Deep Reinforcement Learning With Dynamic Graphs for Adaptive Informative Path Planning

Autonomousrobots are often employed for data collection due to their efficiency and low labour costs. A key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations given platform-specific resource constraints, such as limited battery life....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE robotics and automation letters Ročník 9; číslo 9; s. 7747 - 7754
Hlavní autoři: Vashisth, Apoorva, Ruckin, Julius, Magistri, Federico, Stachniss, Cyrill, Popovic, Marija
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.09.2024
Témata:
ISSN:2377-3766, 2377-3766
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Autonomousrobots are often employed for data collection due to their efficiency and low labour costs. A key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations given platform-specific resource constraints, such as limited battery life. Adaptive online path planning in 3D environments is challenging due to the large set of valid actions and the presence of unknown occlusions. To address these issues, we propose a novel deep reinforcement learning approach for adaptively replanning robot paths to map targets of interest in unknown 3D environments. A key aspect of our approach is a dynamically constructed graph that restricts planning actions local to the robot, allowing us to react to newly discovered static obstacles and targets of interest. For replanning, we propose a new reward function that balances between exploring the unknown environment and exploiting online-discovered targets of interest. Our experiments show that our method enables more efficient target discovery compared to state-of-the-art learning and non-learning baselines. We also showcase our approach for orchard monitoring using an unmanned aerial vehicle in a photorealistic simulator.
AbstractList Autonomousrobots are often employed for data collection due to their efficiency and low labour costs. A key task in robotic data acquisition is planning paths through an initially unknown environment to collect observations given platform-specific resource constraints, such as limited battery life. Adaptive online path planning in 3D environments is challenging due to the large set of valid actions and the presence of unknown occlusions. To address these issues, we propose a novel deep reinforcement learning approach for adaptively replanning robot paths to map targets of interest in unknown 3D environments. A key aspect of our approach is a dynamically constructed graph that restricts planning actions local to the robot, allowing us to react to newly discovered static obstacles and targets of interest. For replanning, we propose a new reward function that balances between exploring the unknown environment and exploiting online-discovered targets of interest. Our experiments show that our method enables more efficient target discovery compared to state-of-the-art learning and non-learning baselines. We also showcase our approach for orchard monitoring using an unmanned aerial vehicle in a photorealistic simulator.
Author Ruckin, Julius
Magistri, Federico
Popovic, Marija
Vashisth, Apoorva
Stachniss, Cyrill
Author_xml – sequence: 1
  givenname: Apoorva
  orcidid: 0009-0005-3741-9053
  surname: Vashisth
  fullname: Vashisth, Apoorva
  organization: Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India
– sequence: 2
  givenname: Julius
  orcidid: 0000-0002-6308-0533
  surname: Ruckin
  fullname: Ruckin, Julius
  organization: Institute of Geodesy and Geoinformation, Cluster of Excellence PhenoRob, University of Bonn, Bonn, Germany
– sequence: 3
  givenname: Federico
  orcidid: 0000-0003-2815-5760
  surname: Magistri
  fullname: Magistri, Federico
  organization: Institute of Geodesy and Geoinformation, Cluster of Excellence PhenoRob, University of Bonn, Bonn, Germany
– sequence: 4
  givenname: Cyrill
  orcidid: 0000-0003-1173-6972
  surname: Stachniss
  fullname: Stachniss, Cyrill
  organization: Institute of Geodesy and Geoinformation, Cluster of Excellence PhenoRob, University of Bonn, Bonn, Germany
– sequence: 5
  givenname: Marija
  orcidid: 0000-0002-8830-6033
  surname: Popovic
  fullname: Popovic, Marija
  email: m.popovic@tudelft.nl
  organization: Institute of Geodesy and Geoinformation, Cluster of Excellence PhenoRob, University of Bonn, Bonn, Germany
BookMark eNp9kD1PwzAQhi0EEqV0Z2DwH0jxR2InY9VCqRSJquJjjK7OmRo1TuRESP33JLRDxcB07_A-d7rnhlz62iMhd5xNOWfZQ76ZTQUT8VTGgvM0vSAjIbWOpFbq8ixfk0nbfjHGeCK0zJIReV8gNnSDzts6GKzQdzRHCN75T_rhuh1dHDxUztBlgGbX0r5GZyU0nftGuhqoCn7zGvryeg9-QG_JlYV9i5PTHJO3p8fX-XOUvyxX81keGaHiLpLcKibtVpVqGydK8KzkDJU1CNKksAUpwQgOTNvMskyVFkCrUpuMcV1mRo4JO-41oW7bgLZogqsgHArOikFN0aspBjXFSU2PqD-IcV3_Qu27AG7_H3h_BB0int1JdNoblT-j33Om
CODEN IRALC6
CitedBy_id crossref_primary_10_3390_jmse13050934
crossref_primary_10_1109_LRA_2025_3557233
crossref_primary_10_1002_rob_22479
crossref_primary_10_1016_j_patcog_2025_112400
crossref_primary_10_1016_j_robot_2024_104814
crossref_primary_10_1109_LRA_2025_3555940
crossref_primary_10_3390_drones8110682
crossref_primary_10_3390_drones9090650
crossref_primary_10_1109_ACCESS_2025_3551088
crossref_primary_10_3390_drones8100521
crossref_primary_10_1109_TASE_2025_3604174
crossref_primary_10_3390_agriculture15181917
crossref_primary_10_1016_j_ijepes_2025_110468
Cites_doi 10.1109/IROS55552.2023.10341674
10.1109/IROS47612.2022.9982287
10.1109/ROBOT.2010.5509714
10.1109/IROS.2017.8202317
10.1109/LRA.2016.2520560
10.1007/978-3-030-92790-5_24
10.1109/ICRA.2012.6224902
10.1109/OCEANSAP.2016.7485429
10.1109/ROBOT.2004.1308026
10.1109/TRO.2023.3313811
10.1109/ICRA.2019.8794345
10.1109/ICRA46639.2022.9812025
10.1109/ICRA.2019.8794402
10.1109/ICRA.2014.6907763
10.1177/0278364915596378
10.1016/j.comcom.2012.08.021
10.1109/TSMC.2019.2946646
10.7551/mitpress/3206.001.0001
10.1007/s10514-020-09903-2
10.3390/drones2010009
10.1177/0278364914533443
10.1109/IROS45743.2020.9341781
10.1109/ICRA48891.2023.10160859
10.1109/LRA.2022.3154026
10.1109/IROS.2012.6385653
10.1016/j.robot.2022.104288
10.1109/INFOCOM41043.2020.9155528
10.1109/IROS47612.2022.9981992
10.1109/ICRA48506.2021.9561963
10.1109/IROS45743.2020.9340918
10.1109/LRA.2020.2969191
10.1109/ICRA46639.2022.9811800
10.1109/IROS40897.2019.8967969
10.1109/ROBOT.2005.1570193
10.1109/ICRA.2017.7989582
10.1002/rob.21722
10.1109/ICRA48891.2023.10160565
10.1109/ECMR50962.2021.9568796
10.1016/j.neucom.2022.11.020
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LRA.2024.3421188
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
Forestry
EISSN 2377-3766
EndPage 7754
ExternalDocumentID 10_1109_LRA_2024_3421188
10578000
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC-2070 – 390732324
  funderid: 10.13039/501100001659
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c264t-31f603fb6d6b456219d10e6fcea3c8aba33ac21a07f9f096dfaa76d7c9017d9c3
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283670800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sat Nov 29 06:03:31 EST 2025
Tue Nov 18 22:18:56 EST 2025
Wed Aug 27 02:29:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-31f603fb6d6b456219d10e6fcea3c8aba33ac21a07f9f096dfaa76d7c9017d9c3
ORCID 0000-0003-1173-6972
0000-0002-8830-6033
0009-0005-3741-9053
0000-0002-6308-0533
0000-0003-2815-5760
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_LRA_2024_3421188
crossref_primary_10_1109_LRA_2024_3421188
ieee_primary_10578000
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
Schulman (ref40) 2017
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
Magistri (ref8) 2019
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
Cao (ref30) 2023
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref5
  doi: 10.1109/IROS55552.2023.10341674
– ident: ref26
  doi: 10.1109/IROS47612.2022.9982287
– ident: ref9
  doi: 10.1109/ROBOT.2010.5509714
– ident: ref42
  doi: 10.1109/IROS.2017.8202317
– ident: ref28
  doi: 10.1109/LRA.2016.2520560
– ident: ref7
  doi: 10.1007/978-3-030-92790-5_24
– ident: ref14
  doi: 10.1109/ICRA.2012.6224902
– ident: ref2
  doi: 10.1109/OCEANSAP.2016.7485429
– ident: ref1
  doi: 10.1109/ROBOT.2004.1308026
– ident: ref4
  doi: 10.1109/TRO.2023.3313811
– ident: ref23
  doi: 10.1109/ICRA.2019.8794345
– ident: ref32
  doi: 10.1109/ICRA46639.2022.9812025
– ident: ref21
  doi: 10.1109/ICRA.2019.8794402
– ident: ref16
  doi: 10.1109/ICRA.2014.6907763
– ident: ref19
  doi: 10.1177/0278364915596378
– ident: ref13
  doi: 10.1016/j.comcom.2012.08.021
– ident: ref35
  doi: 10.1109/TSMC.2019.2946646
– ident: ref38
  doi: 10.7551/mitpress/3206.001.0001
– ident: ref18
  doi: 10.1007/s10514-020-09903-2
– ident: ref27
  doi: 10.3390/drones2010009
– ident: ref34
  doi: 10.1177/0278364914533443
– start-page: 1928
  volume-title: Proc. Conf. Robot Learn. (CoRL)
  year: 2023
  ident: ref30
  article-title: CAtNIPP: Context-aware attention-based network for informative path planning
– ident: ref24
  doi: 10.1109/IROS45743.2020.9341781
– ident: ref41
  doi: 10.1109/ICRA48891.2023.10160859
– ident: ref17
  doi: 10.1109/LRA.2022.3154026
– ident: ref3
  doi: 10.1109/IROS.2012.6385653
– ident: ref25
  doi: 10.1016/j.robot.2022.104288
– ident: ref29
  doi: 10.1109/INFOCOM41043.2020.9155528
– ident: ref36
  doi: 10.1109/IROS47612.2022.9981992
– ident: ref22
  doi: 10.1109/ICRA48506.2021.9561963
– year: 2017
  ident: ref40
  article-title: Proximal policy optimization algorithms
– ident: ref6
  doi: 10.1109/IROS45743.2020.9340918
– ident: ref20
  doi: 10.1109/LRA.2020.2969191
– ident: ref37
  doi: 10.1109/ICRA46639.2022.9811800
– ident: ref33
  doi: 10.1109/IROS40897.2019.8967969
– ident: ref39
  doi: 10.1109/ROBOT.2005.1570193
– ident: ref15
  doi: 10.1109/ICRA.2017.7989582
– ident: ref10
  doi: 10.1002/rob.21722
– ident: ref11
  doi: 10.1109/ICRA48891.2023.10160565
– start-page: 67
  volume-title: Proc. Int. Micro Air Veh. Competition Conf.
  year: 2019
  ident: ref8
  article-title: Using prior information to improve crop/weed classification by MAV swarms
– ident: ref31
  doi: 10.1109/ECMR50962.2021.9568796
– ident: ref12
  doi: 10.1016/j.neucom.2022.11.020
SSID ssj0001527395
Score 2.37124
Snippet Autonomousrobots are often employed for data collection due to their efficiency and low labour costs. A key task in robotic data acquisition is planning paths...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 7747
SubjectTerms Agricultural robots
Agriculture
Autonomous aerial vehicles
Forestry
Motion and path planning
Motion planning
Path planning
Reinforcement learning
Robot sensing systems
robotics and automation in agriculture and forestry
Three-dimensional displays
Vehicle dynamics
Title Deep Reinforcement Learning With Dynamic Graphs for Adaptive Informative Path Planning
URI https://ieeexplore.ieee.org/document/10578000
Volume 9
WOSCitedRecordID wos001283670800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG6EGKMHPxAjfpAevHgYbOvW0iNR0AMSQvzgtvQTSQwQGB797bZdES6aeOuWt8myp2mft-37PADcJIynLNIo4CkXQUI1C3hIdBDFPKU6RYkq1PV7pN9vjUZ04IvVXS2MUspdPlMN23Rn-XImVnarrGk9aQ3BMRl6iRBSFGttNlSslBhN10eRIW32hm2TAMZJAyUmzXHeKpulZ8tLxS0l3aN_fsQxOPScEbYLkE_AjppWwEF7vPC6Gco8bekKVsCeNdy0Lm6n4PVeqTkcKieQKtxeIPSaqmP4Nsnf4X3hSQ8frHT1Epow2JZsbqdB6IuVXHtguCJcexxVwUu383z3GHgvhUAYypObqVbjEGmOJeY26YmojEKFtVAMiRbjDCEm4ogZnKg2aY3UjBEsiTB8gUgq0BkoT2dTdQ6gCnXcwhoLw20SLglDmlk3PBwyQxYQqoHm-jdnwguNW7-Lj8wlHCHNDDCZBSbzwNTA7U-PeSGy8Uds1WKyFVfAcfHL-0uwb7sX18KuQDlfrNQ12BWf-WS5qIPS01en7gbSNxKtxnQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwGG2MGi8PXhAjXvvgiw-Dbd06-riIiHESQlB5W3pFEgOEi7_ftivCiya-dcu3ZelZ2vO1_c4B4DaiLKaBQh6LGfcioqjH_ER5QchiomIUyUJdP0va7Xq_TzquWN3Wwkgp7eEzWTVNu5cvxnxhlspqxpNWExydoW_FURQGRbnWaknFiImReLkZ6ZNa1k11ChhGVaSjA-uuspp81txU7GTSPPznZxyBA8caYVrAfAw25KgE9tPB1ClnSH21pixYAjvGctP4uJ2At4aUE9iVViKV29VA6FRVB_B9OP-AjcKVHj4a8eoZ1GEwFXRiBkLoypVsu6PZIly6HJXBa_Ohd9_ynJuCxzXpmevBVmEfKYYFZibtCYgIfIkVlxTxOmUUIcrDgGqkiNKJjVCUJlgkXDOGRBCOTsHmaDySZwBKX4V1rDDX7CZiIqFIUeOHh32q6QJCFVBbdnPOndS4cbz4zG3K4ZNcA5MbYHIHTAXc_TwxKWQ2_ogtG0zW4go4zn-5fwN2W72XLM-e2s8XYM-8qjgkdgk259OFvALb_Gs-nE2v7e_0DdvjyIo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+With+Dynamic+Graphs+for+Adaptive+Informative+Path+Planning&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Vashisth%2C+Apoorva&rft.au=Ruckin%2C+Julius&rft.au=Magistri%2C+Federico&rft.au=Stachniss%2C+Cyrill&rft.date=2024-09-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=9&rft.issue=9&rft.spage=7747&rft.epage=7754&rft_id=info:doi/10.1109%2FLRA.2024.3421188&rft.externalDocID=10578000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon