On complexity of the bilevel location and pricing problems

We consider the bilevel mixed integer location and pricing problems. Each problem is determined by the optimization problems of the upper and lower levels of which the first describes the choice of location and pricing, while the second models the reaction of the customers on the upper-level solutio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of applied and industrial mathematics Ročník 8; číslo 4; s. 574 - 581
Hlavní autoři: Panin, A. A., Plyasunov, A. V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.10.2014
Springer Nature B.V
Témata:
ISSN:1990-4789, 1990-4797
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the bilevel mixed integer location and pricing problems. Each problem is determined by the optimization problems of the upper and lower levels of which the first describes the choice of location and pricing, while the second models the reaction of the customers on the upper-level solution. The article focuses on studying the computational complexity of bilevel problems with various pricing strategies: uniform, mill, and discriminatory pricing. We show that, for an arbitrary pricing strategy, the corresponding optimization problem is NP-hard in the strong sense, belongs to the class Poly-APX, and is complete in it with respect to AP-reducibility.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1990-4789
1990-4797
DOI:10.1134/S1990478914040152