Competitive Advantage of Huffman and Shannon-Fano Codes
For any finite discrete source, the competitive advantage of prefix code <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> over prefix code <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inl...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on information theory Jg. 70; H. 11; S. 7581 - 7598 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.11.2024
|
| Schlagworte: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | For any finite discrete source, the competitive advantage of prefix code <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> over prefix code <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula> is the probability <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> produces a shorter codeword than <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula>, minus the probability <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula> produces a shorter codeword than <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula>. For any source, a prefix code is competitively optimal if it has a nonnegative competitive advantage over all other prefix codes. In 1991, Cover proved that Huffman codes are competitively optimal for all dyadic sources, namely sources whose symbol probabilities are negative integer powers of 2. We prove the following asymptotic converse: As the source size grows, the probability a Huffman code for a randomly chosen non-dyadic source is competitively optimal converges to zero. We also prove: (i) For any non-dyadic source, a Huffman code has a positive competitive advantage over a Shannon-Fano code; (ii) For any source, the competitive advantage of any prefix code over a Huffman code is strictly less than <inline-formula> <tex-math notation="LaTeX">\frac {1}{3} </tex-math></inline-formula>; (iii) For each integer <inline-formula> <tex-math notation="LaTeX">n\gt 3 </tex-math></inline-formula>, there exists a source of size n and some prefix code whose competitive advantage over a Huffman code is arbitrarily close to <inline-formula> <tex-math notation="LaTeX">\frac {1}{3} </tex-math></inline-formula>; and (iv) For each positive integer n, there exists a source of size n and some prefix code whose competitive advantage over a Shannon-Fano code becomes arbitrarily close to 1 as <inline-formula> <tex-math notation="LaTeX">n\to \infty </tex-math></inline-formula>. |
|---|---|
| AbstractList | For any finite discrete source, the competitive advantage of prefix code <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> over prefix code <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula> is the probability <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> produces a shorter codeword than <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula>, minus the probability <inline-formula> <tex-math notation="LaTeX">C_{2} </tex-math></inline-formula> produces a shorter codeword than <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula>. For any source, a prefix code is competitively optimal if it has a nonnegative competitive advantage over all other prefix codes. In 1991, Cover proved that Huffman codes are competitively optimal for all dyadic sources, namely sources whose symbol probabilities are negative integer powers of 2. We prove the following asymptotic converse: As the source size grows, the probability a Huffman code for a randomly chosen non-dyadic source is competitively optimal converges to zero. We also prove: (i) For any non-dyadic source, a Huffman code has a positive competitive advantage over a Shannon-Fano code; (ii) For any source, the competitive advantage of any prefix code over a Huffman code is strictly less than <inline-formula> <tex-math notation="LaTeX">\frac {1}{3} </tex-math></inline-formula>; (iii) For each integer <inline-formula> <tex-math notation="LaTeX">n\gt 3 </tex-math></inline-formula>, there exists a source of size n and some prefix code whose competitive advantage over a Huffman code is arbitrarily close to <inline-formula> <tex-math notation="LaTeX">\frac {1}{3} </tex-math></inline-formula>; and (iv) For each positive integer n, there exists a source of size n and some prefix code whose competitive advantage over a Shannon-Fano code becomes arbitrarily close to 1 as <inline-formula> <tex-math notation="LaTeX">n\to \infty </tex-math></inline-formula>. |
| Author | Congero, Spencer Zeger, Kenneth |
| Author_xml | – sequence: 1 givenname: Spencer orcidid: 0000-0002-3099-5884 surname: Congero fullname: Congero, Spencer email: scongero@ucsd.edu organization: Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA, USA – sequence: 2 givenname: Kenneth orcidid: 0000-0001-6415-1447 surname: Zeger fullname: Zeger, Kenneth email: ken@zeger.us organization: Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA, USA |
| BookMark | eNp9jz1PwzAURS1UJNLCzsCQP5Dy7PgjHquI0kqVGChz9BrbYNTYVWIq8e9J1Q6IgenqDudenSmZhBgsIfcU5pSCftyut3MGjM9LThVQuCIZFUIVWgo-IRkArQrNeXVDpsPwOVYuKMuIqmN3sMknf7T5whwxJHy3eXT56su5DkOOweSvHxjGv2KJIeZ1NHa4JdcO94O9u-SMvC2ftvWq2Lw8r-vFpmiZ5KmgHLWSTu5Y5YwxbWmcYHYHTKOtuAMjJOMCgUtqVAkMNRMSQAuD2iq1K2cEzrttH4eht6459L7D_ruh0JzEm1G8OYk3F_ERkX-Q1idMPobUo9__Bz6cQW-t_fUjpNBQlT8kSmZr |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_3390_e26121000 |
| Cites_doi | 10.2307/1967277 10.1287/moor.5.2.161 10.1109/18.119700 10.1109/NCC.2019.8732264 10.1002/0471200611 10.1002/SERIES1345 10.1109/18.945241 10.1109/TIT.1978.1055959 10.1109/18.476328 10.1017/CBO9781139195768 10.1016/j.engappai.2021.104241 10.1109/LCOMM.2014.030114.132842 10.1109/TIT.2006.890782 10.1007/978-1-4613-8643-8 10.1109/18.61133 10.1109/18.641571 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TIT.2024.3417010 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9654 |
| EndPage | 7598 |
| ExternalDocumentID | 10_1109_TIT_2024_3417010 10565908 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION |
| ID | FETCH-LOGICAL-c264t-14a976f6b28fdddc3df52eb029ae84f0d56245a0461d7302a92560095da9e77b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001343340800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Tue Nov 18 21:52:55 EST 2025 Sat Nov 29 03:31:52 EST 2025 Wed Aug 27 02:14:25 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c264t-14a976f6b28fdddc3df52eb029ae84f0d56245a0461d7302a92560095da9e77b3 |
| ORCID | 0000-0002-3099-5884 0000-0001-6415-1447 |
| PageCount | 18 |
| ParticipantIDs | ieee_primary_10565908 crossref_primary_10_1109_TIT_2024_3417010 crossref_citationtrail_10_1109_TIT_2024_3417010 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref15 ref14 ref20 ref11 ref10 ref2 ref17 ref16 ref19 ref18 ref8 ref7 Gill (ref12) 2010 ref9 ref4 ref3 Billingsley (ref5) 1986 Congero (ref6) 2023 Banks (ref1) 2018 |
| References_xml | – year: 2023 ident: ref6 article-title: A characterization of optimal prefix codes publication-title: arXiv:2311.07007 – ident: ref16 doi: 10.2307/1967277 – ident: ref2 doi: 10.1287/moor.5.2.161 – ident: ref10 doi: 10.1109/18.119700 – ident: ref15 doi: 10.1109/NCC.2019.8732264 – ident: ref8 doi: 10.1002/0471200611 – ident: ref17 doi: 10.1002/SERIES1345 – ident: ref20 doi: 10.1109/18.945241 – ident: ref11 doi: 10.1109/TIT.1978.1055959 – ident: ref19 doi: 10.1109/18.476328 – ident: ref3 doi: 10.1017/CBO9781139195768 – ident: ref4 doi: 10.1016/j.engappai.2021.104241 – ident: ref18 doi: 10.1109/LCOMM.2014.030114.132842 – volume-title: Probability and Measure year: 1986 ident: ref5 – ident: ref13 doi: 10.1109/TIT.2006.890782 – year: 2010 ident: ref12 article-title: Twenty questions games always end with yes publication-title: arXiv:1002.4907 – ident: ref9 doi: 10.1007/978-1-4613-8643-8 – volume-title: How to Play Golf: A Guide to Learn the Golf Rules, Etiquette, Clubs, Balls, Types of Play, & A Practice Schedule year: 2018 ident: ref1 – ident: ref7 doi: 10.1109/18.61133 – ident: ref14 doi: 10.1109/18.641571 |
| SSID | ssj0014512 |
| Score | 2.4701362 |
| Snippet | For any finite discrete source, the competitive advantage of prefix code <inline-formula> <tex-math notation="LaTeX">C_{1} </tex-math></inline-formula> over... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 7581 |
| SubjectTerms | Channel coding Codes data compression Games Lossless source coding Portfolios Source coding Symbols Terminology variable length codes |
| Title | Competitive Advantage of Huffman and Shannon-Fano Codes |
| URI | https://ieeexplore.ieee.org/document/10565908 |
| Volume | 70 |
| WOSCitedRecordID | wos001343340800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RigEGPkoR5UseWBjSOrFTxyOqqMpSIVGkbpETnwUSJKhN-f3YTlplAYktiuwkes7Z73y-ewB3LFNxyPIwYGysrIPCaZAxiUEYKZ4lSLkQxotNiPk8WS7lc5Os7nNhENEfPsOhu_SxfF3mG7dVNnIq8U6juwMdIUSdrLULGfA4rEuDh9aCrdOxjUlSOVo8LawnGPGhnbIFdcmyrTWoJari15Tp8T-_5gSOGvJIHurRPoU9LHpwvBVmII2d9uCwVWXwDMTEc2N_SIh4FeXKTiKkNGS2MeZTFUQVmry8qaIoi2CqipJMSo3rPrxOHxeTWdDoJQS5pTVVEHJlyYUZZ1FitNY50yaOMKORVJhwQ7XlOjxWrsS6toYdKen5joy1kihExs6ha1-EF0DsA-3gxlokIXJmUMZKCWpb5aiY5DiA0RbBNG-KiTtNi4_UOxVUphbz1GGeNpgP4H7X46supPFH276Du9WuRvryl_tXcOC61ymC19CtVhu8gf38u3pfr279b_IDzza4ag |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFNSD0zlx_szBi4dubZMuzVGGY8M5BCfsVtLmBQVtZT_8-03Sbuyi4K2UNC1f-pLv5eW9D-CWpjIKaBZ4lHalcVCY76VUoBeEkqUx-oxz7cQm-HgcT6fiuUpWd7kwiOgOn2HbXrpYviqypd0q61iVeKvRvQ07EWNhUKZrrYMGLArK4uCBsWHjdqyikr7oTIYT4wuGrG0mbe7bdNmNVWhDVsWtKv36P7_nCA4r-kjuy_E-hi3MG1BfSTOQylIbcLBRZ_AEeM-xY3dMiDgd5YWZRkihyWCp9afMicwVeXmTeV7kXl_mBekVCudNeO0_THoDr1JM8DJDbBZewKShF7qbhrFWSmVU6SjE1A-FxJhpXxm2wyJpi6wrY9qhFI7xiEhJgZyn9BRq5kV4BsR0aIY3UjwOkFGNIpKS-6ZVhpIKhi3orBBMsqqcuFW1-EicW-GLxGCeWMyTCvMW3K2f-CpLafzRtmnh3mhXIn3-y_0b2BtMnkbJaDh-vIB921WZMHgJtcVsiVewm30v3ueza_fL_ACWv7ux |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Competitive+Advantage+of+Huffman+and+Shannon-Fano+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Congero%2C+Spencer&rft.au=Zeger%2C+Kenneth&rft.date=2024-11-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=70&rft.issue=11&rft.spage=7581&rft.epage=7598&rft_id=info:doi/10.1109%2FTIT.2024.3417010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2024_3417010 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |