Competitive Advantage of Huffman and Shannon-Fano Codes

For any finite discrete source, the competitive advantage of prefix code <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> over prefix code <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 70; H. 11; S. 7581 - 7598
Hauptverfasser: Congero, Spencer, Zeger, Kenneth
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.11.2024
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract For any finite discrete source, the competitive advantage of prefix code <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> over prefix code <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula> is the probability <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> produces a shorter codeword than <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula>, minus the probability <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula> produces a shorter codeword than <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula>. For any source, a prefix code is competitively optimal if it has a nonnegative competitive advantage over all other prefix codes. In 1991, Cover proved that Huffman codes are competitively optimal for all dyadic sources, namely sources whose symbol probabilities are negative integer powers of 2. We prove the following asymptotic converse: As the source size grows, the probability a Huffman code for a randomly chosen non-dyadic source is competitively optimal converges to zero. We also prove: (i) For any non-dyadic source, a Huffman code has a positive competitive advantage over a Shannon-Fano code; (ii) For any source, the competitive advantage of any prefix code over a Huffman code is strictly less than <inline-formula> <tex-math notation="LaTeX">\frac {1}{3} </tex-math></inline-formula>; (iii) For each integer <inline-formula> <tex-math notation="LaTeX">n\gt 3 </tex-math></inline-formula>, there exists a source of size n and some prefix code whose competitive advantage over a Huffman code is arbitrarily close to <inline-formula> <tex-math notation="LaTeX">\frac {1}{3} </tex-math></inline-formula>; and (iv) For each positive integer n, there exists a source of size n and some prefix code whose competitive advantage over a Shannon-Fano code becomes arbitrarily close to 1 as <inline-formula> <tex-math notation="LaTeX">n\to \infty </tex-math></inline-formula>.
AbstractList For any finite discrete source, the competitive advantage of prefix code <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> over prefix code <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula> is the probability <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> produces a shorter codeword than <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula>, minus the probability <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula> produces a shorter codeword than <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula>. For any source, a prefix code is competitively optimal if it has a nonnegative competitive advantage over all other prefix codes. In 1991, Cover proved that Huffman codes are competitively optimal for all dyadic sources, namely sources whose symbol probabilities are negative integer powers of 2. We prove the following asymptotic converse: As the source size grows, the probability a Huffman code for a randomly chosen non-dyadic source is competitively optimal converges to zero. We also prove: (i) For any non-dyadic source, a Huffman code has a positive competitive advantage over a Shannon-Fano code; (ii) For any source, the competitive advantage of any prefix code over a Huffman code is strictly less than <inline-formula> <tex-math notation="LaTeX">\frac {1}{3} </tex-math></inline-formula>; (iii) For each integer <inline-formula> <tex-math notation="LaTeX">n\gt 3 </tex-math></inline-formula>, there exists a source of size n and some prefix code whose competitive advantage over a Huffman code is arbitrarily close to <inline-formula> <tex-math notation="LaTeX">\frac {1}{3} </tex-math></inline-formula>; and (iv) For each positive integer n, there exists a source of size n and some prefix code whose competitive advantage over a Shannon-Fano code becomes arbitrarily close to 1 as <inline-formula> <tex-math notation="LaTeX">n\to \infty </tex-math></inline-formula>.
Author Congero, Spencer
Zeger, Kenneth
Author_xml – sequence: 1
  givenname: Spencer
  orcidid: 0000-0002-3099-5884
  surname: Congero
  fullname: Congero, Spencer
  email: scongero@ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: Kenneth
  orcidid: 0000-0001-6415-1447
  surname: Zeger
  fullname: Zeger, Kenneth
  email: ken@zeger.us
  organization: Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA, USA
BookMark eNp9jz1PwzAURS1UJNLCzsCQP5Dy7PgjHquI0kqVGChz9BrbYNTYVWIq8e9J1Q6IgenqDudenSmZhBgsIfcU5pSCftyut3MGjM9LThVQuCIZFUIVWgo-IRkArQrNeXVDpsPwOVYuKMuIqmN3sMknf7T5whwxJHy3eXT56su5DkOOweSvHxjGv2KJIeZ1NHa4JdcO94O9u-SMvC2ftvWq2Lw8r-vFpmiZ5KmgHLWSTu5Y5YwxbWmcYHYHTKOtuAMjJOMCgUtqVAkMNRMSQAuD2iq1K2cEzrttH4eht6459L7D_ruh0JzEm1G8OYk3F_ERkX-Q1idMPobUo9__Bz6cQW-t_fUjpNBQlT8kSmZr
CODEN IETTAW
CitedBy_id crossref_primary_10_3390_e26121000
Cites_doi 10.2307/1967277
10.1287/moor.5.2.161
10.1109/18.119700
10.1109/NCC.2019.8732264
10.1002/0471200611
10.1002/SERIES1345
10.1109/18.945241
10.1109/TIT.1978.1055959
10.1109/18.476328
10.1017/CBO9781139195768
10.1016/j.engappai.2021.104241
10.1109/LCOMM.2014.030114.132842
10.1109/TIT.2006.890782
10.1007/978-1-4613-8643-8
10.1109/18.61133
10.1109/18.641571
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIT.2024.3417010
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 7598
ExternalDocumentID 10_1109_TIT_2024_3417010
10565908
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c264t-14a976f6b28fdddc3df52eb029ae84f0d56245a0461d7302a92560095da9e77b3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001343340800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Tue Nov 18 21:52:55 EST 2025
Sat Nov 29 03:31:52 EST 2025
Wed Aug 27 02:14:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-14a976f6b28fdddc3df52eb029ae84f0d56245a0461d7302a92560095da9e77b3
ORCID 0000-0002-3099-5884
0000-0001-6415-1447
PageCount 18
ParticipantIDs ieee_primary_10565908
crossref_primary_10_1109_TIT_2024_3417010
crossref_citationtrail_10_1109_TIT_2024_3417010
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
ref14
ref20
ref11
ref10
ref2
ref17
ref16
ref19
ref18
ref8
ref7
Gill (ref12) 2010
ref9
ref4
ref3
Billingsley (ref5) 1986
Congero (ref6) 2023
Banks (ref1) 2018
References_xml – year: 2023
  ident: ref6
  article-title: A characterization of optimal prefix codes
  publication-title: arXiv:2311.07007
– ident: ref16
  doi: 10.2307/1967277
– ident: ref2
  doi: 10.1287/moor.5.2.161
– ident: ref10
  doi: 10.1109/18.119700
– ident: ref15
  doi: 10.1109/NCC.2019.8732264
– ident: ref8
  doi: 10.1002/0471200611
– ident: ref17
  doi: 10.1002/SERIES1345
– ident: ref20
  doi: 10.1109/18.945241
– ident: ref11
  doi: 10.1109/TIT.1978.1055959
– ident: ref19
  doi: 10.1109/18.476328
– ident: ref3
  doi: 10.1017/CBO9781139195768
– ident: ref4
  doi: 10.1016/j.engappai.2021.104241
– ident: ref18
  doi: 10.1109/LCOMM.2014.030114.132842
– volume-title: Probability and Measure
  year: 1986
  ident: ref5
– ident: ref13
  doi: 10.1109/TIT.2006.890782
– year: 2010
  ident: ref12
  article-title: Twenty questions games always end with yes
  publication-title: arXiv:1002.4907
– ident: ref9
  doi: 10.1007/978-1-4613-8643-8
– volume-title: How to Play Golf: A Guide to Learn the Golf Rules, Etiquette, Clubs, Balls, Types of Play, & A Practice Schedule
  year: 2018
  ident: ref1
– ident: ref7
  doi: 10.1109/18.61133
– ident: ref14
  doi: 10.1109/18.641571
SSID ssj0014512
Score 2.4701362
Snippet For any finite discrete source, the competitive advantage of prefix code <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> over...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 7581
SubjectTerms Channel coding
Codes
data compression
Games
Lossless source coding
Portfolios
Source coding
Symbols
Terminology
variable length codes
Title Competitive Advantage of Huffman and Shannon-Fano Codes
URI https://ieeexplore.ieee.org/document/10565908
Volume 70
WOSCitedRecordID wos001343340800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RigEGPkoR5UseWBjSOrFTxyOqqMpSIVGkbpETnwUSJKhN-f3YTlplAYktiuwkes7Z73y-ewB3LFNxyPIwYGysrIPCaZAxiUEYKZ4lSLkQxotNiPk8WS7lc5Os7nNhENEfPsOhu_SxfF3mG7dVNnIq8U6juwMdIUSdrLULGfA4rEuDh9aCrdOxjUlSOVo8LawnGPGhnbIFdcmyrTWoJari15Tp8T-_5gSOGvJIHurRPoU9LHpwvBVmII2d9uCwVWXwDMTEc2N_SIh4FeXKTiKkNGS2MeZTFUQVmry8qaIoi2CqipJMSo3rPrxOHxeTWdDoJQS5pTVVEHJlyYUZZ1FitNY50yaOMKORVJhwQ7XlOjxWrsS6toYdKen5joy1kihExs6ha1-EF0DsA-3gxlokIXJmUMZKCWpb5aiY5DiA0RbBNG-KiTtNi4_UOxVUphbz1GGeNpgP4H7X46supPFH276Du9WuRvryl_tXcOC61ymC19CtVhu8gf38u3pfr279b_IDzza4ag
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFNSD0zlx_szBi4dubZMuzVGGY8M5BCfsVtLmBQVtZT_8-03Sbuyi4K2UNC1f-pLv5eW9D-CWpjIKaBZ4lHalcVCY76VUoBeEkqUx-oxz7cQm-HgcT6fiuUpWd7kwiOgOn2HbXrpYviqypd0q61iVeKvRvQ07EWNhUKZrrYMGLArK4uCBsWHjdqyikr7oTIYT4wuGrG0mbe7bdNmNVWhDVsWtKv36P7_nCA4r-kjuy_E-hi3MG1BfSTOQylIbcLBRZ_AEeM-xY3dMiDgd5YWZRkihyWCp9afMicwVeXmTeV7kXl_mBekVCudNeO0_THoDr1JM8DJDbBZewKShF7qbhrFWSmVU6SjE1A-FxJhpXxm2wyJpi6wrY9qhFI7xiEhJgZyn9BRq5kV4BsR0aIY3UjwOkFGNIpKS-6ZVhpIKhi3orBBMsqqcuFW1-EicW-GLxGCeWMyTCvMW3K2f-CpLafzRtmnh3mhXIn3-y_0b2BtMnkbJaDh-vIB921WZMHgJtcVsiVewm30v3ueza_fL_ACWv7ux
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Advantage+of+Huffman+and+Shannon-Fano+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Congero%2C+Spencer&rft.au=Zeger%2C+Kenneth&rft.date=2024-11-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=70&rft.issue=11&rft.spage=7581&rft.epage=7598&rft_id=info:doi/10.1109%2FTIT.2024.3417010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2024_3417010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon