ECoalVis: Visual Analysis of Control Strategies in Coal-fired Power Plants

Improving the efficiency of coal-fired power plants has numerous benefits. The control strategy is one of the major factors affecting such efficiency. However, due to the complex and dynamic environment inside the power plants, it is hard to extract and evaluate control strategies and their cascadin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics Jg. 29; H. 1; S. 1 - 11
Hauptverfasser: Liu, Shuhan, Weng, Di, Tian, Yuan, Deng, Zikun, Xu, Haoran, Zhu, Xiangyu, Yin, Honglei, Zhan, Xianyuan, Wu, Yingcai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1077-2626, 1941-0506, 1941-0506
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Improving the efficiency of coal-fired power plants has numerous benefits. The control strategy is one of the major factors affecting such efficiency. However, due to the complex and dynamic environment inside the power plants, it is hard to extract and evaluate control strategies and their cascading impact across massive sensors. Existing manual and data-driven approaches cannot well support the analysis of control strategies because these approaches are time-consuming and do not scale with the complexity of the power plant systems. Three challenges were identified: a) interactive extraction of control strategies from large-scale dynamic sensor data, b) intuitive visual representation of cascading impact among the sensors in a complex power plant system, and c) time-lag-aware analysis of the impact of control strategies on electricity generation efficiency. By collaborating with energy domain experts, we addressed these challenges with ECoalVis, a novel interactive system for experts to visually analyze the control strategies of coal-fired power plants extracted from historical sensor data. The effectiveness of the proposed system is evaluated with two usage scenarios on a real-world historical dataset and received positive feedback from experts.
AbstractList Improving the efficiency of coal-fired power plants has numerous benefits. The control strategy is one of the major factors affecting such efficiency. However, due to the complex and dynamic environment inside the power plants, it is hard to extract and evaluate control strategies and their cascading impact across massive sensors. Existing manual and data-driven approaches cannot well support the analysis of control strategies because these approaches are time-consuming and do not scale with the complexity of the power plant systems. Three challenges were identified: a) interactive extraction of control strategies from large-scale dynamic sensor data, b) intuitive visual representation of cascading impact among the sensors in a complex power plant system, and c) time-lag-aware analysis of the impact of control strategies on electricity generation efficiency. By collaborating with energy domain experts, we addressed these challenges with ECoalVis, a novel interactive system for experts to visually analyze the control strategies of coal-fired power plants extracted from historical sensor data. The effectiveness of the proposed system is evaluated with two usage scenarios on a real-world historical dataset and received positive feedback from experts.Improving the efficiency of coal-fired power plants has numerous benefits. The control strategy is one of the major factors affecting such efficiency. However, due to the complex and dynamic environment inside the power plants, it is hard to extract and evaluate control strategies and their cascading impact across massive sensors. Existing manual and data-driven approaches cannot well support the analysis of control strategies because these approaches are time-consuming and do not scale with the complexity of the power plant systems. Three challenges were identified: a) interactive extraction of control strategies from large-scale dynamic sensor data, b) intuitive visual representation of cascading impact among the sensors in a complex power plant system, and c) time-lag-aware analysis of the impact of control strategies on electricity generation efficiency. By collaborating with energy domain experts, we addressed these challenges with ECoalVis, a novel interactive system for experts to visually analyze the control strategies of coal-fired power plants extracted from historical sensor data. The effectiveness of the proposed system is evaluated with two usage scenarios on a real-world historical dataset and received positive feedback from experts.
Improving the efficiency of coal-fired power plants has numerous benefits. The control strategy is one of the major factors affecting such efficiency. However, due to the complex and dynamic environment inside the power plants, it is hard to extract and evaluate control strategies and their cascading impact across massive sensors. Existing manual and data-driven approaches cannot well support the analysis of control strategies because these approaches are time-consuming and do not scale with the complexity of the power plant systems. Three challenges were identified: a) interactive extraction of control strategies from large-scale dynamic sensor data, b) intuitive visual representation of cascading impact among the sensors in a complex power plant system, and c) time-lag-aware analysis of the impact of control strategies on electricity generation efficiency. By collaborating with energy domain experts, we addressed these challenges with ECoalVis, a novel interactive system for experts to visually analyze the control strategies of coal-fired power plants extracted from historical sensor data. The effectiveness of the proposed system is evaluated with two usage scenarios on a real-world historical dataset and received positive feedback from experts.
Author Weng, Di
Zhan, Xianyuan
Xu, Haoran
Tian, Yuan
Wu, Yingcai
Liu, Shuhan
Deng, Zikun
Zhu, Xiangyu
Yin, Honglei
Author_xml – sequence: 1
  givenname: Shuhan
  surname: Liu
  fullname: Liu, Shuhan
  organization: State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Di
  surname: Weng
  fullname: Weng, Di
  organization: Microsoft Research Asia, Beijing, China
– sequence: 3
  givenname: Yuan
  surname: Tian
  fullname: Tian, Yuan
  organization: State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
– sequence: 4
  givenname: Zikun
  orcidid: 0000-0002-4477-5292
  surname: Deng
  fullname: Deng, Zikun
  organization: State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
– sequence: 5
  givenname: Haoran
  surname: Xu
  fullname: Xu, Haoran
  organization: JD iCity, JD Technology, Beijing, China
– sequence: 6
  givenname: Xiangyu
  surname: Zhu
  fullname: Zhu, Xiangyu
  organization: Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China
– sequence: 7
  givenname: Honglei
  surname: Yin
  fullname: Yin, Honglei
  organization: JD iCity, JD Technology, Beijing, China
– sequence: 8
  givenname: Xianyuan
  orcidid: 0000-0002-3683-0554
  surname: Zhan
  fullname: Zhan, Xianyuan
  organization: Institute for AI Industry Research (AIR), Tsinghua University, Beijing, China
– sequence: 9
  givenname: Yingcai
  orcidid: 0000-0002-1119-3237
  surname: Wu
  fullname: Wu, Yingcai
  organization: State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36191102$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LHTEUhkOx1M8fUAQJuOlmricfk5m4k8HaFkHBj23IzT0pkbkTTWYQ_70Z7rULF90kWTzPy8l598nOEAck5DuDBWOgz-4fu6sFB84XgoOWAr6QPaYlq6AGtVPe0DQVV1ztkv2cnwCYlK3-RnaFYrok8D3y57KLtn8M-ZyWY7I9vRhs_5ZDptHTLg5jij29G5Md8W_ATMNAZ6PyIeGK3sZXTPS2t8OYD8lXb_uMR9v7gDz8vLzvflXXN1e_u4vrynElx8pyob0EidAiU156AMm0rR3jwmEjHECtBbZLaKV3qwZrBLYSzHml7dIJcUB-bHKfU3yZMI9mHbLDvgyBccqGN5xxBUrJgp5-Qp_ilMoHZ6qWum55MweebKlpucaVeU5hbdOb-dhSAZoN4FLMOaE3Lox2DPN2bOgNAzP3YeY-zNyH2fZRTPbJ_Aj_n3O8cQIi_uO1hrYu074De4GS7g
CODEN ITVGEA
CitedBy_id crossref_primary_10_1007_s12650_022_00884_1
crossref_primary_10_1109_TVCG_2022_3229953
crossref_primary_10_1109_TVCG_2025_3538768
crossref_primary_10_1109_TVCG_2024_3397554
crossref_primary_10_1109_TVCG_2025_3537115
Cites_doi 10.1007/978-1-4612-6185-8_2
10.1109/TVCG.2021.3114877
10.1109/TVCG.2009.117
10.1016/j.energy.2018.06.157
10.1109/PacificVis.2013.6596144
10.1007/s12650-021-00778-8
10.1109/APPEEC.2009.4918261
10.1016/j.enpol.2013.05.047
10.1109/TVCG.2021.3114875
10.1609/aaai.v36i4.20393
10.1007/s12650-020-00717-z
10.1109/TVCG.2021.3114792
10.1109/PACIFICVIS.2011.5742373
10.1109/TVCG.2009.200
10.1016/j.visinf.2020.12.002
10.1016/j.rinp.2018.04.045
10.1109/TVCG.2015.2467851
10.1109/TCST.2005.854319
10.1109/TVCG.2014.2346454
10.1137/0110015
10.1016/j.jvlc.2017.11.004
10.1177/104973239300300403
10.1007/3-540-44541-2_17
10.1109/TVCG.2021.3071387
10.1073/pnas.2017936118
10.1016/j.visinf.2021.09.001
10.1109/PACIFICVIS.2016.7465252
10.1109/VAST.2009.5332595
10.1007/s12650-022-00884-1
10.1016/j.energy.2021.121228
10.1007/s12650-018-0530-2
10.1016/j.visinf.2021.12.004
10.1109/PEITS.2008.103
10.1109/PacificVis.2018.00026
10.1016/j.applthermaleng.2020.115706
10.1109/TVCG.2019.2934275
10.1109/TVCG.2015.2467622
10.1109/TVCG.2021.3114878
10.1007/s41095-022-0275-7
10.3390/en13153775
10.1109/TVCG.2016.2640960
10.1016/j.jclepro.2020.122837
10.1201/b17511
10.1016/j.visinf.2022.05.003
10.1109/TVCG.2012.213
10.1007/s11704-020-0088-8
10.1016/j.apenergy.2011.06.029
10.1109/TVCG.2018.2864886
10.1109/ICIEA.2008.4582615
10.1109/SPIRE.2000.878178
10.1016/j.visinf.2022.03.001
10.1109/VAST.2006.261421
10.1109/CCDC.2008.4598004
10.1109/TVCG.2013.173
10.17775/CSEEJPES.2015.00009
10.1080/14786440109462720
10.1109/TVCG.2021.3100413
10.1103/PhysRevLett.100.084102
10.1109/ACCESS.2020.2985233
10.1109/TVCG.2016.2598664
10.1007/s12650-021-00818-3
10.1109/TVCG.2017.2745083
10.1111/cgf.12901
10.1109/TVCG.2022.3209360
10.1109/TVCG.2017.2745105
10.1016/j.energy.2021.120077
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2022.3209430
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 11
ExternalDocumentID 36191102
10_1109_TVCG_2022_3209430
9908527
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c264t-a239f404e08e16f4f00419a5c123ce73c00593e8b084fcd7e5e01d31cf69abc33
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Sun Sep 28 06:41:16 EDT 2025
Sun Nov 09 07:57:21 EST 2025
Thu Apr 03 07:12:28 EDT 2025
Tue Nov 18 21:59:35 EST 2025
Sat Nov 29 03:31:42 EST 2025
Wed Aug 27 02:29:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-a239f404e08e16f4f00419a5c123ce73c00593e8b084fcd7e5e01d31cf69abc33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4477-5292
0000-0002-1119-3237
0000-0002-3683-0554
PMID 36191102
PQID 2754958273
PQPubID 75741
PageCount 11
ParticipantIDs crossref_primary_10_1109_TVCG_2022_3209430
proquest_miscellaneous_2721260664
ieee_primary_9908527
crossref_citationtrail_10_1109_TVCG_2022_3209430
proquest_journals_2754958273
pubmed_primary_36191102
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref14
ref53
ref52
ref55
ref54
(ref58) 2005
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref42
ref41
ref44
ref43
deng (ref15) 2023; 26
ref49
ref8
ref7
ritchie (ref45) 2020
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
sengupta (ref47) 2018
ref1
ref39
ref38
(ref11) 2018
ref71
ref70
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
cormen (ref10) 2022
References_xml – year: 2020
  ident: ref45
  publication-title: Electricity Mix
– ident: ref41
  doi: 10.1007/978-1-4612-6185-8_2
– ident: ref66
  doi: 10.1109/TVCG.2021.3114877
– ident: ref52
  doi: 10.1109/TVCG.2009.117
– ident: ref6
  doi: 10.1016/j.energy.2018.06.157
– ident: ref29
  doi: 10.1109/PacificVis.2013.6596144
– ident: ref56
  doi: 10.1007/s12650-021-00778-8
– ident: ref19
  doi: 10.1109/APPEEC.2009.4918261
– ident: ref64
  doi: 10.1016/j.enpol.2013.05.047
– ident: ref16
  doi: 10.1109/TVCG.2021.3114875
– ident: ref67
  doi: 10.1609/aaai.v36i4.20393
– ident: ref57
  doi: 10.1007/s12650-020-00717-z
– ident: ref4
  doi: 10.1109/TVCG.2021.3114792
– ident: ref28
  doi: 10.1109/PACIFICVIS.2011.5742373
– ident: ref34
  doi: 10.1109/TVCG.2009.200
– ident: ref1
  doi: 10.1016/j.visinf.2020.12.002
– ident: ref25
  doi: 10.1016/j.rinp.2018.04.045
– ident: ref2
  doi: 10.1109/TVCG.2015.2467851
– ident: ref35
  doi: 10.1109/TCST.2005.854319
– ident: ref31
  doi: 10.1109/TVCG.2014.2346454
– ident: ref27
  doi: 10.1137/0110015
– ident: ref71
  doi: 10.1016/j.jvlc.2017.11.004
– ident: ref21
  doi: 10.1177/104973239300300403
– ident: ref53
  doi: 10.1007/3-540-44541-2_17
– ident: ref13
  doi: 10.1109/TVCG.2021.3071387
– ident: ref12
  doi: 10.1073/pnas.2017936118
– ident: ref55
  doi: 10.1016/j.visinf.2021.09.001
– ident: ref38
  doi: 10.1109/PACIFICVIS.2016.7465252
– ident: ref59
  doi: 10.1109/VAST.2009.5332595
– volume: 26
  year: 2023
  ident: ref15
  article-title: You are experienced: Interactive tour planning with crowdsourcing tour data from web
  publication-title: Journal of Visualization
  doi: 10.1007/s12650-022-00884-1
– ident: ref48
  doi: 10.1016/j.energy.2021.121228
– ident: ref70
  doi: 10.1007/s12650-018-0530-2
– year: 2022
  ident: ref10
  publication-title: Introduction to Algorithms
– ident: ref8
  doi: 10.1016/j.visinf.2021.12.004
– ident: ref36
  doi: 10.1109/PEITS.2008.103
– ident: ref61
  doi: 10.1109/PacificVis.2018.00026
– ident: ref40
  doi: 10.1016/j.applthermaleng.2020.115706
– ident: ref49
  doi: 10.1109/TVCG.2019.2934275
– ident: ref32
  doi: 10.1109/TVCG.2015.2467622
– ident: ref51
  doi: 10.1109/TVCG.2021.3114878
– ident: ref14
  doi: 10.1007/s41095-022-0275-7
– ident: ref54
  doi: 10.3390/en13153775
– ident: ref37
  doi: 10.1109/TVCG.2016.2640960
– year: 2018
  ident: ref11
  publication-title: Automation of 30MW Power Plant using PCS 7
– ident: ref68
  doi: 10.1016/j.jclepro.2020.122837
– ident: ref39
  doi: 10.1201/b17511
– ident: ref7
  doi: 10.1016/j.visinf.2022.05.003
– ident: ref46
  doi: 10.1109/TVCG.2012.213
– ident: ref62
  doi: 10.1007/s11704-020-0088-8
– ident: ref50
  doi: 10.1016/j.apenergy.2011.06.029
– ident: ref33
  doi: 10.1109/TVCG.2018.2864886
– ident: ref20
  doi: 10.1109/ICIEA.2008.4582615
– year: 2018
  ident: ref47
  article-title: The World Needs to Quit Coal
  publication-title: Why Is It So Hard?
– ident: ref3
  doi: 10.1109/SPIRE.2000.878178
– ident: ref23
  doi: 10.1016/j.visinf.2022.03.001
– ident: ref18
  doi: 10.1109/VAST.2006.261421
– ident: ref69
  doi: 10.1109/CCDC.2008.4598004
– ident: ref24
  doi: 10.1109/TVCG.2013.173
– ident: ref17
  doi: 10.17775/CSEEJPES.2015.00009
– ident: ref42
  doi: 10.1080/14786440109462720
– ident: ref26
  doi: 10.1109/TVCG.2021.3100413
– ident: ref43
  doi: 10.1103/PhysRevLett.100.084102
– ident: ref22
  doi: 10.1109/ACCESS.2020.2985233
– ident: ref63
  doi: 10.1109/TVCG.2016.2598664
– ident: ref5
  doi: 10.1007/s12650-021-00818-3
– ident: ref9
  doi: 10.1109/TVCG.2017.2745083
– ident: ref44
  doi: 10.1111/cgf.12901
– ident: ref60
  doi: 10.1109/TVCG.2022.3209360
– year: 2005
  ident: ref58
  article-title: What Is
  publication-title: The definition of fuzzy search
– ident: ref30
  doi: 10.1109/TVCG.2017.2745105
– ident: ref65
  doi: 10.1016/j.energy.2021.120077
SSID ssj0014489
Score 2.433173
Snippet Improving the efficiency of coal-fired power plants has numerous benefits. The control strategy is one of the major factors affecting such efficiency. However,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Coal-fired power plants
Complexity
Data visualization
Efficiency
energy data visualization
Impact analysis
Industries
Interactive control
Interactive systems
Positive feedback
Power generation
Power plant visual analytics
Sensor systems
Sensors
smart factory
spatiotemporal visualization
Time series analysis
Visual analytics
Title ECoalVis: Visual Analysis of Control Strategies in Coal-fired Power Plants
URI https://ieeexplore.ieee.org/document/9908527
https://www.ncbi.nlm.nih.gov/pubmed/36191102
https://www.proquest.com/docview/2754958273
https://www.proquest.com/docview/2721260664
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjB92N9EcGTWM32lcSbLD4QEQ8qeyttOoGFpRW76-93pu0WBRW8lEImbchMkvkyL4CTWOc6U2HsqcxIL1SEWTOVGs9J6zhbjAnjOlD4QT0-6uHQPM3BWRcLg4i18xme82tty89LO-WrsgvaOXXkq3mYV0o1sVqdxYBghmn8C5Xnk5beWjD70lw8vw5uCQn6_nngsyMdV38LCDhQo__tOKrrq_yuatZHzs3q_wa7BiutaimuGllYhzksNmD5S8LBTbi_HpTp-HVUXQp6TJm6TUoiSicGjdu6mGWsxUqMCsE9PEc7Yy6euKSa4DpHk2oLXm6unwd3XltNwbOk9Ey81A-MC2WIUmM_dqHjVFsmjSydXRZVYOvqfqgzqUNnc4URyn4e9K2LTZrZINiGhaIscBeEpS3UKSZGRXDSag5wjXJGXzE6G_ZAziY1sW2qca54MU5qyCFNwixJmCVJy5IenHZd3po8G38Rb_J8d4TtVPfgYMa5pF2JVeIrQsCRJi2tB8ddM60hNoykBZZTpqEDnJEcjXyn4Xj37Zmg7P38z31Y4gL0zaXMASxM3qd4CIv2YzKq3o9IUIf6qBbUTwwq3vQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkQ5lEcfbClgJE6ItI7jxDY3tGopsKx6WKreosQZSytVSdXs8vuZSbIRSIDEJYrkcWJ5bM98nhfA28xWtjQ6i0zpZKQNYdbSFC4K0gfOFuN01gUKz8x8bq-v3eUWvB9jYRCxcz7DE37tbPlV49d8VXZKJ6dNlbkH91OtVdxHa402AwIarvcwNJEiPX2wYcbSnS6upp8ICyp1kih2peP6bwlBB2pUvwmkrsLK35XNTuicP_6_4T6B3UG5FB_71fAUtrB-Bo9-STm4B1_Opk1xc7VsPwh6rJl6SEsimiCmveO62OSsxVYsa8E9okBnYyUuuaia4EpHq3Yfvp-fLaYX0VBPIfKk9qyiQiUuaKlRWoyzoAMn23JF6kl6eTSJ7-r7oS2l1cFXBlOUcZXEPmSuKH2SHMB23dT4HISnQzQYJkZDgNJbDnFNK8ZfGQavJyA3k5r7Idk417y4yTvQIV3OLMmZJfnAkgm8G7vc9pk2_kW8x_M9Eg5TPYHjDefyYS-2uTKEgVNLetoE3ozNtIvYNFLU2KyZhkQ4Yzka-WHP8fHbm4Vy9Od_voaHF4tvs3z2ef71BexwOfr-iuYYtld3a3wJD_yP1bK9e9Ut15-N4uFT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECoalVis%3A+Visual+Analysis+of+Control+Strategies+in+Coal-fired+Power+Plants&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Liu%2C+Shuhan&rft.au=Weng%2C+Di&rft.au=Tian%2C+Yuan&rft.au=Deng%2C+Zikun&rft.date=2023-01-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=29&rft.issue=1&rft.spage=1091&rft_id=info:doi/10.1109%2FTVCG.2022.3209430&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon