Evolving Robotic Hand Morphology Through Grasping and Learning

Creatures can co-evolve their biological structures and behaviors under environmental pressures. Leveraging biomimetic evolution algorithms (referred to as co-design or co-optimization), a diverse range of robots with environmental adaptation has been generated. However, implementing these evolution...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 9; no. 10; pp. 8475 - 8482
Main Authors: Yang, Bangchu, Jiang, Li, Wu, Wenhao, Zhen, Ruichen
Format: Journal Article
Language:English
Published: IEEE 01.10.2024
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Creatures can co-evolve their biological structures and behaviors under environmental pressures. Leveraging biomimetic evolution algorithms (referred to as co-design or co-optimization), a diverse range of robots with environmental adaptation has been generated. However, implementing these evolutionary methods or results in real-world robots, especially in the case of robotic hands, was not easy. In this context, this work presents a comprehensive self-optimization scheme for robotic hands that encompasses both software and hardware components. This scheme enables robots to autonomously refine their morphology through the integration of hardware gradients and reinforcement learning within parallel environments, thereby enhancing their adaptability to a variety of grasping tasks. For the hardware aspect, we developed a reconfigurable hand prototype with 37 variable hardware parameters (i.e., joint stiffness, the length of phalanges, finger location, and palm curvature) adjusted by mechanical components. Leveraging the adjustable hardware and 20 motors, this hand achieves full actuation and can dynamically adjust its morphology. The training results indicate that the fitness score of the self-optimizing hand exceeds that of original designs in this instance. The hardware parameters can be further fine-tuned in response to task variations. Moreover, the evolved hardware parameters are transferred to a real-world reconfigurable hand, demonstrating its grasping and adaptivity capabilities.
AbstractList Creatures can co-evolve their biological structures and behaviors under environmental pressures. Leveraging biomimetic evolution algorithms (referred to as co-design or co-optimization), a diverse range of robots with environmental adaptation has been generated. However, implementing these evolutionary methods or results in real-world robots, especially in the case of robotic hands, was not easy. In this context, this work presents a comprehensive self-optimization scheme for robotic hands that encompasses both software and hardware components. This scheme enables robots to autonomously refine their morphology through the integration of hardware gradients and reinforcement learning within parallel environments, thereby enhancing their adaptability to a variety of grasping tasks. For the hardware aspect, we developed a reconfigurable hand prototype with 37 variable hardware parameters (i.e., joint stiffness, the length of phalanges, finger location, and palm curvature) adjusted by mechanical components. Leveraging the adjustable hardware and 20 motors, this hand achieves full actuation and can dynamically adjust its morphology. The training results indicate that the fitness score of the self-optimizing hand exceeds that of original designs in this instance. The hardware parameters can be further fine-tuned in response to task variations. Moreover, the evolved hardware parameters are transferred to a real-world reconfigurable hand, demonstrating its grasping and adaptivity capabilities.
Author Zhen, Ruichen
Jiang, Li
Yang, Bangchu
Wu, Wenhao
Author_xml – sequence: 1
  givenname: Bangchu
  orcidid: 0000-0002-9969-9995
  surname: Yang
  fullname: Yang, Bangchu
  email: bcyang@hit.edu.cn
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
– sequence: 2
  givenname: Li
  orcidid: 0000-0003-1740-5525
  surname: Jiang
  fullname: Jiang, Li
  email: jiangli01@hit.edu.cn
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
– sequence: 3
  givenname: Wenhao
  orcidid: 0000-0001-8818-8017
  surname: Wu
  fullname: Wu, Wenhao
  email: 21b908021@stu.hit.edu.cn
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
– sequence: 4
  givenname: Ruichen
  orcidid: 0000-0002-1212-6538
  surname: Zhen
  fullname: Zhen, Ruichen
  email: rczhen@stu.hit.edu.cn
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
BookMark eNp9kE1rwkAQhpdiodZ676GH_IHY2Q9nk0tBxGohpSD2HGaTjW5Js7JJBf99DXqQHnqaGd73mcNzzwaNbyxjjxwmnEP6nK1nEwFCTaRSoEHfsKGQWsdSIw6u9js2btsvAOBToWU6HbKXxcHXB9dso7U3vnNFtKKmjN592O987bfHaLML_me7i5aB2n1f7PPMUmhOxwO7rahu7fgyR-zzdbGZr-LsY_k2n2VxIVB1MRnJZaGpSlUC3GDKNaAWpZEIJSYqMZXSU1RSmtJURWoEEWnCBI3VAlGOGJ7_FsG3bbBVXriOOuebLpCrcw55LyI_ich7EflFxAmEP-A-uG8Kx_-QpzPirLVXdZQcEy5_AQSZag4
CODEN IRALC6
CitedBy_id crossref_primary_10_3390_act14050234
Cites_doi 10.1007/BF02382073
10.1109/ICRA48506.2021.9561256
10.1098/rstb.2011.0035
10.1109/ICRA.2019.8793926
10.1016/j.jtbi.2017.12.026
10.1109/ICRA.2019.8793663
10.1109/IROS.2012.6386109
10.4067/S0717-95022010000300015
10.1109/IROS51168.2021.9636305
10.1109/ICRA48506.2021.9562092
10.1038/s42256-021-00320-3
10.1088/1748-3190/ac884e
10.1098/rspb.2016.1923
10.1145/3414685.3417831
10.1109/ICRA48506.2021.9561818
10.1109/TRA.2003.814499
10.7551/mitpress/2871.001.0001
10.1126/scirobotics.aao4900
10.1109/tnnls.2023.3272068
10.1098/rsif.2015.0176
10.1109/ICRA.2019.8793537
10.1109/TRO.2023.3284362
10.1109/ICRA48891.2023.10161134
10.1126/scirobotics.abg2133
10.1038/ncomms8717
10.1007/978-3-642-00616-6_5
10.15607/RSS.2021.XVII.008
10.1038/s41467-021-25874-z
10.1080/01691864.2017.1402703
10.1177/0278364917700714
10.1109/ICRA40945.2020.9196539
10.1109/IROS.2017.8202294
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LRA.2024.3440707
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 8482
ExternalDocumentID 10_1109_LRA_2024_3440707
10631681
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 91948302; U1813209; 51875120
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c264t-ab313c7af94801b69170672db360d6848bf4756433bdbfc9b2aaa7a686be72663
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001300991000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sat Nov 29 01:34:37 EST 2025
Tue Nov 18 22:12:15 EST 2025
Wed Aug 27 02:29:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-ab313c7af94801b69170672db360d6848bf4756433bdbfc9b2aaa7a686be72663
ORCID 0000-0003-1740-5525
0000-0001-8818-8017
0000-0002-9969-9995
0000-0002-1212-6538
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_LRA_2024_3440707
crossref_primary_10_1109_LRA_2024_3440707
ieee_primary_10631681
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
Feix (ref35); 2
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref22
ref21
Chen (ref29)
Weber (ref3) 2003
ref28
ref27
ref8
ref7
ref9
ref4
ref6
ref5
Haarnoja (ref34)
Gupta (ref20)
References_xml – ident: ref2
  doi: 10.1007/BF02382073
– ident: ref9
  doi: 10.1109/ICRA48506.2021.9561256
– start-page: 1861
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref34
  article-title: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor
– ident: ref4
  doi: 10.1098/rstb.2011.0035
– ident: ref25
  doi: 10.1109/ICRA.2019.8793926
– ident: ref7
  doi: 10.1016/j.jtbi.2017.12.026
– ident: ref23
  doi: 10.1109/ICRA.2019.8793663
– ident: ref33
  doi: 10.1109/IROS.2012.6386109
– ident: ref36
  doi: 10.4067/S0717-95022010000300015
– ident: ref31
  doi: 10.1109/IROS51168.2021.9636305
– ident: ref27
  doi: 10.1109/ICRA48506.2021.9562092
– ident: ref22
  doi: 10.1038/s42256-021-00320-3
– volume: 2
  start-page: 58
  volume-title: Proc. Robot., Sci. Syst.: Workshop Understanding Hum. Hand Adv. Robot. Manipulation
  ident: ref35
  article-title: A comprehensive grasp taxonomy
– ident: ref26
  doi: 10.1088/1748-3190/ac884e
– ident: ref6
  doi: 10.1098/rspb.2016.1923
– ident: ref16
  doi: 10.1145/3414685.3417831
– ident: ref17
  doi: 10.1109/ICRA48506.2021.9561818
– ident: ref15
  doi: 10.1109/TRA.2003.814499
– start-page: 1
  volume-title: Evolution and Learning: The Baldwin Effect Reconsidered
  year: 2003
  ident: ref3
  doi: 10.7551/mitpress/2871.001.0001
– ident: ref32
  doi: 10.1126/scirobotics.aao4900
– ident: ref18
  doi: 10.1109/tnnls.2023.3272068
– ident: ref5
  doi: 10.1098/rsif.2015.0176
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent
  ident: ref20
  article-title: MetaMorph: Learning universal controllers with transformers
– ident: ref11
  doi: 10.1109/ICRA.2019.8793537
– ident: ref13
  doi: 10.1109/TRO.2023.3284362
– ident: ref12
  doi: 10.1109/ICRA48891.2023.10161134
– start-page: 1158
  volume-title: Proc. Conf. Robot Learn.
  ident: ref29
  article-title: Hardware as policy: Mechanical and computational co-optimization using deep reinforcement learning
– ident: ref8
  doi: 10.1126/scirobotics.abg2133
– ident: ref1
  doi: 10.1038/ncomms8717
– ident: ref10
  doi: 10.1007/978-3-642-00616-6_5
– ident: ref30
  doi: 10.15607/RSS.2021.XVII.008
– ident: ref19
  doi: 10.1038/s41467-021-25874-z
– ident: ref24
  doi: 10.1080/01691864.2017.1402703
– ident: ref14
  doi: 10.1177/0278364917700714
– ident: ref21
  doi: 10.1109/ICRA40945.2020.9196539
– ident: ref28
  doi: 10.1109/IROS.2017.8202294
SSID ssj0001527395
Score 2.276869
Snippet Creatures can co-evolve their biological structures and behaviors under environmental pressures. Leveraging biomimetic evolution algorithms (referred to as...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 8475
SubjectTerms Deep learning
deep learning in grasping and manipulation
Evolutionary robotics
Grasping
Hands
Hardware
hardware gradient
methods and tools for robot system design
Morphology
Optimization
Reconfigurable devices
reconfigurable hand
Robot programming
Stability analysis
Title Evolving Robotic Hand Morphology Through Grasping and Learning
URI https://ieeexplore.ieee.org/document/10631681
Volume 9
WOSCitedRecordID wos001300991000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6iFQMMnEWUo_LAwpAeseNjQapQS4e2QlVB3SLbcRBSlaAejPx2bCeFMoDEFiXPUvTZyTvs930AN2GKMRGKBJ2UkoBQrgMZYR1wqURHhiQNPZH285CNx3w2E49ls7rvhTHG-MNnpuku_V5-kuu1K5XZL5w6nSWb7FQYY0Wz1ndBxVGJiWizFdkWreGkaxPAkDQxIY7V5ofr2dJS8a6kf_jPlziCgzJmRN1iko9hx2QnsL_FJHgKdz37m3G1ATTJVW7t0EBmCRrlFkZfOEfTQpAHPSzk0vVIIfe8ZFd9qcFTvze9HwSlNEKgbQSzCqTCHayZTIWjf1FUOBYcFiYK03ZCOeEqJSyy0QZWiUq1UKGUkknKqTLM-mR8BtUsz8w5IE2NFiIy1CQ2utBKJETSKGKSU0kio-vQ2qAW65I33MlXzGOfP7RFbHGOHc5xiXMdbr9GvBWcGX_Y1hzEW3YFuhe_3L-EPTe8OE53BdXVYm2uYVe_r16XiwZURh-9hl8Xn_oqtOY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7IFNQHrxPnNQ---NBtbS5tXoQhmxO7IWPK3kqSpiJIK7v4-03STueDgm-lPSnla9NzSc73AVwFGcaES-L5GSMeYZHyBMXKi4TkvghIFjgi7ec4HA6jyYQ_Vs3qrhdGa-02n-mmPXRr-WmhFrZUZmY4szpLJtlZp4QEftmu9V1SsWRinC4XI9u8FY86JgUMSBMTYnltfjifFTUV50x6u_98jD3YqaJG1Clf8z6s6fwAtle4BA_hpmt-NLY6gEaFLIwd6os8RYPCAOlK52hcSvKgu6mY2S4pZK9X_KovdXjqdce3fa8SR_CUiWHmnpDYxyoUGbcEMJJxy4MTBqnErJ2yiEQyIyE18QaWqcwUl4EQIhQsYlKHxivjI6jlRa6PASmmFedUM52a-EJJnhLBKA1FxAShWjWgtUQtURVzuBWweEtcBtHmicE5sTgnFc4NuP4a8V6yZvxhW7cQr9iV6J78cv4SNvvjQZzE98OHU9iytyo3151BbT5d6HPYUB_z19n0wn0dn0dCtvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolving+Robotic+Hand+Morphology+Through+Grasping+and+Learning&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Yang%2C+Bangchu&rft.au=Jiang%2C+Li&rft.au=Wu%2C+Wenhao&rft.au=Zhen%2C+Ruichen&rft.date=2024-10-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=9&rft.issue=10&rft.spage=8475&rft.epage=8482&rft_id=info:doi/10.1109%2FLRA.2024.3440707&rft.externalDocID=10631681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon