Developing an Explainable Variational Autoencoder (VAE) Framework for Accurate Representation of Local Circulation in Taiwan

This study develops an explainable variational autoencoder (VAE) framework to efficiently generate high‐fidelity local circulation patterns in Taiwan, ensuring an accurate representation of the physical relationship between generated local circulation and upstream synoptic flow regimes. Large ensemb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres Jg. 129; H. 12
Hauptverfasser: Hsieh, Min‐Ken, Wu, Chien‐Ming
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington Blackwell Publishing Ltd 28.06.2024
Schlagworte:
ISSN:2169-897X, 2169-8996
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study develops an explainable variational autoencoder (VAE) framework to efficiently generate high‐fidelity local circulation patterns in Taiwan, ensuring an accurate representation of the physical relationship between generated local circulation and upstream synoptic flow regimes. Large ensemble semi‐realistic simulations were conducted using a high‐resolution (2 km) model, TaiwanVVM, where critical characteristics of various synoptic flow regimes were carefully selected to focus on the effects of local circulation variations. The VAE was constructed to capture essential representations of local circulation scenarios associated with the lee vortices by training on the ensemble data set. The VAE's latent space effectively captures the synoptic flow regimes as controlling factors, aligning with the physical understanding of Taiwan's local circulation dynamics. The critical transition of flow regimes under the influence of southeasterly synoptic flow regimes is also well represented in the VAE's latent space. This indicates that the VAE can learn the nonlinear characteristics of the multiscale interactions involving the lee vortex. The latent space within VAE can serve as a reduced‐order model for predicting local circulation using synoptic wind speed and direction. This explainable VAE binds the physical reasoning to the predictions of the local circulation that ensures the physical examination of the uncertainty in accelerating the local weather assessments under various climate change scenarios. Plain Language Summary This research introduces an advanced neural network framework for generating high‐fidelity local flow patterns in Taiwan. This framework, known as an explainable variational autoencoder, can accurately simulate how wind patterns of synoptic weather conditions interact in this region. We used detailed simulations to train the variational autoencoder, ensuring it captures the complex relationships between local flow and larger‐scale weather patterns. By training on the detailed simulations, the variational autoencoder learned and represented these large‐scale weather patterns in a way that helps maintain the physical relationship between local flow prediction and the large‐scale weather patterns. One of the key outcomes of this study is the development of a reduced‐order model. This simplified model takes advantage of what we have learned about complex weather interactions and can quickly predict local weather under different conditions. This approach provides opportunities for physical examination of uncertainty in local circulation predictions using a neural network model under complex situations involving changing climate conditions. Key Points An explainable variational autoencoder is constructed to capture Taiwan's local circulation using TaiwanVVM ensemble simulations The representation of local circulation in the latent space of the VAE can be formulated as synoptic wind speed and direction This framework can effectively generate accurate local circulation in Taiwan for fast climate response assessment
AbstractList This study develops an explainable variational autoencoder (VAE) framework to efficiently generate high‐fidelity local circulation patterns in Taiwan, ensuring an accurate representation of the physical relationship between generated local circulation and upstream synoptic flow regimes. Large ensemble semi‐realistic simulations were conducted using a high‐resolution (2 km) model, TaiwanVVM, where critical characteristics of various synoptic flow regimes were carefully selected to focus on the effects of local circulation variations. The VAE was constructed to capture essential representations of local circulation scenarios associated with the lee vortices by training on the ensemble data set. The VAE's latent space effectively captures the synoptic flow regimes as controlling factors, aligning with the physical understanding of Taiwan's local circulation dynamics. The critical transition of flow regimes under the influence of southeasterly synoptic flow regimes is also well represented in the VAE's latent space. This indicates that the VAE can learn the nonlinear characteristics of the multiscale interactions involving the lee vortex. The latent space within VAE can serve as a reduced‐order model for predicting local circulation using synoptic wind speed and direction. This explainable VAE binds the physical reasoning to the predictions of the local circulation that ensures the physical examination of the uncertainty in accelerating the local weather assessments under various climate change scenarios. This research introduces an advanced neural network framework for generating high‐fidelity local flow patterns in Taiwan. This framework, known as an explainable variational autoencoder, can accurately simulate how wind patterns of synoptic weather conditions interact in this region. We used detailed simulations to train the variational autoencoder, ensuring it captures the complex relationships between local flow and larger‐scale weather patterns. By training on the detailed simulations, the variational autoencoder learned and represented these large‐scale weather patterns in a way that helps maintain the physical relationship between local flow prediction and the large‐scale weather patterns. One of the key outcomes of this study is the development of a reduced‐order model. This simplified model takes advantage of what we have learned about complex weather interactions and can quickly predict local weather under different conditions. This approach provides opportunities for physical examination of uncertainty in local circulation predictions using a neural network model under complex situations involving changing climate conditions. An explainable variational autoencoder is constructed to capture Taiwan's local circulation using TaiwanVVM ensemble simulations The representation of local circulation in the latent space of the VAE can be formulated as synoptic wind speed and direction This framework can effectively generate accurate local circulation in Taiwan for fast climate response assessment
This study develops an explainable variational autoencoder (VAE) framework to efficiently generate high‐fidelity local circulation patterns in Taiwan, ensuring an accurate representation of the physical relationship between generated local circulation and upstream synoptic flow regimes. Large ensemble semi‐realistic simulations were conducted using a high‐resolution (2 km) model, TaiwanVVM, where critical characteristics of various synoptic flow regimes were carefully selected to focus on the effects of local circulation variations. The VAE was constructed to capture essential representations of local circulation scenarios associated with the lee vortices by training on the ensemble data set. The VAE's latent space effectively captures the synoptic flow regimes as controlling factors, aligning with the physical understanding of Taiwan's local circulation dynamics. The critical transition of flow regimes under the influence of southeasterly synoptic flow regimes is also well represented in the VAE's latent space. This indicates that the VAE can learn the nonlinear characteristics of the multiscale interactions involving the lee vortex. The latent space within VAE can serve as a reduced‐order model for predicting local circulation using synoptic wind speed and direction. This explainable VAE binds the physical reasoning to the predictions of the local circulation that ensures the physical examination of the uncertainty in accelerating the local weather assessments under various climate change scenarios. Plain Language Summary This research introduces an advanced neural network framework for generating high‐fidelity local flow patterns in Taiwan. This framework, known as an explainable variational autoencoder, can accurately simulate how wind patterns of synoptic weather conditions interact in this region. We used detailed simulations to train the variational autoencoder, ensuring it captures the complex relationships between local flow and larger‐scale weather patterns. By training on the detailed simulations, the variational autoencoder learned and represented these large‐scale weather patterns in a way that helps maintain the physical relationship between local flow prediction and the large‐scale weather patterns. One of the key outcomes of this study is the development of a reduced‐order model. This simplified model takes advantage of what we have learned about complex weather interactions and can quickly predict local weather under different conditions. This approach provides opportunities for physical examination of uncertainty in local circulation predictions using a neural network model under complex situations involving changing climate conditions. Key Points An explainable variational autoencoder is constructed to capture Taiwan's local circulation using TaiwanVVM ensemble simulations The representation of local circulation in the latent space of the VAE can be formulated as synoptic wind speed and direction This framework can effectively generate accurate local circulation in Taiwan for fast climate response assessment
This study develops an explainable variational autoencoder (VAE) framework to efficiently generate high‐fidelity local circulation patterns in Taiwan, ensuring an accurate representation of the physical relationship between generated local circulation and upstream synoptic flow regimes. Large ensemble semi‐realistic simulations were conducted using a high‐resolution (2 km) model, TaiwanVVM, where critical characteristics of various synoptic flow regimes were carefully selected to focus on the effects of local circulation variations. The VAE was constructed to capture essential representations of local circulation scenarios associated with the lee vortices by training on the ensemble data set. The VAE's latent space effectively captures the synoptic flow regimes as controlling factors, aligning with the physical understanding of Taiwan's local circulation dynamics. The critical transition of flow regimes under the influence of southeasterly synoptic flow regimes is also well represented in the VAE's latent space. This indicates that the VAE can learn the nonlinear characteristics of the multiscale interactions involving the lee vortex. The latent space within VAE can serve as a reduced‐order model for predicting local circulation using synoptic wind speed and direction. This explainable VAE binds the physical reasoning to the predictions of the local circulation that ensures the physical examination of the uncertainty in accelerating the local weather assessments under various climate change scenarios.
Author Hsieh, Min‐Ken
Wu, Chien‐Ming
Author_xml – sequence: 1
  givenname: Min‐Ken
  orcidid: 0000-0002-4622-8524
  surname: Hsieh
  fullname: Hsieh, Min‐Ken
  organization: National Taiwan University
– sequence: 2
  givenname: Chien‐Ming
  orcidid: 0000-0001-9295-7181
  surname: Wu
  fullname: Wu, Chien‐Ming
  email: mog@as.ntu.edu.tw
  organization: National Taiwan University
BookMark eNp9kE1LxDAQhoOsoK578wcEvChYTZM2TY7L7vrFgiCreCtpOpFoN6lp6yr4461WxJNzmWF45oV59tDIeQcIHcTkNCZUnlFCk-s5SeKYZ1tol8ZcRkJKPvqds4cdNGmaJ9KXICxJk130MYdXqHxt3SNWDi_e6kpZp4oK8L0KVrXWO1Xhadd6cNqXEPDR_XRxjM-DWsPGh2dsfMBTrbugWsC3UAdowLXfl9gbvPS6D5jZoLtqWFqHV8pulNtH20ZVDUx--hjdnS9Ws8toeXNxNZsuI015IiIl0gxSZjTPCqG41EZmpU5JIoUhjJNS6qIAZXgiE0bKDGIqCqZFLKg02gg2RodDbh38SwdNmz_5LvR_NTkjGaXsy0VPnQyUDr5pApi8Dnatwnsek_xLcf5XcY-zAd_YCt7_ZfPri9t5KjkT7BMTfH9U
Cites_doi 10.2151/jmsj.2022‐028
10.48550/arXiv.2112.08440
10.1038/s41598‐023‐49455‐w
10.1175/JAMC‐D‐22‐0102.1
10.1029/2020GL092032
10.48550/arXiv.2104.12469
10.48550/arXiv.2309.15214
10.1002/wea.543
10.1126/science.1127647
10.1561/2200000056
10.48550/arXiv.2212.12794
10.5194/gmd‐13‐3887‐2020
10.48550/arXiv.2012.01233
10.17605/OSF.IO/4ZUTJ
10.48550/arXiv.1406.2661
10.1175/2007MWR2095.1
10.1002/asl.1150
10.48550/arXiv.2102.04534
10.48550/arXiv.2202.11214
10.1029/2021MS002631
10.1029/2011MS000061
10.23919/MVA51890.2021.9511404
10.1002/essoar.10512517.1
10.1029/2020EA001340
10.2151/jmsj.2019‐031
10.5194/gmd‐9‐1937‐2016
10.5194/acp‐21‐16893‐2021
10.1038/s41586‐023‐06185‐3
10.1029/2022MS003130
10.1016/j.atmosenv.2020.117418
10.1109/TKDE.2017.2720168
10.48550/arXiv.2108.00048
10.48550/arXiv.1710.11431
10.5194/acp‐21‐16709‐2021
10.5194/gmd‐16‐6433‐2023
10.1073/pnas.1918964117
10.1109/MCSE.2007.55
10.48550/arXiv.2009.08454
10.1002/aic.690370209
10.1002/2015MS000514
10.48550/arXiv.2006.11239
10.1007/s13143‐019‐00116‐x
ContentType Journal Article
Copyright 2024. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2024. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1029/2024JD041167
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2169-8996
EndPage n/a
ExternalDocumentID 10_1029_2024JD041167
JGRD59638
Genre researchArticle
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: 112‐2111‐M‐002‐015‐
– fundername: National Taiwan University
  funderid: NTU112L7832
GroupedDBID 05W
0R~
1OC
24P
33P
50Y
52M
5VS
702
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
DPXWK
DRFUL
DRSTM
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P2W
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c2648-a857e53fc67b8a69cf97dc50498f0360d9cbbeaf649430d7e128b3c81829fcf83
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001252823500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-897X
IngestDate Sat Nov 01 14:46:32 EDT 2025
Sat Nov 29 05:39:26 EST 2025
Wed Jan 22 17:18:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2648-a857e53fc67b8a69cf97dc50498f0360d9cbbeaf649430d7e128b3c81829fcf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4622-8524
0000-0001-9295-7181
PQID 3072233454
PQPubID 54657
PageCount 20
ParticipantIDs proquest_journals_3072233454
crossref_primary_10_1029_2024JD041167
wiley_primary_10_1029_2024JD041167_JGRD59638
PublicationCentury 2000
PublicationDate 28 June 2024
PublicationDateYYYYMMDD 2024-06-28
PublicationDate_xml – month: 06
  year: 2024
  text: 28 June 2024
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of geophysical research. Atmospheres
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2021; 8
2021; 48
2021; 21
2023; 13
1991; 37
2019; 97
2019; 55
2023; 16
2019; 12
2020; 227
2020; 13
2017; 29
2006; 313
2011; 3
2022; 100
2021; 35
2023; 62
2010; 65
2023; 24
2023
2022
2021
2020
2007; 9
2022; 14
2020; 117
2017
2014
2008; 136
2013
2023; 619
2016; 8
2016; 9
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Kingma D. P. (e_1_2_7_21_1) 2013
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – year: 2020
  article-title: Denoising diffusion probabilistic models
  publication-title: arXiv
– year: 2021
  article-title: Generative modeling of spatio‐temporal weather patterns with extreme event conditioning
  publication-title: arXiv
– year: 2021
  article-title: A modular framework for extreme weather generation
  publication-title: arXiv
– volume: 117
  start-page: 16805
  issue: 29
  year: 2020
  end-page: 16815
  article-title: Adversarial super‐resolution of climatological wind and solar data
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 65
  start-page: 180
  issue: 7
  year: 2010
  end-page: 185
  article-title: Robust adaptation to climate change
  publication-title: Weather
– year: 2013
  article-title: Auto‐encoding variational Bayes
  publication-title: arXiv
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– year: 2022
  article-title: FourCastNet: A global data‐driven high‐resolution weather model using adaptive Fourier neural operators
  publication-title: arXiv
– volume: 16
  start-page: 6433
  issue: 22
  year: 2023
  end-page: 6477
  article-title: Machine learning for numerical weather and climate modelling: A review
  publication-title: Geoscientific Model Development
– volume: 619
  start-page: 533
  issue: 7970
  year: 2023
  end-page: 538
  article-title: Accurate medium‐range global weather forecasting with 3D neural networks
  publication-title: Nature
– volume: 21
  start-page: 16709
  issue: 22
  year: 2021
  end-page: 16725
  article-title: Tracking the influence of cloud condensation nuclei on summer diurnal precipitating systems over complex topography in Taiwan
  publication-title: Atmospheric Chemistry and Physics
– volume: 9
  start-page: 1937
  issue: 5
  year: 2016
  end-page: 1958
  article-title: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
  publication-title: Geoscientific Model Development
– year: 2021
  article-title: Climate‐invariant machine learning
  publication-title: arXiv
– volume: 48
  issue: 5
  year: 2021
  article-title: PrecipGAN: Merging microwave and infrared data for satellite precipitation estimation using generative adversarial network
  publication-title: Geophysical Research Letters
– volume: 24
  issue: 5
  year: 2023
  article-title: A deep learning framework for analyzing cloud characteristics of aggregated convection using cloud‐resolving model simulations
  publication-title: Atmospheric Science Letters
– volume: 3
  issue: 2
  year: 2011
  article-title: Inclusion of surface topography into the vector vorticity equation model (VVM): Inclusion of surface topography into the VVM
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  end-page: 95
– volume: 14
  issue: 8
  year: 2022
  article-title: Non‐linear dimensionality reduction with a variational encoder decoder to understand convective processes in climate models
  publication-title: Journal of Advances in Modeling Earth Systems
– year: 2022
  article-title: Implicit learning of convective organization explains precipitation stochasticity
  publication-title: Atmospheric Sciences
– volume: 8
  start-page: 212
  issue: 1
  year: 2016
  end-page: 223
  article-title: Representation of topography by partial steps using the immersed boundary method in a vector vorticity equation model (VVM): VVM partial step
  publication-title: Journal of Advances in Modeling Earth Systems
– start-page: 1
  year: 2021
  end-page: 5
– volume: 14
  issue: 3
  year: 2022
  article-title: A library of large‐eddy simulations forced by global climate models
  publication-title: Journal of Advances in Modeling Earth Systems
– year: 2017
  article-title: Physics‐guided neural networks (PGNN): An application in lake temperature modeling
  publication-title: arXiv
– volume: 13
  issue: 1
  year: 2023
  article-title: Comparing storm resolving models and climates via unsupervised machine learning
  publication-title: Scientific Reports
– volume: 55
  start-page: 701
  issue: 4
  year: 2019
  end-page: 717
  article-title: Implementation of the land surface processes into a vector vorticity equation model (VVM) to study its impact on afternoon thunderstorms over complex topography in Taiwan
  publication-title: Asia‐Pacific Journal of Atmospheric Sciences
– volume: 13
  start-page: 3887
  issue: 9
  year: 2020
  end-page: 3904
  article-title: Taiwan Earth system model version 1: Description and evaluation of mean state
  publication-title: Geoscientific Model Development
– year: 2022
– year: 2014
  article-title: Generative adversarial networks
  publication-title: arXiv
– volume: 227
  year: 2020
  article-title: Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography
  publication-title: Atmospheric Environment
– volume: 29
  start-page: 2318
  issue: 10
  year: 2017
  end-page: 2331
  article-title: Theory‐guided data science: A new paradigm for scientific discovery from data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 12
  start-page: 307
  issue: 4
  year: 2019
  end-page: 392
  article-title: An introduction to variational autoencoders
  publication-title: Foundations and Trends® in Machine Learning
– volume: 35
  start-page: 6750
  issue: 8
  year: 2021
  end-page: 6758
  article-title: ExGAN: Adversarial generation of extreme samples
  publication-title: arXiv
– volume: 100
  start-page: 555
  issue: 3
  year: 2022
  end-page: 573
  article-title: The roles of local circulation and boundary layer development in tracer transport over complex topography in Central Taiwan
  publication-title: Journal of the Meteorological Society of Japan. Series II
– year: 2020
  article-title: Investigating two super‐resolution methods for downscaling precipitation: ESRGAN and CAR
  publication-title: arXiv
– volume: 97
  start-page: 501
  issue: 2
  year: 2019
  end-page: 517
  article-title: The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simulations
  publication-title: Journal of the Meteorological Society of Japan. Series II
– volume: 62
  start-page: 427
  issue: 3
  year: 2023
  end-page: 439
  article-title: The observation‐based index to investigate the role of the lee vortex in enhancing air pollution over northwestern Taiwan
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 136
  start-page: 276
  issue: 1
  year: 2008
  end-page: 294
  article-title: A three‐dimensional anelastic model based on the vorticity equation
  publication-title: Monthly Weather Review
– year: 2022
  article-title: GraphCast: Learning skillful medium‐range global weather forecasting
  publication-title: arXiv
– volume: 8
  issue: 3
  year: 2021
  article-title: A deep learning approach to radar‐based QPE
  publication-title: Earth and Space Science
– year: 2023
  article-title: Residual diffusion modeling for Km‐scale atmospheric downscaling
  publication-title: arXiv
– year: 2021
  article-title: Controlling weather field synthesis using variational autoencoders
  publication-title: arXiv
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  end-page: 243
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE Journal
– volume: 21
  start-page: 16893
  issue: 22
  year: 2021
  end-page: 16910
  article-title: Air quality deterioration episode associated with a typhoon over the complex topographic environment in central Taiwan
  publication-title: Atmospheric Chemistry and Physics
– ident: e_1_2_7_16_1
  doi: 10.2151/jmsj.2022‐028
– ident: e_1_2_7_3_1
  doi: 10.48550/arXiv.2112.08440
– ident: e_1_2_7_31_1
  doi: 10.1038/s41598‐023‐49455‐w
– ident: e_1_2_7_17_1
  doi: 10.1175/JAMC‐D‐22‐0102.1
– ident: e_1_2_7_38_1
  doi: 10.1029/2020GL092032
– ident: e_1_2_7_23_1
  doi: 10.48550/arXiv.2104.12469
– ident: e_1_2_7_30_1
  doi: 10.48550/arXiv.2309.15214
– ident: e_1_2_7_40_1
  doi: 10.1002/wea.543
– ident: e_1_2_7_14_1
  doi: 10.1126/science.1127647
– ident: e_1_2_7_22_1
  doi: 10.1561/2200000056
– ident: e_1_2_7_27_1
  doi: 10.48550/arXiv.2212.12794
– ident: e_1_2_7_28_1
  doi: 10.5194/gmd‐13‐3887‐2020
– ident: e_1_2_7_39_1
  doi: 10.48550/arXiv.2012.01233
– ident: e_1_2_7_37_1
  doi: 10.17605/OSF.IO/4ZUTJ
– ident: e_1_2_7_12_1
  doi: 10.48550/arXiv.1406.2661
– ident: e_1_2_7_19_1
  doi: 10.1175/2007MWR2095.1
– ident: e_1_2_7_7_1
  doi: 10.1002/asl.1150
– ident: e_1_2_7_44_1
  doi: 10.48550/arXiv.2102.04534
– ident: e_1_2_7_33_1
  doi: 10.48550/arXiv.2202.11214
– ident: e_1_2_7_35_1
  doi: 10.1029/2021MS002631
– ident: e_1_2_7_41_1
  doi: 10.1029/2011MS000061
– ident: e_1_2_7_13_1
  doi: 10.23919/MVA51890.2021.9511404
– ident: e_1_2_7_34_1
  doi: 10.1002/essoar.10512517.1
– ident: e_1_2_7_43_1
  doi: 10.1029/2020EA001340
– ident: e_1_2_7_25_1
  doi: 10.2151/jmsj.2019‐031
– ident: e_1_2_7_11_1
  doi: 10.5194/gmd‐9‐1937‐2016
– ident: e_1_2_7_29_1
  doi: 10.5194/acp‐21‐16893‐2021
– ident: e_1_2_7_5_1
  doi: 10.1038/s41586‐023‐06185‐3
– ident: e_1_2_7_2_1
  doi: 10.1029/2022MS003130
– year: 2013
  ident: e_1_2_7_21_1
  article-title: Auto‐encoding variational Bayes
  publication-title: arXiv
– ident: e_1_2_7_26_1
  doi: 10.1016/j.atmosenv.2020.117418
– ident: e_1_2_7_20_1
  doi: 10.1109/TKDE.2017.2720168
– ident: e_1_2_7_32_1
  doi: 10.48550/arXiv.2108.00048
– ident: e_1_2_7_9_1
  doi: 10.48550/arXiv.1710.11431
– ident: e_1_2_7_6_1
  doi: 10.5194/acp‐21‐16709‐2021
– ident: e_1_2_7_10_1
  doi: 10.5194/gmd‐16‐6433‐2023
– ident: e_1_2_7_36_1
  doi: 10.1073/pnas.1918964117
– ident: e_1_2_7_18_1
  doi: 10.1109/MCSE.2007.55
– ident: e_1_2_7_4_1
  doi: 10.48550/arXiv.2009.08454
– ident: e_1_2_7_24_1
  doi: 10.1002/aic.690370209
– ident: e_1_2_7_8_1
  doi: 10.1002/2015MS000514
– ident: e_1_2_7_15_1
  doi: 10.48550/arXiv.2006.11239
– ident: e_1_2_7_42_1
  doi: 10.1007/s13143‐019‐00116‐x
SSID ssj0000803454
Score 2.260416
Snippet This study develops an explainable variational autoencoder (VAE) framework to efficiently generate high‐fidelity local circulation patterns in Taiwan, ensuring...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Accuracy
Circulation
Circulation patterns
Climate and weather
Climate change
Climate change scenarios
Climate prediction
Climatic conditions
deep generative model
deep learning
explainable artificial intelligence
Flow distribution
Flow pattern
Fluid flow
large eddy simulation
local circulation
Local flow
Neural networks
Representations
Simulation
Synoptic weather conditions
Training
Uncertainty
Vortices
Weather
Weather conditions
Weather patterns
Wind speed
Title Developing an Explainable Variational Autoencoder (VAE) Framework for Accurate Representation of Local Circulation in Taiwan
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JD041167
https://www.proquest.com/docview/3072233454
Volume 129
WOSCitedRecordID wos001252823500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2169-8996
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000803454
  issn: 2169-897X
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2169-8996
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000803454
  issn: 2169-897X
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-8Ox988Vuueh7zoKJgMM3HZvextFf1qEXKXe1b2Ex2ISCppO3di3-8s9ttrS-C-BIICUvIfP1mdua3AK-UrIW2tY5IxDrKKI0jWRNfhO0bKVVSeQa--aSYTuViob6GgpubhdnyQ-wLbs4yvL92Bq6rVSAbcByZnLVnl6M4cxsJR3Di5qo4-ToZzcbXk32VhfFQmvmj0JK-UJFUxSJ0v_MiHw6X-DMu_Qabh5DVx5zxg__92odwP6BNHGzV4xHcMe1j6H1hoLzsfD0d3-Dwe8Oo1d89gZ-j_RAV6hZdh14Yr8I5Z9WhcoiDzXrpGDBr0-Hb-eDiHY53TV7IKBgHRBvHQYEz32gb5ptaXFqcuOCJw6ajcHAYNi1e6eZWt0_henxxNfwUhQMaInKNcZGWeWHy1JIoKqmFIquKmnJOOqTlyBjXiqrKaCsyR_JeF4aDYZUSY4REWbIyfQbH7bI1p4AppYUqDCtHrjkjqnWsq76OJaVK5iRED17vxFP-2PJwlH7_PFHl4b_twdlOdmWwxlXJfoxRkFOEHrz3UvrrGuXlx9kod57p-b-9_gLuuQeukyyRZ3C87jbmJdylm3Wz6s6Dbp7D0bfP018V0uTU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6dLC9bN1HWbauu4dtbDBTx7L18RiSpl3nhhHSkDcjyxIYilPcpHvZHz9JUbLsZVD6YjAIYXynu9-d7n4H8FHwikpTyUjRWEapInHEK2Uf1PQ05yIpPQPfLGfjMZ_Pxc8w59T1wqz5IbYJN3cyvL12B9wlpAPbgCPJtGF7ejGMU3eT8Aj2U0oY78D-cDK6yrdpFguISOpnoSU9KiIu2DyUv9tNTna3-Ncx_UWbu5jVO53R8wd_7gE8C3gT-2sFeQF7unkJ3UsLlRetz6jjZxxc1xa3-rdX8Hu4baNC2aCr0QsNVjizcXXIHWJ_tVw4DsxKt_hl1j_9iqNNmRdaHIx9pVaOhQInvtQ2dDg1uDCYO_eJg7pVYXQY1g1OZf1LNq_hanQ6HZxHYURDpFxpXCR5xnRGjKKs5JIKZQSrVGbDDm6sb4wrocpSS0NTR_NeMW3dYUmURQmJMMpwcgidZtHoN4BEESaYtuqRSRsTVTKWZU_GXBHBM0VpFz5t5FPcrJk4Cn-Dnohi99924WgjvCKcx9vCWjKLg5wmdOGbF9N_9yguzibDzNmmt_db_gGenE8v8yL_Pv7xDp66Ra6uLOFH0Fm2K_0eHqu7ZX3bHgdF_QNu4ee1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxsxEBVtWkovTfoR4iZN55CWFrpkvR9a6WjsuE3qmBBS17dFO5JgoazDxm4v-fEZybLrXAqhl4UFIZbVSPNm9OYNY0dSaK6sVhHyWEUZpnEkNNKD264RQiaVV-CbjIrxWEyn8iL0OXW1MEt9iHXCze0Mf167DW6utQ1qA04kk8L27GwQZ-4m4TF7khEUd5yun6fjdZKF4FCa-U5oSZfLSMhiGsjvNMXx5gT33dJfrLmJWL3LGW7_98fusBcBbUJvaR4v2SPTvGKdcwLKs9bn0-Ej9H_VhFr922t2O1gXUYFqwDH0QnkVTCiqDplD6C3mM6eAqU0Lnya9k88wXJG8gFAw9BAXToMCLj3RNtQ3NTCzMHLOE_p1i6FxGNQNXKn6j2resB_Dk6v-tyg0aIjQEeMiJfLC5KlFXlRCcYlWFhpzCjqEJc8Ya4lVZZTlmRN514UhZ1ilSBghkRatSHfZVjNrzB6DFNNCFoaMI1cUEWkVq6qrYoGpFDly3mEfVutTXi91OEp_f57IcvPfdtjBavHKsBtvSjrHCAU5S-iwL36Z_jlHefb1cpC7k-ntw4a_Z88uBsNydDr-vs-euzGOVJaIA7Y1bxfmHXuKv-f1TXvorfQOfznmCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+an+Explainable+Variational+Autoencoder+%28VAE%29+Framework+for+Accurate+Representation+of+Local+Circulation+in+Taiwan&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Hsieh%2C+Min%E2%80%90Ken&rft.au=Wu%2C+Chien%E2%80%90Ming&rft.date=2024-06-28&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=129&rft.issue=12&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JD041167&rft.externalDBID=10.1029%252F2024JD041167&rft.externalDocID=JGRD59638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon