: 203
  start-page: 240
  year: 2017
  ident: key2022082217162993300_ref111
  article-title: Stratification and sample allocation for reference burned area data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2017.06.041
– year: 2017
  ident: key2022082217162993300_ref125
  article-title: Sampling techniques to improve big data exploration
  doi: 10.1109/LDAV.2017.8231848
– year: 2016
  ident: key2022082217162993300_ref129
  article-title: Online updating of statistical inference in the big data setting
  publication-title: Technometrics
  doi: 10.1080/00401706.2016.1142900
– volume: 22
  issue: 6
  year: 2012
  ident: key2022082217162993300_ref052
  article-title: Probability sampling design in ethnobotanical surveys of medicinal plants
  publication-title: Revista Brasileira de Farmacognosia
  doi: 10.1590/S0102695X2012005000091
– year: 2015
  ident: key2022082217162993300_ref084
  article-title: Lambda architecture for cost effective batch and speed big data processing
  doi: 10.1109/BigData.7364082
– volume: 64
  year: 2016
  ident: key2022082217162993300_ref042
  article-title: Data types
  publication-title: Journal of The Association of Physicians of India
– volume: 2
  issue: 1
  year: 2020
  ident: key2022082217162993300_ref104
  article-title: Supervised machine learning models for prediction of covid-19 infection using epidemiology dataset
  publication-title: SN Computer Science
  doi: 10.1007/s42979-020-00394-7
– year: 2015
  ident: key2022082217162993300_ref034
  article-title: Heterogeneous architectures for parallel acceleration
– volume: 28
  start-page: 18
  issue: 1
  year: 2020
  ident: key2022082217162993300_ref056
  article-title: Introducing undergraduates to concepts of survey data analysis
  publication-title: Journal of Statistics Education
  doi: 10.1080/10691898.2020.1720552
– volume: 8
  start-page: 178526
  year: 2020
  ident: key2022082217162993300_ref050
  article-title: Distributed data strategies to support large-scale data analysis across geo-distributed data centers
  publication-title: IEEE Access
  doi: 10.1109/access.2020.3027675
– volume: 118
  issue: 1
  year: 2020
  ident: key2022082217162993300_ref097
  article-title: Machine learning techniques to identify dementia
  publication-title: SN Comput Sci
  doi: 10.1007/s42979-020-0099-4
– volume-title: Keeping up with the Quants
  year: 2013
  ident: key2022082217162993300_ref038
– volume: 23
  start-page: 472
  year: 2013
  ident: key2022082217162993300_ref046
  article-title: Prediction of rockburst classification using random forest
  publication-title: Transactions of Nonferrous Metals Society of China
  doi: 10.1016/S10036326(13)624875
– volume: 7
  start-page: 80
  issue: 2
  year: 2016
  ident: key2022082217162993300_ref119
  article-title: Comparison of mapreduce and spark programming frameworks for big data analytics on hdfs
  publication-title: International Journal of Computer Science Communication
– year: 2012
  ident: key2022082217162993300_ref135
  article-title: Data management challenges and opportunities in cloud computing
– volume: 75
  start-page: 11763
  year: 2016
  ident: key2022082217162993300_ref160
  article-title: Comparison of random forest, random ferns and support vector machine for eye state classification
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s1104201526350
– volume: 53
  issue: 2
  year: 2020
  ident: key2022082217162993300_ref149
  article-title: A survey on distributed machine learning
  publication-title: ACM Computing Surveys
  doi: 10.1145/3377454
– volume: 19
  start-page: 2392
  issue: 4
  year: 2017
  ident: key2022082217162993300_ref085
  article-title: A survey of machine learning techniques applied to self-organizing cellular networks
  publication-title: IEEE Communications Surveys and Tutorials
  doi: 10.1109/COMST.2017.2727878
– volume-title: Knowledge Discovery and Data Mining: Challenges and Realities
  year: 2007
  ident: key2022082217162993300_ref158
SSID ssj0002057385
ssj0017386
Score 2.2141752
Snippet PurposeThis work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other...
Purpose>This work can be used as a building block in other settings such as GPU, Map-Reduce, Spark or any other. Also, DDPML can be deployed on other...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Index Database
Publisher
StartPage 558
SubjectTerms Activity Units
Algorithms
Architecture
Artificial Intelligence
Big Data
Classification
Cloud computing
Companies
Computer architecture
Computer networks
Data analysis
Data mining
Data processing
Data science
Datasets
Information retrieval
Information sources
Internet of Things
Knowledge
Learning Processes
Machine learning
Motion
Parallel processing
Probability
Random sampling
Sampling
Sampling methods
Shared learning
System effectiveness
Talking
Teaching Methods
Validity
Velocity
Work
Writers
SummonAdditionalLinks – databaseName: ABI/INFORM Global
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60ehDBR1WstpKDiB6WZt_Zk5TW4sGWHooUPCx5bS30ZVv9_Wa2qbUiXrwt7LIEvmTmm8zjA7iWwrjVjFIH1VWdQCruCONZDCCR2TGR9JO8kfb5KW63Wa-XdOyF29yWVa5sYm6o1UTiHXnVQ2If4DTy--mbg6pRmF21EhrbsIPMBkv6WrT-lUVAQUsUlzOkwEk8xlZpSsqqjW4NC348rFAwHtHfcEs_enPX9jl3Os3D_y73CA4s3SS15f44hi09LsJ-7Vv2oAgV27tAbohtTkKwiD31J_DSWKrWkwYO2UV9LK0IHyvS4TNUYhmSVl6RqYkd1tonfNg3i1m8jubE_JCIQZ9gKSoZ5XIUZLrsTjCPp9BtPnTrj47VZHCkoU4Lh2ciYEFoeFkSZFyFXsYypULm6swQSVdy6Wo3i12laax14kecuZhcFGHI8cL1DArjyVifAxEx5YkUSnmRMEGsL4Tn6SBWJqDEIfdhCe5WiKTT5eSNNI9YKEsNeimNUkQvRfRKcGsh--3TDaBLUF4BltrjOk_XaF38_foS9jzsf6DGvPhlKCxm77oCu_JjMZjPrvLd9wl4dN6p
  priority: 102
  providerName: ProQuest
Title Dynamic Distributed and Parallel Machine Learning algorithms for big data mining processing
URI https://www.emerald.com/insight/content/doi/10.1108/DTA-06-2021-0153/full/html
https://www.proquest.com/docview/2716442750
Volume 56
WOSCitedRecordID wos000732965000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVMCB
  databaseName: Emerald Management 120
  customDbUrl:
  eissn: 2514-9318
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9288
  databaseCode: TMT
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.emerald.com/insight
  providerName: Emerald
– providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 2514-9318
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9288
  databaseCode: 7WY
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 2514-9318
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9288
  databaseCode: M0C
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2514-9318
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9288
  databaseCode: P5Z
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2514-9318
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9288
  databaseCode: K7-
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Education Database
  customDbUrl:
  eissn: 2514-9318
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9288
  databaseCode: M0P
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/education
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Library Science Database
  customDbUrl:
  eissn: 2514-9318
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9288
  databaseCode: M1O
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2514-9318
  dateEnd: 20241212
  omitProxy: false
  ssIdentifier: ssj0002057385
  issn: 2514-9288
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB7x6IELrxYRCtEeEGoPVtbr95ESEBIkWMhqgR6sXe86REoMSlx-f2fWDgjEgQOXkS1ZK3lmd147Mx_AYaHQrJacO4Su6viFlo5Cy4ICCXHHhIWX2Eba35fRcBjf3CTpEgwXvTC2rLJJx1g9Pa7mFKT2qHAbtfDzwAFCr-lnx1S0I6jKAK2a16OMde--nk6sSuZ0TrNB9pxyETT8z4J0olH3nUTE8eLi8p3VXhmqN926LxrbmqGzjc_-gU1Ybx1SdtzsoC1YMtU2HLTtDOyItf1KJD_WKoKv8LffANmzPs3dJcgso5msNEvljMBZJmxgizQNa-e3jpicjB5m4_p-Ome4IFPjEaPqVDa1CBXssWlYwMdvkJ2dZifnTgvT4BToTdWOLJUf-wG6aolfSh2IMi61DmLXlOhbuoUsXOOWkasNj4xJvFDGLt03qiCQlIPdgZXqoTK7wFTEZVIorUWoMK71lBLC-JHGGJPm3gcd-LkQSf7YDOPIbRDD4xx5mfMwJ17mxMsO_GjF8N6nr9jegf2FUPP2BM9zQYGkT9Pv9z6-0ndYE9QewVH7ePuwUs_-mQP4UjzV4_msC8vRn9surP46HabX-HYROUgH_MTSlKh7hTQN7rp25_4HBjHp6w
linkProvider Emerald
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1La9tAEB7SpNBSaNq0Jc6j3UNb2sMSafVaHUoxcUKCHZODKYEeln3JNcSKY7sJ-VH5j5mRpeZB6S2H3gQSCyt9mm9m5_EBfLQGabUIAk7qqjy2TnODzIIfJEXEpDbKq0baH72s35cnJ_nxElw3vTBUVtnYxMpQuzNLZ-Q7ghz7mKaRf5-cc1KNouxqI6GxgEXXX11iyDb7dtjB7_tJiP29we4Br1UFuEXyn3NdmFjGCXoWeVxol4hCFs4lMvQFukKh1Tb0YZGFzgeZ93mUahlSeswkiaYjQ1z2CazEkczot-pm_E_SgvQzScsOfRCeCymbrGggdzqDNtUXCSqIQAKO7rHgg1bgWzqoOG5_9T97O6_gZe1Ms_YC_a9hyZdr8KJ9JzeyBtt1Zwb7zOrWK4Iiq23aG_jZuSr1eGRZh0YIk_qXd0yXjh3rKenMnLKjqt7Us3oU7ZDp0yHuff5rPGO4IDOjIaNCWzauxDbYZNF7gZdvYfAYu38Hy-VZ6deBmSzQuTXOidRgiB4ZI4SPM4fhMo3wT1rwtQGAmizmiqgqHgukQrCoIFUEFkVgacGXGiF_e_Qerlqw1eBD1cZopm7BsfHv2x_g2cHgqKd6h_3uJjwX1OkRoCGNtmB5Pv3tt-GpvZiPZtP3FfAZqEeG0g2TRDtF
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VghBCKlCKSB-wB0BwsGKvX-sDQhFuRNUS5RChCg6rfTlEatyQpK360_h3zDhr2iLErQdulmxZsvfbeezMNx_AK6PRrVZhGJC6apAYqwKNngUXJEPEZCYuGiLtl6N8MBDHx8VwDX62XBhqq2xtYmOo7amhM_Iup8A-oWnk3cq3RQzL_ofZj4AUpKjS2spprCBy6C4vMH1bvD8oca1fc97fH338FHiFgcBgILAMVKUTkaQYZRRJpWzKK1FZm4rIVRgWRUaZyEVVHlkX5s4VcaZERKUynaaKjg_xtXfgbo4pJnUTDtOvvwsYpKVJunYYjwQFF6KtkIaiW4561GvEqTkCnXF8wyP-QQu-cg2Nv-s_-o__1GPY8EE26612xRNYc_UmPOxdq5lswp5nbLA3zFOyCKLM27qn8K28rNV0YlhJo4VJFcxZpmrLhmpO-jMn7HPTh-qYH1E7ZupkjN--_D5dMHwh05MxowZcNm1EONhsxcnAyy0Y3cbXP4P1-rR2z4HpPFSF0dbyTGPqHmvNuUtyi2k0jfZPO_CuBYOcreaNyCZPC4VE4MgwkwQcScDpwFuPlr89egNjHdhtsSK9kVrIK6Bs__v2S7iPCJJHB4PDHXjAiQASon2Nd2F9OT9ze3DPnC8ni_mLZg8wkLeMpF83wkRp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Distributed+and+Parallel+Machine+Learning+algorithms+for+big+data+mining+processing&rft.jtitle=Data+technologies+and+applications&rft.au=Djafri%2C+Laouni&rft.date=2022-08-23&rft.pub=Emerald+Publishing+Limited&rft.issn=2514-9288&rft.eissn=2514-9318&rft.volume=56&rft.issue=4&rft.spage=558&rft.epage=601&rft_id=info:doi/10.1108%2FDTA-06-2021-0153&rft.externalDocID=10.1108%2FDTA-06-2021-0153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2514-9288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2514-9288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2514-9288&client=summon