LVDiffusor: Distilling Functional Rearrangement Priors From Large Models Into Diffusor

Object rearrangement, a fundamental challenge in robotics, demands versatile strategies to handle diverse objects, configurations, and functional needs. To achieve this, the AI robot needs to learn functional rearrangement priors to specify precise goals that meet the functional requirements. Previo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE robotics and automation letters Ročník 9; číslo 10; s. 8258 - 8265
Hlavní autori: Zeng, Yiming, Wu, Mingdong, Yang, Long, Zhang, Jiyao, Ding, Hao, Cheng, Hui, Dong, Hao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.10.2024
Predmet:
ISSN:2377-3766, 2377-3766
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Object rearrangement, a fundamental challenge in robotics, demands versatile strategies to handle diverse objects, configurations, and functional needs. To achieve this, the AI robot needs to learn functional rearrangement priors to specify precise goals that meet the functional requirements. Previous methods typically learn such priors from either laborious human annotations or manually designed heuristics, which limits scalability and generalization. In this letter, we propose a novel approach that leverages large models to distill functional rearrangement priors. Specifically, our approach collects diverse arrangement examples using both LLMs and VLMs and then distills the examples into a diffusion model. During test time, the learned diffusion model is conditioned on the initial configuration and guides the positioning of objects to meet functional requirements. In this way, we balance zero-shot generalization with time efficiency. Extensive experiments in multiple domains, including real-world scenarios, demonstrate the effectiveness of our approach in generating compatible goals for object rearrangement tasks, significantly outperforming baseline methods.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2024.3438036