Autonomous Robotic Pepper Harvesting: Imitation Learning in Unstructured Agricultural Environments
Automating tasks in outdoor agricultural fields poses significant challenges due to environmental variability, unstructured terrain, and diverse crop characteristics. We present a robotic system that leverages imitation learning for autonomous pepper harvesting designed to operate in these complex s...
Gespeichert in:
| Veröffentlicht in: | IEEE robotics and automation letters Jg. 10; H. 4; S. 3406 - 3413 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.04.2025
|
| Schlagworte: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Automating tasks in outdoor agricultural fields poses significant challenges due to environmental variability, unstructured terrain, and diverse crop characteristics. We present a robotic system that leverages imitation learning for autonomous pepper harvesting designed to operate in these complex settings. Utilizing a custom handheld shear-gripper, we collected 300 demonstrations to train a visuomotor policy, enabling the system to adapt to varying field conditions and crop diversity. We achieved a success rate of 28.95% with a cycle time of 31.71 seconds, comparable to existing systems tested under more controlled conditions like greenhouses. Our system demonstrates the potential feasibility and effectiveness of employing imitation learning for automated harvesting in unstructured agricultural environments. This work aims to advance scalable, automated robotic solutions for agriculture in natural settings. |
|---|---|
| AbstractList | Automating tasks in outdoor agricultural fields poses significant challenges due to environmental variability, unstructured terrain, and diverse crop characteristics. We present a robotic system that leverages imitation learning for autonomous pepper harvesting designed to operate in these complex settings. Utilizing a custom handheld shear-gripper, we collected 300 demonstrations to train a visuomotor policy, enabling the system to adapt to varying field conditions and crop diversity. We achieved a success rate of 28.95% with a cycle time of 31.71 seconds, comparable to existing systems tested under more controlled conditions like greenhouses. Our system demonstrates the potential feasibility and effectiveness of employing imitation learning for automated harvesting in unstructured agricultural environments. This work aims to advance scalable, automated robotic solutions for agriculture in natural settings. |
| Author | Silwal, Abhisesh Kim, Chung Hee Kantor, George |
| Author_xml | – sequence: 1 givenname: Chung Hee orcidid: 0000-0001-7710-5984 surname: Kim fullname: Kim, Chung Hee email: chunghek@andrew.cmu.edu organization: Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 2 givenname: Abhisesh orcidid: 0000-0002-1710-6704 surname: Silwal fullname: Silwal, Abhisesh email: asilwal@andrew.cmu.edu organization: Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 3 givenname: George orcidid: 0000-0001-7088-8533 surname: Kantor fullname: Kantor, George email: gkantor@andrew.cmu.edu organization: Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA |
| BookMark | eNp9kLFqwzAQhkVJoWmavUMHvYBTWbIku5sJaRIwtIRmNrIkBxVbCpIc6NvXIRlCh05398N3x32PYGKd1QA8p2iRpqh4rXblAiNMF4RmmGB8B6aYcJ4Qztjkpn8A8xC-EUIpxZwUdAqacojOut4NAe5c46KR8FMfj9rDjfAnHaKxhze47U0U0TgLKy28HTNoLNzbEP0g4-C1guXBGzl04yA6uLIn453ttY3hCdy3ogt6fq0zsH9ffS03SfWx3i7LKpGYZTFhbYZVxmieqYJT2hZCMElZnqUZkYg2RU4VQYqLtmCSNEylmBZSa0JbpXiuyAygy17pXQhet_XRm174nzpF9VlTPWqqz5rqq6YRYX8Qef0zemG6_8CXC2i01jd38pwThMkvQRR42Q |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2025_113628 |
| Cites_doi | 10.1007/s41315-019-00103-5 10.1109/ICRA46639.2022.9811628 10.3390/s20092672 10.1109/LRA.2024.3386463 10.1109/IROS.2018.8594368 10.1109/LRA.2024.3357397 10.1109/ICRA57147.2024.10611327 10.3389/frobt.2024.1441312 10.3390/robotics13070098 10.1109/Humanoids53995.2022.10000171 10.1109/iros58592.2024.10802082 10.1002/rob.21889 10.1109/ACCESS.2020.3006919 10.1109/ICRA57147.2024.10610866 10.1016/j.compag.2024.109195 10.1002/rob.21973 10.1109/LRA.2020.2976314 10.1109/IROS.2016.7759122 10.1002/rob.21709 10.1007/s10846-022-01793-z 10.1109/ICRA48891.2023.10160650 10.15607/RSS.2023.XIX.026 10.1002/rob.21937 10.1109/ICRA48891.2023.10161400 10.15607/RSS.2024.XX.045 10.1109/TRO.2021.3075644 10.55417/fr.2022051 10.1109/ICRA.2016.7487394 10.1109/LRA.2017.2651952 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/LRA.2025.3542322 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 3413 |
| ExternalDocumentID | 10_1109_LRA_2025_3542322 10887302 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: 2138259; 2138286; 2138307; 2137603; 2138296 – fundername: NSF/USDA-NIFA AIIRA AI Research Institute grantid: 2021-67021-35329 – fundername: Bridges-2 at Pittsburgh Supercomputing Center through allocation – fundername: NSF Robust Intelligence grantid: 1956163 |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION |
| ID | FETCH-LOGICAL-c264t-6f42d46584d9755f9aa6c5684143c05b985d30d7af96c3b6d1259cee35fdd78d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001434749300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sat Nov 29 08:08:38 EST 2025 Tue Nov 18 22:18:45 EST 2025 Wed Aug 27 01:49:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c264t-6f42d46584d9755f9aa6c5684143c05b985d30d7af96c3b6d1259cee35fdd78d3 |
| ORCID | 0000-0001-7710-5984 0000-0001-7088-8533 0000-0002-1710-6704 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1109_LRA_2025_3542322 ieee_primary_10887302 crossref_citationtrail_10_1109_LRA_2025_3542322 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 Ho (ref27) 2020 ref10 ref32 ref2 Ven (ref25) 2024 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Cheng (ref1) 2023; 11 |
| References_xml | – ident: ref28 doi: 10.1007/s41315-019-00103-5 – ident: ref12 doi: 10.1109/ICRA46639.2022.9811628 – ident: ref6 doi: 10.3390/s20092672 – start-page: 6840 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2020 ident: ref27 article-title: Denoising diffusion probabilistic models – ident: ref8 doi: 10.1109/LRA.2024.3386463 – ident: ref26 doi: 10.1109/IROS.2018.8594368 – ident: ref31 doi: 10.1109/LRA.2024.3357397 – ident: ref10 doi: 10.1109/ICRA57147.2024.10611327 – ident: ref3 doi: 10.3389/frobt.2024.1441312 – ident: ref22 doi: 10.3390/robotics13070098 – ident: ref32 doi: 10.1109/Humanoids53995.2022.10000171 – ident: ref16 doi: 10.1109/iros58592.2024.10802082 – ident: ref13 doi: 10.1002/rob.21889 – ident: ref15 doi: 10.1109/ACCESS.2020.3006919 – ident: ref17 doi: 10.1109/ICRA57147.2024.10610866 – ident: ref24 doi: 10.1016/j.compag.2024.109195 – ident: ref20 doi: 10.1002/rob.21973 – ident: ref23 doi: 10.1109/LRA.2020.2976314 – ident: ref14 doi: 10.1109/IROS.2016.7759122 – ident: ref19 doi: 10.1002/rob.21709 – ident: ref2 doi: 10.1007/s10846-022-01793-z – ident: ref9 doi: 10.1109/ICRA48891.2023.10160650 – volume: 11 issue: 1 volume-title: Machines year: 2023 ident: ref1 article-title: Recent advancements in agriculture robots: Benefits and challenges – ident: ref5 doi: 10.15607/RSS.2023.XIX.026 – ident: ref21 doi: 10.1002/rob.21937 – ident: ref7 doi: 10.1109/ICRA48891.2023.10161400 – ident: ref4 doi: 10.15607/RSS.2024.XX.045 – ident: ref29 doi: 10.1109/TRO.2021.3075644 – ident: ref11 doi: 10.55417/fr.2022051 – ident: ref18 doi: 10.1109/ICRA.2016.7487394 – ident: ref30 doi: 10.1109/LRA.2017.2651952 – year: 2024 ident: ref25 article-title: DualLQR: Efficient grasping of oscillating apples using task parameterized learning from demonstration |
| SSID | ssj0001527395 |
| Score | 2.3330443 |
| Snippet | Automating tasks in outdoor agricultural fields poses significant challenges due to environmental variability, unstructured terrain, and diverse crop... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 3406 |
| SubjectTerms | Agricultural automation Cameras Crops Data collection Faces Grippers Imitation learning learning from demonstration robotics and automation in agriculture and forestry Robots Robustness Service robots Training |
| Title | Autonomous Robotic Pepper Harvesting: Imitation Learning in Unstructured Agricultural Environments |
| URI | https://ieeexplore.ieee.org/document/10887302 |
| Volume | 10 |
| WOSCitedRecordID | wos001434749300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RigEGnkWUR-WBhSFtSOw4ZotQK5BKVVVU6hYlflSVIKlCy8hvx07cEgaQ2KLozkr82bo7n-87gJs7s248FztCYuXgJOAOE0o4KadYKR5yQstC4SEdjcLZjI1tsXpZCyOlLC-fya55LHP5Iudrc1Smd7jeEr6hjmxQSqtire8DFUMlxsgmFemy3nAS6QDQI12fmHSk98P01HqplKZkcPjPjziCA-szoqgC-Rh2ZHYC-zUmwVNIo_XKlCfoOB5N8jTXkmgsl0tZINP9x1BpZPN79PRmKbmR5VWdo0WGppZFdl1IgaJ5saXjQP1aGVwLpoP-y8OjY9snOFx7OSsnUNgT2HgYglFCFEs0EiQIsXaRuEtSFhLhu4ImigXcTwOhfR2mbaZPlBA0FP4ZNLM8k-eAcCi5jhu1PyCEHjRJjDILmEyxl2CXt6G3mdmY2x8xLS5e4zLGcFmssYgNFrHFog23W41lxavxh2zLwFCTqxC4-OX9JewZ9ep-zRU09RTKa9jlH6vFe9GBxvNnv1OunS-JYMQ5 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBfXg58T5mYMXD926Nmkbb0M2NqxjjA12K20-xkDbUTf_fvPabNaDgrdSktDml_Dey8vv9xB6aMO6cWxiCUmURWKPW0woYSXcJ0rxgFO_IAqH_nAYzGZsZMjqBRdGSllcPpNNeCxy-SLjazgq0ztcbwkXpCN3KSFOu6RrfR-pgJgYo5tkpM1a4bijQ0CHNl0KCUnnh_GpVFMpjEnv-J-fcYKOjNeIOyXMp2hHpmfosKIleI6SznoFBAUdyeNxlmS6JR7J5VLmGOr_gJhGOn_Cg3cjyo2NsuocL1I8NTqy61wK3JnnW0EO3K0Q4epo2utOnvuWKaBgce3nrCxPEUcQ8DEE8ylVLNZYUC8g2kniNk1YQIVrCz9WzONu4gnt7TBtNV2qhPAD4V6gWpql8hJhEkiuI0ftEQihB41j6Mw8JhPixMTmDdTazGzEzY9AkYu3qIgybBZpLCLAIjJYNNDjtseyVNb4o20dYKi0KxG4-uX9PdrvT17DKBwMX67RAQxV3ra5QTU9nfIW7fHP1eIjvytW0BdBPMZP |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+Robotic+Pepper+Harvesting%3A+Imitation+Learning+in+Unstructured+Agricultural+Environments&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Kim%2C+Chung+Hee&rft.au=Silwal%2C+Abhisesh&rft.au=Kantor%2C+George&rft.date=2025-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=10&rft.issue=4&rft.spage=3406&rft.epage=3413&rft_id=info:doi/10.1109%2FLRA.2025.3542322&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2025_3542322 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |