Maximal overlap discrete wavelet transform and deep learning for robust denoising and detection of power quality disturbance
This study presents a new technique for power quality (PQ) disturbance detection. The technique focuses on voltage sags and interruptions that are related to various faults, i.e. transmission line, feeder, and transformer faults. A maximal overlap discrete wavelet transform-based PQ detection algori...
Uloženo v:
| Vydáno v: | IET generation, transmission & distribution Ročník 14; číslo 1; s. 140 - 147 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
17.01.2020
|
| Témata: | |
| ISSN: | 1751-8687, 1751-8695 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study presents a new technique for power quality (PQ) disturbance detection. The technique focuses on voltage sags and interruptions that are related to various faults, i.e. transmission line, feeder, and transformer faults. A maximal overlap discrete wavelet transform-based PQ detection algorithm is proposed to provide accurate points of disturbance initiation and recovery. The proposed PQ detection algorithm is robust even without a detection threshold and independent of the sampling frequency of PQ recording. In consideration of the presence of noise conditions, the preprocessed PQ waveforms are converted into 2D binary vectors using space vector transformation. Then, an improved stacked sparse denoising autoencoder combined with supervised backpropagation training is proposed as a robust classifier. Results show that the proposed method is suitable for detecting various types of PQ disturbances and possesses high recognition accuracy despite insufficient training samples. |
|---|---|
| AbstractList | This study presents a new technique for power quality (PQ) disturbance detection. The technique focuses on voltage sags and interruptions that are related to various faults, i.e. transmission line, feeder, and transformer faults. A maximal overlap discrete wavelet transform‐based PQ detection algorithm is proposed to provide accurate points of disturbance initiation and recovery. The proposed PQ detection algorithm is robust even without a detection threshold and independent of the sampling frequency of PQ recording. In consideration of the presence of noise conditions, the preprocessed PQ waveforms are converted into 2D binary vectors using space vector transformation. Then, an improved stacked sparse denoising autoencoder combined with supervised backpropagation training is proposed as a robust classifier. Results show that the proposed method is suitable for detecting various types of PQ disturbances and possesses high recognition accuracy despite insufficient training samples. |
| Author | Ai, Qian Wu, Mingli Lu, Tianguang Xiao, Fei |
| Author_xml | – sequence: 1 givenname: Fei surname: Xiao fullname: Xiao, Fei email: xiaofeibjtu@163.com organization: 1College of Electrical Engineering, Beijing Jiao Tong University, Beijing 100044, People's Republic of China – sequence: 2 givenname: Tianguang surname: Lu fullname: Lu, Tianguang organization: 2John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA – sequence: 3 givenname: Mingli surname: Wu fullname: Wu, Mingli organization: 1College of Electrical Engineering, Beijing Jiao Tong University, Beijing 100044, People's Republic of China – sequence: 4 givenname: Qian surname: Ai fullname: Ai, Qian organization: 3Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China |
| BookMark | eNqFkEFPwyAYhonRxG36A7zxBzqha6H1ptNNkxkv89ww-LqwdFCBbS7xx0tT48HDPEFevoc33zNE58YaQOiGkjElWXmrISTroMYpoeWY0pSeoQHlOU0KVubnv_eCX6Kh9xtC8pxlfIC-XsWn3ooG2z24RrRYaS8dBMAHsYcGAg5OGF9bt8XCKKwAWtyAcEabNY4xdna18yE-GKt9F_ZjAWTQ1mBb49YewOGPnWh0OHYFYedWwki4Qhe1aDxc_5wj9D57Wk6fk8Xb_GV6v0hkyjKSCJ7XqVIsV5KIUtJU0UxxUHJSppzxumCEScU5BUIIp7UocyoZ43IV40JOJiNE-3-ls947qKvWxaXdsaKk6vRVUV8V9VWdvqrTFxn-h5E6iG6lKEQ3J8m7njzoBo7_V1Xz5WP6MCMp5yTCSQ93Yxu7cyaKOVH2DZy1naQ |
| CitedBy_id | crossref_primary_10_1007_s00202_022_01667_5 crossref_primary_10_1016_j_rser_2023_114088 crossref_primary_10_1007_s00521_024_10863_2 crossref_primary_10_1109_ACCESS_2021_3060800 crossref_primary_10_1016_j_asej_2025_103718 crossref_primary_10_1007_s42417_023_01140_y crossref_primary_10_1109_TPWRS_2021_3064250 crossref_primary_10_1007_s00202_023_02177_8 crossref_primary_10_1088_1361_6501_ad1b9f crossref_primary_10_1109_TIA_2021_3114127 crossref_primary_10_3390_electronics10212725 crossref_primary_10_3390_en15072532 crossref_primary_10_1177_14759217231210600 crossref_primary_10_1049_gtd2_12364 crossref_primary_10_1080_1448837X_2021_1948166 crossref_primary_10_3390_app10196792 crossref_primary_10_1016_j_arcontrol_2022_09_005 crossref_primary_10_1049_iet_gtd_2019_1491 crossref_primary_10_1049_iet_gtd_2020_0814 crossref_primary_10_1007_s00202_024_02517_2 crossref_primary_10_1109_ACCESS_2024_3443963 crossref_primary_10_1109_JLT_2020_3047478 crossref_primary_10_1109_TSUSC_2024_3391733 crossref_primary_10_1016_j_ijepes_2024_110294 crossref_primary_10_1186_s43067_025_00194_0 crossref_primary_10_1080_15325008_2023_2260375 crossref_primary_10_1002_ese3_1516 crossref_primary_10_3390_app14072925 crossref_primary_10_1049_gtd2_12378 crossref_primary_10_1016_j_egyr_2023_04_134 crossref_primary_10_1155_2020_8884786 crossref_primary_10_3390_jrfm17090413 crossref_primary_10_1016_j_measurement_2025_117471 crossref_primary_10_1080_10589759_2024_2429689 |
| Cites_doi | 10.1109/TPWRS.2007.907542 10.3390/e17106663 10.1109/61.853026 10.1109/TIE.2016.2637304 10.1109/TPWRD.2008.2002660 10.1109/TII.2017.2773475 10.1109/TSG.2018.2873001 10.1126/science.1127647 10.1109/TPWRD.2007.911125 10.1109/TII.2019.2892873 10.1109/TSG.2016.2558200 10.1109/TPWRD.2009.2027496 10.1109/ICIS.2017.7960026 10.1109/TDC-LA.2010.5762934 10.1109/TSG.2012.2197642 10.1109/TPWRD.2012.2218626 10.1016/j.ijepes.2013.06.024 10.1109/PESGM.2012.6345175 10.1016/j.conengprac.2018.09.024 10.1016/j.neucom.2015.04.071 10.1109/TIM.2007.910101 10.1016/j.patcog.2010.12.012 10.1109/TSG.2016.2624313 10.1109/TPWRS.2018.2856743 10.1109/TPWRS.2002.804995 10.1109/TPWRD.2018.2854677 10.1016/j.ijepes.2012.12.018 10.1162/neco.2006.18.7.1527 10.1109/TPWRD.2006.876659 10.1109/POWERCON.2018.8602195 10.1016/j.asoc.2015.10.038 10.1049/iet-smt.2009.0006 10.1109/TIE.2016.2521615 10.1109/TSG.2016.2626469 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Authors. IET Generation, Transmission & Distribution published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-gtd.2019.1121 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8695 |
| EndPage | 147 |
| ExternalDocumentID | 10_1049_iet_gtd_2019_1121 GTD2BF02770 |
| Genre | article |
| GrantInformation_xml | – fundername: Major State Basic Research Development Program of China grantid: 2016YFB0901304 – fundername: Major State Basic Research Development Program of China funderid: 2016YFB0901304 |
| GroupedDBID | 0R 24P 29I 4IJ 6IK 8VB AAJGR ABPTK ACIWK ALMA_UNASSIGNED_HOLDINGS BFFAM ESX HZ IFIPE IPLJI JAVBF LAI LOTEE LXI M43 MS NADUK NXXTH O9- OCL QWB RIE RNS RUI U5U UNMZH UNR ZL0 .DC 0R~ 0ZK 1OC 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AIWBW AJBDE ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU EBS EJD F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IGS ITC K1G L6V M7S MCNEO MS~ OK1 P62 PTHSS ROL S0W AAYXX AFFHD CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c2640-a75f2dd65dc0a9c12d14d7edc392767f8606cd771e00071fa951c667cb6cd8c33 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 41 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000505192000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8687 |
| IngestDate | Wed Oct 29 21:20:57 EDT 2025 Tue Nov 18 21:44:57 EST 2025 Wed Jan 22 16:32:42 EST 2025 Tue Jan 05 21:44:21 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | detection threshold maximal overlap discrete wavelet transform power quality disturbance detection disturbance initiation signal denoising power system faults deep learning PQ recording feature extraction transformer faults robust classifier space vector transformation learning (artificial intelligence) improved stacked sparse denoising autoencoder power system harmonics PQ disturbances robust denoising discrete wavelet transforms preprocessed PQ waveforms power engineering computing power supply quality voltage sags backpropagation PQ detection algorithm neural nets |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2640-a75f2dd65dc0a9c12d14d7edc392767f8606cd771e00071fa951c667cb6cd8c33 |
| PageCount | 8 |
| ParticipantIDs | iet_journals_10_1049_iet_gtd_2019_1121 crossref_citationtrail_10_1049_iet_gtd_2019_1121 crossref_primary_10_1049_iet_gtd_2019_1121 wiley_primary_10_1049_iet_gtd_2019_1121_GTD2BF02770 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-17 |
| PublicationDateYYYYMMDD | 2020-01-17 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | IET generation, transmission & distribution |
| PublicationYear | 2020 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Vincent, P.; Larochelle, H.; Lajoie, I. (C27) 2010; 11 Chen, K.; Hu, J.; He, J. (C11) 2018; 9 Aller, J.; Bueno, A.; Paga, T. (C28) 2002; 17 Masoum, M.A.S.; Jamali, S.; Ghaffarzadeh, N. (C6) 2010; 4 Borras, M.D.; Bravo, J.C.; Monta, J.C. (C22) 2016; 63 Zhang, L.D.; Bollen, M.H.J. (C33) 2000; 15 Alves, D.K.; Costa, F.B.; Ribeiro, R.L.D.A. (C19) 2017; 64 Sun, M.; Konstantelos, I.; Strbac, G. (C20) 2019; 10 Wang, S.; Yang, X.; Zhang, Y. (C15) 2015; 17 Singh, U.; Singh, S.N. (C21) 2018; 14 Mishra, S.; Bhende, C.N.; Panigrahi, B.K. (C1) 2008; 31 Morsi, W.G.; El-Hawary, M.E. (C14) 2009; 24 Achlerkar, P.D.; Samantaray, S.R.; Manikandan, M. (C7) 2018; 9 Naik, C.A.; Kundu, P. (C16) 2013; 53 Ray, P.K.; Kishor, N.; Mohanty, S.R. (C8) 2012; 3 Barros, J.; Diego, R.I. (C12) 2008; 57 Liu, Q.; Li, Y.; Hu, S. (C3) 2019; PP Costa, F.B.; Driesen, J. (C13) 2013; 28 Morsi, M.G.; Elhawary, M.E. (C17) 2008; 23 Eris, H.; Yildirim, O.; Eris, B. (C23) 2013; 49 Azam, B.; Irene, G.; Math, B. (C25) 2018; 33 Shen, F.R.; Chao, J.; Zhao, J.X. (C32) 2015; 167 Liu, Y.; Zhou, S.; Chen, Q. (C31) 2011; 44 Hinton, G.E.; Salakhutdinov, R.R. (C26) 2006; 313 Thirumala, K.; Maganuru, S.P.; Jain, T. (C9) 2018; 9 Sahani, M.; Dash, P.K. (C10) 2019; 15 Hinton, G.E.; Osindero, S.; The, Y.W. (C30) 2006; 18 Xiao, F.; Ai, Q. (C2) 2019; 34 Liu, Q.; Li, Y.; Hu, S. (C4) 2019; 83 Abdoos, A.A.; Mianaei, P.K.; Ghadikolaei, M.R. (C24) 2016; 38 Senroy, N.; Suryanarayanan, S.; Ribeiro, P.F. (C5) 2007; 22 Silva, K.M.; Souza, B.A.; Brito, N.S.D. (C36) 2016; 21 2010; 11 2002; 17 2017; 64 2009; 24 2015; 17 2013; 28 2013; 49 2012 2010 2019; 10 2019; 34 2015; 167 2019; 15 2006; 18 2008; 57 2008; 31 2006; 313 2016; 38 2018; 9 2012; 3 2019; 83 2000; 15 2019; PP 2013; 53 2016; 21 2008; 23 2016; 63 2011; 44 2018 2017 2018; 33 2007; 22 2010; 4 2018; 14 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_29_2 Vincent P. (e_1_2_7_28_2) 2010; 11 Liu Q. (e_1_2_7_4_2) 2019 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 Chen K. (e_1_2_7_12_2) 2018; 9 |
| References_xml | – volume: 9 start-page: 3018 issue: 4 year: 2018 end-page: 3028 ident: C9 article-title: Tunable-Q wavelet transform and dual multiclass SVM for online automatic detection of power quality disturbances publication-title: IEEE Trans. Smart Grid – volume: 63 start-page: 3117 issue: 5 year: 2016 end-page: 3124 ident: C22 article-title: Disturbance ratio for optimal multi-event classification in power distribution networks publication-title: IEEE Trans. Ind. Electron. – volume: 44 start-page: 2287 issue: 10 year: 2011 end-page: 2296 ident: C31 article-title: Discriminative deep belief networks for visual data classification publication-title: Pattern Recognit. – volume: 31 start-page: 280 issue: 1 year: 2008 end-page: 287 ident: C1 article-title: Detection and classification of power quality disturbances using S-transform and probabilistic neural network publication-title: IEEE Trans. Power Deliv. – volume: 23 start-page: 2356 issue: 4 year: 2008 end-page: 2365 ident: C17 article-title: A new perspective for the IEEE standard 1459–2000 via stationary wavelet transform in the presence of nonstationary power quality disturbance publication-title: IEEE Trans. Power Deliv. – volume: 38 start-page: 637 year: 2016 end-page: 646 ident: C24 article-title: Combined VMDSVM based feature selection method for classification of power quality events publication-title: Appl. Soft Comput. – volume: 15 start-page: 827 issue: 2 year: 2000 end-page: 832 ident: C33 article-title: Characteristic of voltage dips (sags) in power systems publication-title: IEEE Trans. Power Deliv. – volume: 28 start-page: 336 issue: 1 year: 2013 end-page: 346 ident: C13 article-title: Assessment of voltage sag indices based on scaling and wavelet coefficient energy analysis publication-title: IEEE Trans. Power Deliv. – volume: 17 start-page: 957 issue: 4 year: 2002 end-page: 965 ident: C28 article-title: Power system analysis using space vector transformation publication-title: IEEE Trans. Power Syst. – volume: 15 start-page: 4614 issue: 8 year: 2019 end-page: 4623 ident: C10 article-title: FPGA-based online power quality disturbances monitoring using reduced-sample HHT and class-specific weighted RVFLN publication-title: IEEE Trans. Ind. Inf. – volume: 49 start-page: 95 year: 2013 end-page: 103 ident: C23 article-title: Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines publication-title: Int. J. Elect. Power Energy Syst. – volume: 4 start-page: 193 issue: 4 year: 2010 end-page: 205 ident: C6 article-title: Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks publication-title: IET Sci. Meas. Technol. – volume: 24 start-page: 2300 issue: 4 year: 2009 end-page: 2310 ident: C14 article-title: Wavelet packet transform-based power quality indices for balanced and unbalanced three-phase systems under stationary or nonstationary operating conditions publication-title: IEEE Trans. Power Deliv. – volume: 167 start-page: 243 year: 2015 end-page: 253 ident: C32 article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method publication-title: Neurocomputing – volume: 33 start-page: 2794 issue: 6 year: 2018 end-page: 2802 ident: C25 article-title: A robust transform-domain deep convolutional network for voltage dip classification publication-title: IEEE Trans. Power Deliv. – volume: 83 start-page: 1 year: 2019 end-page: 10 ident: C4 article-title: Power quality improvement using controllable inductive power filtering method for industrial DC supply system publication-title: Control Eng. Pract. – volume: 22 start-page: 1843 issue: 4 year: 2007 end-page: 1850 ident: C5 article-title: An improved hilbert–huang method for analysis of time-varying waveforms in power quality publication-title: IEEE Trans. Power Syst. – volume: PP start-page: 1 issue: 99 year: 2019 end-page: 1 ident: C3 article-title: A transformer integrated filtering system for power quality improvement of industrial DC supply system publication-title: IEEE Trans. Ind. Electon. – volume: 9 start-page: 594 issue: 2 year: 2018 end-page: 604 ident: C11 article-title: A framework for automatically extracting overvoltage features based on sparse autoencoder publication-title: IEEE Trans. Smart Grid – volume: 10 start-page: 5007 issue: 5 year: 2019 end-page: 5020 ident: C20 article-title: A deep learning-based feature extraction framework for system security assessment publication-title: IEEE Trans. Smart Grid – volume: 3 start-page: 1082 issue: 3 year: 2012 end-page: 1094 ident: C8 article-title: Islanding and power quality disturbance detection in grid-connected hybrid power system using wavelet and S-transform publication-title: IEEE Trans. Smart Grid – volume: 64 start-page: 3177 issue: 4 year: 2017 end-page: 3187 ident: C19 article-title: Real-time power measurement using the maximal overlap discrete wavelet-packet transform publication-title: IEEE Trans. Ind. Electron. – volume: 11 start-page: 3371 issue: 12 year: 2010 end-page: 3408 ident: C27 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 14 start-page: 2994 issue: 7 year: 2018 end-page: 3002 ident: C21 article-title: Optimal feature selection via NSGA-II for power quality disturbances classification publication-title: IEEE Trans. Ind. Inf. – volume: 53 start-page: 994 year: 2013 end-page: 1002 ident: C16 article-title: Power quality index based on discrete wavelet transform publication-title: Int. J. Electr. Power Energy Syst. – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 ident: C30 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 9 start-page: 3122 issue: 4 year: 2018 end-page: 3132 ident: C7 article-title: Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid-connected distributed generation system publication-title: IEEE Trans. Smart Grid. – volume: 57 start-page: 63 issue: 1 year: 2008 end-page: 69 ident: C12 article-title: Analysis of harmonics in power systems using the wavelet-packet transform publication-title: IEEE Trans. Instrum. Meas. – volume: 34 start-page: 402 issue: 1 year: 2019 end-page: 412 ident: C2 article-title: Data-driven multi-hidden markov model-based power quality disturbance prediction that incorporates weather conditions publication-title: IEEE Trans. Power Syst. – volume: 17 start-page: 6663 issue: 10 year: 2015 end-page: 6682 ident: C15 article-title: Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine publication-title: Entropy – volume: 21 start-page: 2058 issue: 4 year: 2016 end-page: 2063 ident: C36 article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN publication-title: IEEE Trans. Power Deliv. – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 ident: C26 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 24 start-page: 2300 issue: 4 year: 2009 end-page: 2310 article-title: Wavelet packet transform‐based power quality indices for balanced and unbalanced three‐phase systems under stationary or nonstationary operating conditions publication-title: IEEE Trans. Power Deliv. – volume: 44 start-page: 2287 issue: 10 year: 2011 end-page: 2296 article-title: Discriminative deep belief networks for visual data classification publication-title: Pattern Recognit. – volume: 10 start-page: 5007 issue: 5 year: 2019 end-page: 5020 article-title: A deep learning‐based feature extraction framework for system security assessment publication-title: IEEE Trans. Smart Grid – volume: 38 start-page: 637 year: 2016 end-page: 646 article-title: Combined VMDSVM based feature selection method for classification of power quality events publication-title: Appl. Soft Comput. – volume: 9 start-page: 594 issue: 2 year: 2018 end-page: 604 article-title: A framework for automatically extracting overvoltage features based on sparse autoencoder publication-title: IEEE Trans. Smart Grid – volume: 313 start-page: 504 issue: 5786 year: 2006 end-page: 507 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 83 start-page: 1 year: 2019 end-page: 10 article-title: Power quality improvement using controllable inductive power filtering method for industrial DC supply system publication-title: Control Eng. Pract. – volume: 9 start-page: 3122 issue: 4 year: 2018 end-page: 3132 article-title: Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid‐connected distributed generation system publication-title: IEEE Trans. Smart Grid. – volume: 31 start-page: 280 issue: 1 year: 2008 end-page: 287 article-title: Detection and classification of power quality disturbances using S‐transform and probabilistic neural network publication-title: IEEE Trans. Power Deliv. – volume: 23 start-page: 2356 issue: 4 year: 2008 end-page: 2365 article-title: A new perspective for the IEEE standard 1459–2000 via stationary wavelet transform in the presence of nonstationary power quality disturbance publication-title: IEEE Trans. Power Deliv. – volume: 11 start-page: 3371 issue: 12 year: 2010 end-page: 3408 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 827 issue: 2 year: 2000 end-page: 832 article-title: Characteristic of voltage dips (sags) in power systems publication-title: IEEE Trans. Power Deliv. – volume: 57 start-page: 63 issue: 1 year: 2008 end-page: 69 article-title: Analysis of harmonics in power systems using the wavelet‐packet transform publication-title: IEEE Trans. Instrum. Meas. – start-page: 1 year: 2012 end-page: 8 article-title: A robust technique for overvoltages classification in power transformers – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 14 start-page: 2994 issue: 7 year: 2018 end-page: 3002 article-title: Optimal feature selection via NSGA‐II for power quality disturbances classification publication-title: IEEE Trans. Ind. Inf. – volume: 53 start-page: 994 year: 2013 end-page: 1002 article-title: Power quality index based on discrete wavelet transform publication-title: Int. J. Electr. Power Energy Syst. – start-page: 4118 year: 2018 end-page: 4123 article-title: Classification of underlying causes of power quality disturbances using data fusion – volume: 21 start-page: 2058 issue: 4 year: 2016 end-page: 2063 article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN publication-title: IEEE Trans. Power Deliv. – volume: 64 start-page: 3177 issue: 4 year: 2017 end-page: 3187 article-title: Real‐time power measurement using the maximal overlap discrete wavelet‐packet transform publication-title: IEEE Trans. Ind. Electron. – year: 2010 article-title: Real‐time detection of voltage sags based on wavelet transform – volume: 17 start-page: 6663 issue: 10 year: 2015 end-page: 6682 article-title: Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine publication-title: Entropy – volume: 28 start-page: 336 issue: 1 year: 2013 end-page: 346 article-title: Assessment of voltage sag indices based on scaling and wavelet coefficient energy analysis publication-title: IEEE Trans. Power Deliv. – volume: 33 start-page: 2794 issue: 6 year: 2018 end-page: 2802 article-title: A robust transform‐domain deep convolutional network for voltage dip classification publication-title: IEEE Trans. Power Deliv. – volume: 17 start-page: 957 issue: 4 year: 2002 end-page: 965 article-title: Power system analysis using space vector transformation publication-title: IEEE Trans. Power Syst. – volume: 49 start-page: 95 year: 2013 end-page: 103 article-title: Optimal feature selection for classification of the power quality events using wavelet transform and least squares support vector machines publication-title: Int. J. Elect. Power Energy Syst. – volume: 34 start-page: 402 issue: 1 year: 2019 end-page: 412 article-title: Data‐driven multi‐hidden markov model‐based power quality disturbance prediction that incorporates weather conditions publication-title: IEEE Trans. Power Syst. – volume: 9 start-page: 3018 issue: 4 year: 2018 end-page: 3028 article-title: Tunable‐Q wavelet transform and dual multiclass SVM for online automatic detection of power quality disturbances publication-title: IEEE Trans. Smart Grid – volume: 4 start-page: 193 issue: 4 year: 2010 end-page: 205 article-title: Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks publication-title: IET Sci. Meas. Technol. – volume: 167 start-page: 243 year: 2015 end-page: 253 article-title: Forecasting exchange rate using deep belief networks and conjugate gradient method publication-title: Neurocomputing – volume: 22 start-page: 1843 issue: 4 year: 2007 end-page: 1850 article-title: An improved hilbert–huang method for analysis of time‐varying waveforms in power quality publication-title: IEEE Trans. Power Syst. – volume: 63 start-page: 3117 issue: 5 year: 2016 end-page: 3124 article-title: Disturbance ratio for optimal multi‐event classification in power distribution networks publication-title: IEEE Trans. Ind. Electron. – start-page: 401 year: 2017 end-page: 406 article-title: An ensemble classification algorithm for convolutional neural network based on AdaBoost – volume: 3 start-page: 1082 issue: 3 year: 2012 end-page: 1094 article-title: Islanding and power quality disturbance detection in grid‐connected hybrid power system using wavelet and S‐transform publication-title: IEEE Trans. Smart Grid – year: 2012 article-title: Image denoising and inpainting with deep neural networks – volume: PP start-page: 1 issue: 99 year: 2019 end-page: 1 article-title: A transformer integrated filtering system for power quality improvement of industrial DC supply system publication-title: IEEE Trans. Ind. Electon. – volume: 15 start-page: 4614 issue: 8 year: 2019 end-page: 4623 article-title: FPGA‐based online power quality disturbances monitoring using reduced‐sample HHT and class‐specific weighted RVFLN publication-title: IEEE Trans. Ind. Inf. – ident: e_1_2_7_6_2 doi: 10.1109/TPWRS.2007.907542 – ident: e_1_2_7_16_2 doi: 10.3390/e17106663 – start-page: 1 issue: 99 year: 2019 ident: e_1_2_7_4_2 article-title: A transformer integrated filtering system for power quality improvement of industrial DC supply system publication-title: IEEE Trans. Ind. Electon. – ident: e_1_2_7_34_2 doi: 10.1109/61.853026 – ident: e_1_2_7_30_2 – ident: e_1_2_7_20_2 doi: 10.1109/TIE.2016.2637304 – ident: e_1_2_7_18_2 doi: 10.1109/TPWRD.2008.2002660 – ident: e_1_2_7_22_2 doi: 10.1109/TII.2017.2773475 – ident: e_1_2_7_21_2 doi: 10.1109/TSG.2018.2873001 – ident: e_1_2_7_27_2 doi: 10.1126/science.1127647 – ident: e_1_2_7_2_2 doi: 10.1109/TPWRD.2007.911125 – volume: 11 start-page: 3371 issue: 12 year: 2010 ident: e_1_2_7_28_2 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: e_1_2_7_11_2 doi: 10.1109/TII.2019.2892873 – volume: 9 start-page: 594 issue: 2 year: 2018 ident: e_1_2_7_12_2 article-title: A framework for automatically extracting overvoltage features based on sparse autoencoder publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2016.2558200 – ident: e_1_2_7_15_2 doi: 10.1109/TPWRD.2009.2027496 – ident: e_1_2_7_36_2 doi: 10.1109/ICIS.2017.7960026 – ident: e_1_2_7_19_2 doi: 10.1109/TDC-LA.2010.5762934 – ident: e_1_2_7_9_2 doi: 10.1109/TSG.2012.2197642 – ident: e_1_2_7_14_2 doi: 10.1109/TPWRD.2012.2218626 – ident: e_1_2_7_17_2 doi: 10.1016/j.ijepes.2013.06.024 – ident: e_1_2_7_38_2 doi: 10.1109/PESGM.2012.6345175 – ident: e_1_2_7_5_2 doi: 10.1016/j.conengprac.2018.09.024 – ident: e_1_2_7_33_2 doi: 10.1016/j.neucom.2015.04.071 – ident: e_1_2_7_13_2 doi: 10.1109/TIM.2007.910101 – ident: e_1_2_7_32_2 doi: 10.1016/j.patcog.2010.12.012 – ident: e_1_2_7_10_2 doi: 10.1109/TSG.2016.2624313 – ident: e_1_2_7_3_2 doi: 10.1109/TPWRS.2018.2856743 – ident: e_1_2_7_29_2 doi: 10.1109/TPWRS.2002.804995 – ident: e_1_2_7_26_2 doi: 10.1109/TPWRD.2018.2854677 – ident: e_1_2_7_24_2 doi: 10.1016/j.ijepes.2012.12.018 – ident: e_1_2_7_31_2 doi: 10.1162/neco.2006.18.7.1527 – ident: e_1_2_7_37_2 doi: 10.1109/TPWRD.2006.876659 – ident: e_1_2_7_35_2 doi: 10.1109/POWERCON.2018.8602195 – ident: e_1_2_7_25_2 doi: 10.1016/j.asoc.2015.10.038 – ident: e_1_2_7_7_2 doi: 10.1049/iet-smt.2009.0006 – ident: e_1_2_7_23_2 doi: 10.1109/TIE.2016.2521615 – ident: e_1_2_7_8_2 doi: 10.1109/TSG.2016.2626469 |
| SSID | ssj0055647 |
| Score | 2.4465537 |
| Snippet | This study presents a new technique for power quality (PQ) disturbance detection. The technique focuses on voltage sags and interruptions that are related to... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 140 |
| SubjectTerms | backpropagation deep learning detection threshold discrete wavelet transforms disturbance initiation feature extraction improved stacked sparse denoising autoencoder learning (artificial intelligence) maximal overlap discrete wavelet transform neural nets power engineering computing power quality disturbance detection power supply quality power system faults power system harmonics PQ detection algorithm PQ disturbances PQ recording preprocessed PQ waveforms Research Article robust classifier robust denoising signal denoising space vector transformation transformer faults voltage sags |
| Title | Maximal overlap discrete wavelet transform and deep learning for robust denoising and detection of power quality disturbance |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2019.1121 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-gtd.2019.1121 |
| Volume | 14 |
| WOSCitedRecordID | wos000505192000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055647 issn: 1751-8687 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8695 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055647 issn: 1751-8687 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELaA9gAH6AvxrHxAPVSyaiexnRx5LfTAigNVuUWOH2ilJbvaDS-JH8-Mk10VVQIJccnBGTvR-DHf2J75CNlTPKSmyjMmNc_QQclYLpVlqjBBORVMamwkm9D9fn55WZwvkMNZLEybH2K-4YYzI67XOMFN1bKQAKiFThz4hl01mOxTFBgIAy7QByHSHPkbkux8thxLqSLLGJhJwXKV6_nRZvHrvyaeGadFeP0cskab01t7l7_9RFY7yEn32zHymSz4-gtZ-ScR4VfyeGbuB9cghBc6h2ZMMVh3Ania3hlkpmhoMwO41NSOOu_HtCOcuKJQTCej6mbawIt6NMDth06siTe9ajoKdIx8bLQN4nzAD4Cxq3DMfSN_escXh6es42VgFuATZ0bLkDinpLPcFFYkTmROe2cBa2mlQw5OkXVaCx8RTDCA4qxS2lYKMxGk6TpZqke13yC04kEW3HmbyJBxm1awPjgnpE48d6kqNgmfdUhpu6TlyJ0xLOPheVaUoNgSFFuiYktU7Cb5Oa8ybjN2vCT8A8u6eTt9STCN3ft6k-XJxVFy0MOzcb71plrbZDlBr54LJvQOWWomN36XfLS3zWA6-R5HNzz__u4_AVUj_48 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA5uoB7cxd0cxIMQTJck7dFtVNTBw4jeSppFBrQzzNQN_PHmpZ1BERTEa_KSlpflfS_Jex9CO5zaSOZJTJigMTgoMUkYV4Sn0nLNrYyk8mQTotlM7u7S6xF0PIiFqfJDDA_cYGX4_RoWOBxIVw5nDEky26Yk9yVk-wxSiIRxPtB47AAHEDjcnjcH-zFj3NOMOTsZkIQnYni3me5_6-KLdRp11V8xqzc6jdn_-d05NFODTnxQzZJ5NGKKBTT9KRXhInq_kq_tRycETzofZBdDuG7PIWr8IoGbosTlAOJiWWisjenimnLiHrti3OvkT_3SVRSdNhxA1GKlf-tV4I7FXWBkw1UY5xt8wJm7HGbdErppnLSOzkjNzECUA1CUSMFsqDVnWlGZqiDUQayF0cqhLcGFTZxbpLQQgfEYxkqH4xTnQuUcchFE0TIaKzqFWUE4p5alVBsVMhtTFeVuh9A6YCI0VEc8XUV0MCKZqtOWA3vGQ-avz-M0c4rNnGIzUGwGil1Fe8Mm3Spnx0_Cu1BWr9z-T4KRH9_fu8xOW8fhYQNux-nan1pto8mz1tVldnnevFhHUyH4-DQggdhAY2XvyWyiCfVctvu9LT_VPwAl6ALn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEA9WS9EHtR9SP5uH4oMQmuzmY_dRPU-l9rgHC74t2XzIgd1b7ta2gn-8mezeoRQUpK_JJLtMJpnfZDIzCH2V1Ke6zDgRinIwUDjJhDRE5tpLK71OtYnFJtRgkF1d5cMF1JvFwrT5IeYXbrAz4nkNG9zV1rcGJ4ckmSPXkOsGsn2yHCJhgg20xIViINsJH87OYyFkLDMW9CQjmczU3LeZf_tniifa6U3ofopZo9Lpr_2f311Hqx3oxIetlLxHC676gFYepSL8iO5_6L-jX4EInnTe6BpDuO4kIGr8R0NtigY3M4iLdWWxda7GXcmJaxya8WRc3k6b0FGNR3AB0ZE18a1Xhcce11CRDbdhnHfwgaDuSpC6T-hn_-Ty-Ix0lRmICQCKEq2ET6yVwhqqc8MSy7hVzpqAtpRUPgtmkbFKMRcxjNcBxxkplSkl5CJI0w20WI0r9xnhknqRU-tMIjynJi3DCWEtEypx1KYy30R0tiKF6dKWQ_WMmyK6z3leBMYWgbEFMLYAxm6ig_mQus3Z8RzxPrR1O3f6HGEa1_flKYvTy15y1AfvON161agv6N2w1y8uzgfft9FyAiY-ZYSpHbTYTG7dLnprfjej6WQvSvoDK_4B_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximal+overlap+discrete+wavelet+transform+and+deep+learning+for+robust+denoising+and+detection+of+power+quality+disturbance&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Xiao%2C+Fei&rft.au=Lu%2C+Tianguang&rft.au=Wu%2C+Mingli&rft.au=Ai%2C+Qian&rft.date=2020-01-17&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=14&rft.issue=1&rft.spage=140&rft.epage=147&rft_id=info:doi/10.1049%2Fiet-gtd.2019.1121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_gtd_2019_1121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon |