Sensor Placement by Maximal Projection on Minimum Eigenspace for Linear Inverse Problems

This paper presents two new greedy sensor placement algorithms, named minimum nonzero eigenvalue pursuit (MNEP) and maximal projection on minimum eigenspace (MPME), for linear inverse problems, with greater emphasis on the MPME algorithm for performance comparison with existing approaches. In both M...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 64; číslo 21; s. 5595 - 5610
Hlavní autoři: Jiang, Chaoyang, Soh, Yeng Chai, Li, Hua
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.11.2016
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents two new greedy sensor placement algorithms, named minimum nonzero eigenvalue pursuit (MNEP) and maximal projection on minimum eigenspace (MPME), for linear inverse problems, with greater emphasis on the MPME algorithm for performance comparison with existing approaches. In both MNEP and MPME, we select the sensing locations one-by-one. In this way, the least number of required sensor nodes can be determined by checking whether the estimation accuracy is satisfied after each sensing location is determined. For the MPME algorithm, the minimum eigenspace is defined as the eigenspace associated with the minimum eigenvalue of the dual observation matrix. For each sensing location, the projection of its observation vector onto the minimum eigenspace is shown to be monotonically decreasing w.r.t. the worst case error variance (WCEV) of the estimated parameters. We select the sensing location whose observation vector has the maximum projection onto the minimum eigenspace of the current dual observation matrix. The proposed MPME is shown to be one of the most computationally efficient algorithms. Our Monte-Carlo simulations showed that MPME outperforms the convex relaxation method, the SparSenSe method, and the FrameSense method in terms of WCEV and the mean square error (MSE) of the estimated parameters, especially when the number of available sensor nodes is very limited.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2016.2573767