Maximal overlap discrete wavelet transform and deep learning for robust denoising and detection of power quality disturbance

This study presents a new technique for power quality (PQ) disturbance detection. The technique focuses on voltage sags and interruptions that are related to various faults, i.e. transmission line, feeder, and transformer faults. A maximal overlap discrete wavelet transform-based PQ detection algori...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET generation, transmission & distribution Ročník 14; číslo 1; s. 140 - 147
Hlavní autoři: Xiao, Fei, Lu, Tianguang, Wu, Mingli, Ai, Qian
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 17.01.2020
Témata:
ISSN:1751-8687, 1751-8695
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study presents a new technique for power quality (PQ) disturbance detection. The technique focuses on voltage sags and interruptions that are related to various faults, i.e. transmission line, feeder, and transformer faults. A maximal overlap discrete wavelet transform-based PQ detection algorithm is proposed to provide accurate points of disturbance initiation and recovery. The proposed PQ detection algorithm is robust even without a detection threshold and independent of the sampling frequency of PQ recording. In consideration of the presence of noise conditions, the preprocessed PQ waveforms are converted into 2D binary vectors using space vector transformation. Then, an improved stacked sparse denoising autoencoder combined with supervised backpropagation training is proposed as a robust classifier. Results show that the proposed method is suitable for detecting various types of PQ disturbances and possesses high recognition accuracy despite insufficient training samples.
AbstractList This study presents a new technique for power quality (PQ) disturbance detection. The technique focuses on voltage sags and interruptions that are related to various faults, i.e. transmission line, feeder, and transformer faults. A maximal overlap discrete wavelet transform‐based PQ detection algorithm is proposed to provide accurate points of disturbance initiation and recovery. The proposed PQ detection algorithm is robust even without a detection threshold and independent of the sampling frequency of PQ recording. In consideration of the presence of noise conditions, the preprocessed PQ waveforms are converted into 2D binary vectors using space vector transformation. Then, an improved stacked sparse denoising autoencoder combined with supervised backpropagation training is proposed as a robust classifier. Results show that the proposed method is suitable for detecting various types of PQ disturbances and possesses high recognition accuracy despite insufficient training samples.
Author Ai, Qian
Wu, Mingli
Lu, Tianguang
Xiao, Fei
Author_xml – sequence: 1
  givenname: Fei
  surname: Xiao
  fullname: Xiao, Fei
  email: xiaofeibjtu@163.com
  organization: 1College of Electrical Engineering, Beijing Jiao Tong University, Beijing 100044, People's Republic of China
– sequence: 2
  givenname: Tianguang
  surname: Lu
  fullname: Lu, Tianguang
  organization: 2John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
– sequence: 3
  givenname: Mingli
  surname: Wu
  fullname: Wu, Mingli
  organization: 1College of Electrical Engineering, Beijing Jiao Tong University, Beijing 100044, People's Republic of China
– sequence: 4
  givenname: Qian
  surname: Ai
  fullname: Ai, Qian
  organization: 3Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
BookMark eNqFkEFPwyAYhonRxG36A7zxBzqha6H1ptNNkxkv89ww-LqwdFCBbS7xx0tT48HDPEFevoc33zNE58YaQOiGkjElWXmrISTroMYpoeWY0pSeoQHlOU0KVubnv_eCX6Kh9xtC8pxlfIC-XsWn3ooG2z24RrRYaS8dBMAHsYcGAg5OGF9bt8XCKKwAWtyAcEabNY4xdna18yE-GKt9F_ZjAWTQ1mBb49YewOGPnWh0OHYFYedWwki4Qhe1aDxc_5wj9D57Wk6fk8Xb_GV6v0hkyjKSCJ7XqVIsV5KIUtJU0UxxUHJSppzxumCEScU5BUIIp7UocyoZ43IV40JOJiNE-3-ls947qKvWxaXdsaKk6vRVUV8V9VWdvqrTFxn-h5E6iG6lKEQ3J8m7njzoBo7_V1Xz5WP6MCMp5yTCSQ93Yxu7cyaKOVH2DZy1naQ
CitedBy_id crossref_primary_10_1007_s00202_022_01667_5
crossref_primary_10_1016_j_rser_2023_114088
crossref_primary_10_1007_s00521_024_10863_2
crossref_primary_10_1109_ACCESS_2021_3060800
crossref_primary_10_1016_j_asej_2025_103718
crossref_primary_10_1007_s42417_023_01140_y
crossref_primary_10_1109_TPWRS_2021_3064250
crossref_primary_10_1007_s00202_023_02177_8
crossref_primary_10_1088_1361_6501_ad1b9f
crossref_primary_10_1109_TIA_2021_3114127
crossref_primary_10_3390_electronics10212725
crossref_primary_10_3390_en15072532
crossref_primary_10_1177_14759217231210600
crossref_primary_10_1049_gtd2_12364
crossref_primary_10_1080_1448837X_2021_1948166
crossref_primary_10_3390_app10196792
crossref_primary_10_1016_j_arcontrol_2022_09_005
crossref_primary_10_1049_iet_gtd_2019_1491
crossref_primary_10_1049_iet_gtd_2020_0814
crossref_primary_10_1007_s00202_024_02517_2
crossref_primary_10_1109_ACCESS_2024_3443963
crossref_primary_10_1109_JLT_2020_3047478
crossref_primary_10_1109_TSUSC_2024_3391733
crossref_primary_10_1016_j_ijepes_2024_110294
crossref_primary_10_1186_s43067_025_00194_0
crossref_primary_10_1080_15325008_2023_2260375
crossref_primary_10_1002_ese3_1516
crossref_primary_10_3390_app14072925
crossref_primary_10_1049_gtd2_12378
crossref_primary_10_1016_j_egyr_2023_04_134
crossref_primary_10_1155_2020_8884786
crossref_primary_10_3390_jrfm17090413
crossref_primary_10_1016_j_measurement_2025_117471
crossref_primary_10_1080_10589759_2024_2429689
Cites_doi 10.1109/TPWRS.2007.907542
10.3390/e17106663
10.1109/61.853026
10.1109/TIE.2016.2637304
10.1109/TPWRD.2008.2002660
10.1109/TII.2017.2773475
10.1109/TSG.2018.2873001
10.1126/science.1127647
10.1109/TPWRD.2007.911125
10.1109/TII.2019.2892873
10.1109/TSG.2016.2558200
10.1109/TPWRD.2009.2027496
10.1109/ICIS.2017.7960026
10.1109/TDC-LA.2010.5762934
10.1109/TSG.2012.2197642
10.1109/TPWRD.2012.2218626
10.1016/j.ijepes.2013.06.024
10.1109/PESGM.2012.6345175
10.1016/j.conengprac.2018.09.024
10.1016/j.neucom.2015.04.071
10.1109/TIM.2007.910101
10.1016/j.patcog.2010.12.012
10.1109/TSG.2016.2624313
10.1109/TPWRS.2018.2856743
10.1109/TPWRS.2002.804995
10.1109/TPWRD.2018.2854677
10.1016/j.ijepes.2012.12.018
10.1162/neco.2006.18.7.1527
10.1109/TPWRD.2006.876659
10.1109/POWERCON.2018.8602195
10.1016/j.asoc.2015.10.038
10.1049/iet-smt.2009.0006
10.1109/TIE.2016.2521615
10.1109/TSG.2016.2626469
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-gtd.2019.1121
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 147
ExternalDocumentID 10_1049_iet_gtd_2019_1121
GTD2BF02770
Genre article
GrantInformation_xml – fundername: Major State Basic Research Development Program of China
  grantid: 2016YFB0901304
– fundername: Major State Basic Research Development Program of China
  funderid: 2016YFB0901304
GroupedDBID 0R
24P
29I
4IJ
6IK
8VB
AAJGR
ABPTK
ACIWK
ALMA_UNASSIGNED_HOLDINGS
BFFAM
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
.DC
0R~
0ZK
1OC
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IGS
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c2640-a75f2dd65dc0a9c12d14d7edc392767f8606cd771e00071fa951c667cb6cd8c33
IEDL.DBID 24P
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505192000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8687
IngestDate Wed Oct 29 21:20:57 EDT 2025
Tue Nov 18 21:44:57 EST 2025
Wed Jan 22 16:32:42 EST 2025
Tue Jan 05 21:44:21 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords detection threshold
maximal overlap discrete wavelet transform
power quality disturbance detection
disturbance initiation
signal denoising
power system faults
deep learning
PQ recording
feature extraction
transformer faults
robust classifier
space vector transformation
learning (artificial intelligence)
improved stacked sparse denoising autoencoder
power system harmonics
PQ disturbances
robust denoising
discrete wavelet transforms
preprocessed PQ waveforms
power engineering computing
power supply quality
voltage sags
backpropagation
PQ detection algorithm
neural nets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2640-a75f2dd65dc0a9c12d14d7edc392767f8606cd771e00071fa951c667cb6cd8c33
PageCount 8
ParticipantIDs iet_journals_10_1049_iet_gtd_2019_1121
crossref_citationtrail_10_1049_iet_gtd_2019_1121
crossref_primary_10_1049_iet_gtd_2019_1121
wiley_primary_10_1049_iet_gtd_2019_1121_GTD2BF02770
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2020-01-17
PublicationDateYYYYMMDD 2020-01-17
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-17
  day: 17
PublicationDecade 2020
PublicationTitle IET generation, transmission & distribution
PublicationYear 2020
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Vincent, P.; Larochelle, H.; Lajoie, I. (C27) 2010; 11
Chen, K.; Hu, J.; He, J. (C11) 2018; 9
Aller, J.; Bueno, A.; Paga, T. (C28) 2002; 17
Masoum, M.A.S.; Jamali, S.; Ghaffarzadeh, N. (C6) 2010; 4
Borras, M.D.; Bravo, J.C.; Monta, J.C. (C22) 2016; 63
Zhang, L.D.; Bollen, M.H.J. (C33) 2000; 15
Alves, D.K.; Costa, F.B.; Ribeiro, R.L.D.A. (C19) 2017; 64
Sun, M.; Konstantelos, I.; Strbac, G. (C20) 2019; 10
Wang, S.; Yang, X.; Zhang, Y. (C15) 2015; 17
Singh, U.; Singh, S.N. (C21) 2018; 14
Mishra, S.; Bhende, C.N.; Panigrahi, B.K. (C1) 2008; 31
Morsi, W.G.; El-Hawary, M.E. (C14) 2009; 24
Achlerkar, P.D.; Samantaray, S.R.; Manikandan, M. (C7) 2018; 9
Naik, C.A.; Kundu, P. (C16) 2013; 53
Ray, P.K.; Kishor, N.; Mohanty, S.R. (C8) 2012; 3
Barros, J.; Diego, R.I. (C12) 2008; 57
Liu, Q.; Li, Y.; Hu, S. (C3) 2019; PP
Costa, F.B.; Driesen, J. (C13) 2013; 28
Morsi, M.G.; Elhawary, M.E. (C17) 2008; 23
Eris, H.; Yildirim, O.; Eris, B. (C23) 2013; 49
Azam, B.; Irene, G.; Math, B. (C25) 2018; 33
Shen, F.R.; Chao, J.; Zhao, J.X. (C32) 2015; 167
Liu, Y.; Zhou, S.; Chen, Q. (C31) 2011; 44
Hinton, G.E.; Salakhutdinov, R.R. (C26) 2006; 313
Thirumala, K.; Maganuru, S.P.; Jain, T. (C9) 2018; 9
Sahani, M.; Dash, P.K. (C10) 2019; 15
Hinton, G.E.; Osindero, S.; The, Y.W. (C30) 2006; 18
Xiao, F.; Ai, Q. (C2) 2019; 34
Liu, Q.; Li, Y.; Hu, S. (C4) 2019; 83
Abdoos, A.A.; Mianaei, P.K.; Ghadikolaei, M.R. (C24) 2016; 38
Senroy, N.; Suryanarayanan, S.; Ribeiro, P.F. (C5) 2007; 22
Silva, K.M.; Souza, B.A.; Brito, N.S.D. (C36) 2016; 21
2010; 11
2002; 17
2017; 64
2009; 24
2015; 17
2013; 28
2013; 49
2012
2010
2019; 10
2019; 34
2015; 167
2019; 15
2006; 18
2008; 57
2008; 31
2006; 313
2016; 38
2018; 9
2012; 3
2019; 83
2000; 15
2019; PP
2013; 53
2016; 21
2008; 23
2016; 63
2011; 44
2018
2017
2018; 33
2007; 22
2010; 4
2018; 14
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_29_2
Vincent P. (e_1_2_7_28_2) 2010; 11
Liu Q. (e_1_2_7_4_2) 2019
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
Chen K. (e_1_2_7_12_2) 2018; 9
References_xml – volume: 9
  start-page: 3018
  issue: 4
  year: 2018
  end-page: 3028
  ident: C9
  article-title: Tunable-Q wavelet transform and dual multiclass SVM for online automatic detection of power quality disturbances
  publication-title: IEEE Trans. Smart Grid
– volume: 63
  start-page: 3117
  issue: 5
  year: 2016
  end-page: 3124
  ident: C22
  article-title: Disturbance ratio for optimal multi-event classification in power distribution networks
  publication-title: IEEE Trans. Ind. Electron.
– volume: 44
  start-page: 2287
  issue: 10
  year: 2011
  end-page: 2296
  ident: C31
  article-title: Discriminative deep belief networks for visual data classification
  publication-title: Pattern Recognit.
– volume: 31
  start-page: 280
  issue: 1
  year: 2008
  end-page: 287
  ident: C1
  article-title: Detection and classification of power quality disturbances using S-transform and probabilistic neural network
  publication-title: IEEE Trans. Power Deliv.
– volume: 23
  start-page: 2356
  issue: 4
  year: 2008
  end-page: 2365
  ident: C17
  article-title: A new perspective for the IEEE standard 1459–2000 via stationary wavelet transform in the presence of nonstationary power quality disturbance
  publication-title: IEEE Trans. Power Deliv.
– volume: 38
  start-page: 637
  year: 2016
  end-page: 646
  ident: C24
  article-title: Combined VMDSVM based feature selection method for classification of power quality events
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 827
  issue: 2
  year: 2000
  end-page: 832
  ident: C33
  article-title: Characteristic of voltage dips (sags) in power systems
  publication-title: IEEE Trans. Power Deliv.
– volume: 28
  start-page: 336
  issue: 1
  year: 2013
  end-page: 346
  ident: C13
  article-title: Assessment of voltage sag indices based on scaling and wavelet coefficient energy analysis
  publication-title: IEEE Trans. Power Deliv.
– volume: 17
  start-page: 957
  issue: 4
  year: 2002
  end-page: 965
  ident: C28
  article-title: Power system analysis using space vector transformation
  publication-title: IEEE Trans. Power Syst.
– volume: 15
  start-page: 4614
  issue: 8
  year: 2019
  end-page: 4623
  ident: C10
  article-title: FPGA-based online power quality disturbances monitoring using reduced-sample HHT and class-specific weighted RVFLN
  publication-title: IEEE Trans. Ind. Inf.
– volume: 49
  start-page: 95
  year: 2013
  end-page: 103
  ident: C23
  article-title: Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines
  publication-title: Int. J. Elect. Power Energy Syst.
– volume: 4
  start-page: 193
  issue: 4
  year: 2010
  end-page: 205
  ident: C6
  article-title: Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks
  publication-title: IET Sci. Meas. Technol.
– volume: 24
  start-page: 2300
  issue: 4
  year: 2009
  end-page: 2310
  ident: C14
  article-title: Wavelet packet transform-based power quality indices for balanced and unbalanced three-phase systems under stationary or nonstationary operating conditions
  publication-title: IEEE Trans. Power Deliv.
– volume: 167
  start-page: 243
  year: 2015
  end-page: 253
  ident: C32
  article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method
  publication-title: Neurocomputing
– volume: 33
  start-page: 2794
  issue: 6
  year: 2018
  end-page: 2802
  ident: C25
  article-title: A robust transform-domain deep convolutional network for voltage dip classification
  publication-title: IEEE Trans. Power Deliv.
– volume: 83
  start-page: 1
  year: 2019
  end-page: 10
  ident: C4
  article-title: Power quality improvement using controllable inductive power filtering method for industrial DC supply system
  publication-title: Control Eng. Pract.
– volume: 22
  start-page: 1843
  issue: 4
  year: 2007
  end-page: 1850
  ident: C5
  article-title: An improved hilbert–huang method for analysis of time-varying waveforms in power quality
  publication-title: IEEE Trans. Power Syst.
– volume: PP
  start-page: 1
  issue: 99
  year: 2019
  end-page: 1
  ident: C3
  article-title: A transformer integrated filtering system for power quality improvement of industrial DC supply system
  publication-title: IEEE Trans. Ind. Electon.
– volume: 9
  start-page: 594
  issue: 2
  year: 2018
  end-page: 604
  ident: C11
  article-title: A framework for automatically extracting overvoltage features based on sparse autoencoder
  publication-title: IEEE Trans. Smart Grid
– volume: 10
  start-page: 5007
  issue: 5
  year: 2019
  end-page: 5020
  ident: C20
  article-title: A deep learning-based feature extraction framework for system security assessment
  publication-title: IEEE Trans. Smart Grid
– volume: 3
  start-page: 1082
  issue: 3
  year: 2012
  end-page: 1094
  ident: C8
  article-title: Islanding and power quality disturbance detection in grid-connected hybrid power system using wavelet and S-transform
  publication-title: IEEE Trans. Smart Grid
– volume: 64
  start-page: 3177
  issue: 4
  year: 2017
  end-page: 3187
  ident: C19
  article-title: Real-time power measurement using the maximal overlap discrete wavelet-packet transform
  publication-title: IEEE Trans. Ind. Electron.
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  end-page: 3408
  ident: C27
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 2994
  issue: 7
  year: 2018
  end-page: 3002
  ident: C21
  article-title: Optimal feature selection via NSGA-II for power quality disturbances classification
  publication-title: IEEE Trans. Ind. Inf.
– volume: 53
  start-page: 994
  year: 2013
  end-page: 1002
  ident: C16
  article-title: Power quality index based on discrete wavelet transform
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  ident: C30
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 9
  start-page: 3122
  issue: 4
  year: 2018
  end-page: 3132
  ident: C7
  article-title: Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid-connected distributed generation system
  publication-title: IEEE Trans. Smart Grid.
– volume: 57
  start-page: 63
  issue: 1
  year: 2008
  end-page: 69
  ident: C12
  article-title: Analysis of harmonics in power systems using the wavelet-packet transform
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 34
  start-page: 402
  issue: 1
  year: 2019
  end-page: 412
  ident: C2
  article-title: Data-driven multi-hidden markov model-based power quality disturbance prediction that incorporates weather conditions
  publication-title: IEEE Trans. Power Syst.
– volume: 17
  start-page: 6663
  issue: 10
  year: 2015
  end-page: 6682
  ident: C15
  article-title: Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine
  publication-title: Entropy
– volume: 21
  start-page: 2058
  issue: 4
  year: 2016
  end-page: 2063
  ident: C36
  article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN
  publication-title: IEEE Trans. Power Deliv.
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  ident: C26
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 24
  start-page: 2300
  issue: 4
  year: 2009
  end-page: 2310
  article-title: Wavelet packet transform‐based power quality indices for balanced and unbalanced three‐phase systems under stationary or nonstationary operating conditions
  publication-title: IEEE Trans. Power Deliv.
– volume: 44
  start-page: 2287
  issue: 10
  year: 2011
  end-page: 2296
  article-title: Discriminative deep belief networks for visual data classification
  publication-title: Pattern Recognit.
– volume: 10
  start-page: 5007
  issue: 5
  year: 2019
  end-page: 5020
  article-title: A deep learning‐based feature extraction framework for system security assessment
  publication-title: IEEE Trans. Smart Grid
– volume: 38
  start-page: 637
  year: 2016
  end-page: 646
  article-title: Combined VMDSVM based feature selection method for classification of power quality events
  publication-title: Appl. Soft Comput.
– volume: 9
  start-page: 594
  issue: 2
  year: 2018
  end-page: 604
  article-title: A framework for automatically extracting overvoltage features based on sparse autoencoder
  publication-title: IEEE Trans. Smart Grid
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 83
  start-page: 1
  year: 2019
  end-page: 10
  article-title: Power quality improvement using controllable inductive power filtering method for industrial DC supply system
  publication-title: Control Eng. Pract.
– volume: 9
  start-page: 3122
  issue: 4
  year: 2018
  end-page: 3132
  article-title: Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid‐connected distributed generation system
  publication-title: IEEE Trans. Smart Grid.
– volume: 31
  start-page: 280
  issue: 1
  year: 2008
  end-page: 287
  article-title: Detection and classification of power quality disturbances using S‐transform and probabilistic neural network
  publication-title: IEEE Trans. Power Deliv.
– volume: 23
  start-page: 2356
  issue: 4
  year: 2008
  end-page: 2365
  article-title: A new perspective for the IEEE standard 1459–2000 via stationary wavelet transform in the presence of nonstationary power quality disturbance
  publication-title: IEEE Trans. Power Deliv.
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  end-page: 3408
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 827
  issue: 2
  year: 2000
  end-page: 832
  article-title: Characteristic of voltage dips (sags) in power systems
  publication-title: IEEE Trans. Power Deliv.
– volume: 57
  start-page: 63
  issue: 1
  year: 2008
  end-page: 69
  article-title: Analysis of harmonics in power systems using the wavelet‐packet transform
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1
  year: 2012
  end-page: 8
  article-title: A robust technique for overvoltages classification in power transformers
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 14
  start-page: 2994
  issue: 7
  year: 2018
  end-page: 3002
  article-title: Optimal feature selection via NSGA‐II for power quality disturbances classification
  publication-title: IEEE Trans. Ind. Inf.
– volume: 53
  start-page: 994
  year: 2013
  end-page: 1002
  article-title: Power quality index based on discrete wavelet transform
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 4118
  year: 2018
  end-page: 4123
  article-title: Classification of underlying causes of power quality disturbances using data fusion
– volume: 21
  start-page: 2058
  issue: 4
  year: 2016
  end-page: 2063
  article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN
  publication-title: IEEE Trans. Power Deliv.
– volume: 64
  start-page: 3177
  issue: 4
  year: 2017
  end-page: 3187
  article-title: Real‐time power measurement using the maximal overlap discrete wavelet‐packet transform
  publication-title: IEEE Trans. Ind. Electron.
– year: 2010
  article-title: Real‐time detection of voltage sags based on wavelet transform
– volume: 17
  start-page: 6663
  issue: 10
  year: 2015
  end-page: 6682
  article-title: Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine
  publication-title: Entropy
– volume: 28
  start-page: 336
  issue: 1
  year: 2013
  end-page: 346
  article-title: Assessment of voltage sag indices based on scaling and wavelet coefficient energy analysis
  publication-title: IEEE Trans. Power Deliv.
– volume: 33
  start-page: 2794
  issue: 6
  year: 2018
  end-page: 2802
  article-title: A robust transform‐domain deep convolutional network for voltage dip classification
  publication-title: IEEE Trans. Power Deliv.
– volume: 17
  start-page: 957
  issue: 4
  year: 2002
  end-page: 965
  article-title: Power system analysis using space vector transformation
  publication-title: IEEE Trans. Power Syst.
– volume: 49
  start-page: 95
  year: 2013
  end-page: 103
  article-title: Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines
  publication-title: Int. J. Elect. Power Energy Syst.
– volume: 34
  start-page: 402
  issue: 1
  year: 2019
  end-page: 412
  article-title: Data‐driven multi‐hidden markov model‐based power quality disturbance prediction that incorporates weather conditions
  publication-title: IEEE Trans. Power Syst.
– volume: 9
  start-page: 3018
  issue: 4
  year: 2018
  end-page: 3028
  article-title: Tunable‐Q wavelet transform and dual multiclass SVM for online automatic detection of power quality disturbances
  publication-title: IEEE Trans. Smart Grid
– volume: 4
  start-page: 193
  issue: 4
  year: 2010
  end-page: 205
  article-title: Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks
  publication-title: IET Sci. Meas. Technol.
– volume: 167
  start-page: 243
  year: 2015
  end-page: 253
  article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method
  publication-title: Neurocomputing
– volume: 22
  start-page: 1843
  issue: 4
  year: 2007
  end-page: 1850
  article-title: An improved hilbert–huang method for analysis of time‐varying waveforms in power quality
  publication-title: IEEE Trans. Power Syst.
– volume: 63
  start-page: 3117
  issue: 5
  year: 2016
  end-page: 3124
  article-title: Disturbance ratio for optimal multi‐event classification in power distribution networks
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 401
  year: 2017
  end-page: 406
  article-title: An ensemble classification algorithm for convolutional neural network based on AdaBoost
– volume: 3
  start-page: 1082
  issue: 3
  year: 2012
  end-page: 1094
  article-title: Islanding and power quality disturbance detection in grid‐connected hybrid power system using wavelet and S‐transform
  publication-title: IEEE Trans. Smart Grid
– year: 2012
  article-title: Image denoising and inpainting with deep neural networks
– volume: PP
  start-page: 1
  issue: 99
  year: 2019
  end-page: 1
  article-title: A transformer integrated filtering system for power quality improvement of industrial DC supply system
  publication-title: IEEE Trans. Ind. Electon.
– volume: 15
  start-page: 4614
  issue: 8
  year: 2019
  end-page: 4623
  article-title: FPGA‐based online power quality disturbances monitoring using reduced‐sample HHT and class‐specific weighted RVFLN
  publication-title: IEEE Trans. Ind. Inf.
– ident: e_1_2_7_6_2
  doi: 10.1109/TPWRS.2007.907542
– ident: e_1_2_7_16_2
  doi: 10.3390/e17106663
– start-page: 1
  issue: 99
  year: 2019
  ident: e_1_2_7_4_2
  article-title: A transformer integrated filtering system for power quality improvement of industrial DC supply system
  publication-title: IEEE Trans. Ind. Electon.
– ident: e_1_2_7_34_2
  doi: 10.1109/61.853026
– ident: e_1_2_7_30_2
– ident: e_1_2_7_20_2
  doi: 10.1109/TIE.2016.2637304
– ident: e_1_2_7_18_2
  doi: 10.1109/TPWRD.2008.2002660
– ident: e_1_2_7_22_2
  doi: 10.1109/TII.2017.2773475
– ident: e_1_2_7_21_2
  doi: 10.1109/TSG.2018.2873001
– ident: e_1_2_7_27_2
  doi: 10.1126/science.1127647
– ident: e_1_2_7_2_2
  doi: 10.1109/TPWRD.2007.911125
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: e_1_2_7_28_2
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_7_11_2
  doi: 10.1109/TII.2019.2892873
– volume: 9
  start-page: 594
  issue: 2
  year: 2018
  ident: e_1_2_7_12_2
  article-title: A framework for automatically extracting overvoltage features based on sparse autoencoder
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2558200
– ident: e_1_2_7_15_2
  doi: 10.1109/TPWRD.2009.2027496
– ident: e_1_2_7_36_2
  doi: 10.1109/ICIS.2017.7960026
– ident: e_1_2_7_19_2
  doi: 10.1109/TDC-LA.2010.5762934
– ident: e_1_2_7_9_2
  doi: 10.1109/TSG.2012.2197642
– ident: e_1_2_7_14_2
  doi: 10.1109/TPWRD.2012.2218626
– ident: e_1_2_7_17_2
  doi: 10.1016/j.ijepes.2013.06.024
– ident: e_1_2_7_38_2
  doi: 10.1109/PESGM.2012.6345175
– ident: e_1_2_7_5_2
  doi: 10.1016/j.conengprac.2018.09.024
– ident: e_1_2_7_33_2
  doi: 10.1016/j.neucom.2015.04.071
– ident: e_1_2_7_13_2
  doi: 10.1109/TIM.2007.910101
– ident: e_1_2_7_32_2
  doi: 10.1016/j.patcog.2010.12.012
– ident: e_1_2_7_10_2
  doi: 10.1109/TSG.2016.2624313
– ident: e_1_2_7_3_2
  doi: 10.1109/TPWRS.2018.2856743
– ident: e_1_2_7_29_2
  doi: 10.1109/TPWRS.2002.804995
– ident: e_1_2_7_26_2
  doi: 10.1109/TPWRD.2018.2854677
– ident: e_1_2_7_24_2
  doi: 10.1016/j.ijepes.2012.12.018
– ident: e_1_2_7_31_2
  doi: 10.1162/neco.2006.18.7.1527
– ident: e_1_2_7_37_2
  doi: 10.1109/TPWRD.2006.876659
– ident: e_1_2_7_35_2
  doi: 10.1109/POWERCON.2018.8602195
– ident: e_1_2_7_25_2
  doi: 10.1016/j.asoc.2015.10.038
– ident: e_1_2_7_7_2
  doi: 10.1049/iet-smt.2009.0006
– ident: e_1_2_7_23_2
  doi: 10.1109/TIE.2016.2521615
– ident: e_1_2_7_8_2
  doi: 10.1109/TSG.2016.2626469
SSID ssj0055647
Score 2.4465537
Snippet This study presents a new technique for power quality (PQ) disturbance detection. The technique focuses on voltage sags and interruptions that are related to...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 140
SubjectTerms backpropagation
deep learning
detection threshold
discrete wavelet transforms
disturbance initiation
feature extraction
improved stacked sparse denoising autoencoder
learning (artificial intelligence)
maximal overlap discrete wavelet transform
neural nets
power engineering computing
power quality disturbance detection
power supply quality
power system faults
power system harmonics
PQ detection algorithm
PQ disturbances
PQ recording
preprocessed PQ waveforms
Research Article
robust classifier
robust denoising
signal denoising
space vector transformation
transformer faults
voltage sags
Title Maximal overlap discrete wavelet transform and deep learning for robust denoising and detection of power quality disturbance
URI http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2019.1121
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2019.1121
Volume 14
WOSCitedRecordID wos000505192000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaA9gAH6AvxrHxAPVSyaiexnRx5LfTAigNVuUWOH2ilJbvaDS-JH8-Mk10VVQIJccnBGTvR-DHf2J75CNlTPKSmyjMmNc_QQclYLpVlqjBBORVMamwkm9D9fn55WZwvkMNZLEybH2K-4YYzI67XOMFN1bKQAKiFThz4hl01mOxTFBgIAy7QByHSHPkbkux8thxLqSLLGJhJwXKV6_nRZvHrvyaeGadFeP0cskab01t7l7_9RFY7yEn32zHymSz4-gtZ-ScR4VfyeGbuB9cghBc6h2ZMMVh3Ania3hlkpmhoMwO41NSOOu_HtCOcuKJQTCej6mbawIt6NMDth06siTe9ajoKdIx8bLQN4nzAD4Cxq3DMfSN_escXh6es42VgFuATZ0bLkDinpLPcFFYkTmROe2cBa2mlQw5OkXVaCx8RTDCA4qxS2lYKMxGk6TpZqke13yC04kEW3HmbyJBxm1awPjgnpE48d6kqNgmfdUhpu6TlyJ0xLOPheVaUoNgSFFuiYktU7Cb5Oa8ybjN2vCT8A8u6eTt9STCN3ft6k-XJxVFy0MOzcb71plrbZDlBr54LJvQOWWomN36XfLS3zWA6-R5HNzz__u4_AVUj_48
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA5uoB7cxd0cxIMQTJck7dFtVNTBw4jeSppFBrQzzNQN_PHmpZ1BERTEa_KSlpflfS_Jex9CO5zaSOZJTJigMTgoMUkYV4Sn0nLNrYyk8mQTotlM7u7S6xF0PIiFqfJDDA_cYGX4_RoWOBxIVw5nDEky26Yk9yVk-wxSiIRxPtB47AAHEDjcnjcH-zFj3NOMOTsZkIQnYni3me5_6-KLdRp11V8xqzc6jdn_-d05NFODTnxQzZJ5NGKKBTT9KRXhInq_kq_tRycETzofZBdDuG7PIWr8IoGbosTlAOJiWWisjenimnLiHrti3OvkT_3SVRSdNhxA1GKlf-tV4I7FXWBkw1UY5xt8wJm7HGbdErppnLSOzkjNzECUA1CUSMFsqDVnWlGZqiDUQayF0cqhLcGFTZxbpLQQgfEYxkqH4xTnQuUcchFE0TIaKzqFWUE4p5alVBsVMhtTFeVuh9A6YCI0VEc8XUV0MCKZqtOWA3vGQ-avz-M0c4rNnGIzUGwGil1Fe8Mm3Spnx0_Cu1BWr9z-T4KRH9_fu8xOW8fhYQNux-nan1pto8mz1tVldnnevFhHUyH4-DQggdhAY2XvyWyiCfVctvu9LT_VPwAl6ALn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9WS9EHtR9SP5uH4oMQmuzmY_dRPU-l9rgHC74t2XzIgd1b7ta2gn-8mezeoRQUpK_JJLtMJpnfZDIzCH2V1Ke6zDgRinIwUDjJhDRE5tpLK71OtYnFJtRgkF1d5cMF1JvFwrT5IeYXbrAz4nkNG9zV1rcGJ4ckmSPXkOsGsn2yHCJhgg20xIViINsJH87OYyFkLDMW9CQjmczU3LeZf_tniifa6U3ofopZo9Lpr_2f311Hqx3oxIetlLxHC676gFYepSL8iO5_6L-jX4EInnTe6BpDuO4kIGr8R0NtigY3M4iLdWWxda7GXcmJaxya8WRc3k6b0FGNR3AB0ZE18a1Xhcce11CRDbdhnHfwgaDuSpC6T-hn_-Ty-Ix0lRmICQCKEq2ET6yVwhqqc8MSy7hVzpqAtpRUPgtmkbFKMRcxjNcBxxkplSkl5CJI0w20WI0r9xnhknqRU-tMIjynJi3DCWEtEypx1KYy30R0tiKF6dKWQ_WMmyK6z3leBMYWgbEFMLYAxm6ig_mQus3Z8RzxPrR1O3f6HGEa1_flKYvTy15y1AfvON161agv6N2w1y8uzgfft9FyAiY-ZYSpHbTYTG7dLnprfjej6WQvSvoDK_4B_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximal+overlap+discrete+wavelet+transform+and+deep+learning+for+robust+denoising+and+detection+of+power+quality+disturbance&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Xiao%2C+Fei&rft.au=Lu%2C+Tianguang&rft.au=Wu%2C+Mingli&rft.au=Ai%2C+Qian&rft.date=2020-01-17&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=14&rft.issue=1&rft.spage=140&rft.epage=147&rft_id=info:doi/10.1049%2Fiet-gtd.2019.1121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_gtd_2019_1121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon