Random Coordinate Descent Algorithms for Multi-Agent Convex Optimization Over Networks

In this paper, we develop randomized block-coordinate descent methods for minimizing multi-agent convex optimization problems with linearly coupled constraints over networks and prove that they obtain in expectation an ε accurate solution in at most O(1/λ 2 (Q)ϵ) iterations, where λ 2 (Q) is the sec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 58; číslo 8; s. 2001 - 2012
Hlavný autor: Necoara, Ion
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.08.2013
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we develop randomized block-coordinate descent methods for minimizing multi-agent convex optimization problems with linearly coupled constraints over networks and prove that they obtain in expectation an ε accurate solution in at most O(1/λ 2 (Q)ϵ) iterations, where λ 2 (Q) is the second smallest eigenvalue of a matrix Q that is defined in terms of the probabilities and the number of blocks. However, the computational complexity per iteration of our methods is much simpler than the one of a method based on full gradient information and each iteration can be computed in a completely distributed way. We focus on how to choose the probabilities to make these randomized algorithms to converge as fast as possible and we arrive at solving a sparse SDP. Analysis for rate of convergence in probability is also provided. For strongly convex functions our distributed algorithms converge linearly. We also extend the main algorithm to a more general random coordinate descent method and to problems with more general linearly coupled constraints. Preliminary numerical tests confirm that on very large optimization problems our method is much more numerically efficient than methods based on full gradient.
AbstractList In this paper, we develop randomized block-coordinate descent methods for minimizing multi-agent convex optimization problems with linearly coupled constraints over networks and prove that they obtain in expectation an ε accurate solution in at most O(1/λ 2 (Q)ϵ) iterations, where λ 2 (Q) is the second smallest eigenvalue of a matrix Q that is defined in terms of the probabilities and the number of blocks. However, the computational complexity per iteration of our methods is much simpler than the one of a method based on full gradient information and each iteration can be computed in a completely distributed way. We focus on how to choose the probabilities to make these randomized algorithms to converge as fast as possible and we arrive at solving a sparse SDP. Analysis for rate of convergence in probability is also provided. For strongly convex functions our distributed algorithms converge linearly. We also extend the main algorithm to a more general random coordinate descent method and to problems with more general linearly coupled constraints. Preliminary numerical tests confirm that on very large optimization problems our method is much more numerically efficient than methods based on full gradient.
Author Necoara, Ion
Author_xml – sequence: 1
  givenname: Ion
  surname: Necoara
  fullname: Necoara, Ion
  email: ion.necoara@acse.pub.ro
  organization: Dept. of Autom. Control & Syst. Eng., Univ. Politeh. Bucharest, Bucharest, Romania
BookMark eNp9kMtOwzAQRS1UJNrCHomNfyDFj_iRZRSeUqESKmwjN50UQxJXtimPryelFQsWrEajuWd0dUZo0LkOEDqlZEIpyc7neTFhhPIJY4IQRQ_QkAqhEyYYH6AhIVQnGdPyCI1CeOlXmaZ0iJ4eTLd0LS6c80vbmQj4AkIFXcR5s3Lexuc24Np5fPfWRJvkq-2pcN0GPvBsHW1rv0y0rsOzDXh8D_Hd-ddwjA5r0wQ42c8xery6nBc3yXR2fVvk06RikscEtMiUURXnRi2UMDVjlSI1CGrYkpGULPqiItVEsAUTStWZlmldARjDTSY1HyO5-1t5F4KHuqxs_OkTvbFNSUm5tVP2dsqtnXJvpwfJH3DtbWv853_I2Q6xAPAbl6miSnD-DfQ_cgA
CODEN IETAA9
CitedBy_id crossref_primary_10_1137_22M148700X
crossref_primary_10_1016_j_sysconle_2015_06_006
crossref_primary_10_1049_gtd2_12142
crossref_primary_10_1080_10556788_2020_1750013
crossref_primary_10_1007_s11431_018_9451_4
crossref_primary_10_1007_s10898_014_0151_9
crossref_primary_10_1109_TAC_2016_2615066
crossref_primary_10_1109_TNSM_2025_3561269
crossref_primary_10_1109_TCNS_2019_2925267
crossref_primary_10_1109_TAC_2024_3394349
crossref_primary_10_1109_LCSYS_2020_2976311
crossref_primary_10_1016_j_neucom_2019_11_086
crossref_primary_10_1109_TSG_2020_2989828
crossref_primary_10_1109_TSMC_2020_3005169
crossref_primary_10_1109_TSP_2021_3114978
crossref_primary_10_1109_TCYB_2022_3178929
crossref_primary_10_1109_ACCESS_2018_2888855
crossref_primary_10_1109_TAC_2020_3041248
crossref_primary_10_1007_s10957_016_1058_z
crossref_primary_10_1137_130950288
crossref_primary_10_1007_s10915_025_02992_0
crossref_primary_10_1093_imanum_draa018
crossref_primary_10_1109_TNSE_2023_3248267
crossref_primary_10_1109_TAC_2016_2604373
crossref_primary_10_1109_TAC_2016_2607023
crossref_primary_10_1109_LCSYS_2021_3084531
crossref_primary_10_1287_moor_2023_0044
crossref_primary_10_1109_TAC_2015_2390551
crossref_primary_10_1016_j_ifacol_2022_07_244
crossref_primary_10_1016_j_eswa_2022_118099
crossref_primary_10_1109_TAC_2017_2673240
crossref_primary_10_1016_j_engappai_2020_104115
crossref_primary_10_1016_j_sysconle_2016_11_006
crossref_primary_10_1016_j_automatica_2023_111339
crossref_primary_10_1007_s10107_020_01599_7
crossref_primary_10_1007_s10287_018_0303_3
crossref_primary_10_1109_TSMC_2024_3349407
crossref_primary_10_1109_TSMC_2021_3112691
crossref_primary_10_1016_j_automatica_2021_109739
crossref_primary_10_1007_s10589_019_00082_0
crossref_primary_10_1109_MCS_2014_2308672
crossref_primary_10_1016_j_automatica_2019_02_003
crossref_primary_10_1137_20M1328014
crossref_primary_10_1007_s10589_016_9824_2
crossref_primary_10_1109_TAC_2020_3027647
crossref_primary_10_1007_s40747_022_00785_8
crossref_primary_10_1109_TCNS_2017_2774010
crossref_primary_10_1016_j_automatica_2023_111051
Cites_doi 10.1007/s10589-009-9251-8
10.2307/2296432
10.1109/TSP.2009.2039825
10.1137/090780705
10.1137/100802001
10.1017/CBO9780511752940.002
10.1007/s10107-007-0170-0
10.1007/978-1-4419-8853-9
10.1007/s10107-012-0614-z
10.1110/ps.0242703
10.1109/32.92917
10.1007/978-1-4613-0163-9
10.1007/s10107-003-0471-x
10.3934/ipi.2009.3.487
10.1109/12.24272
10.1007/s10957-006-9080-1
10.1007/s10957-008-9458-3
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAC.2013.2250071
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 2012
ExternalDocumentID 10_1109_TAC_2013_2250071
6471753
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-e8597a7c33a7b75af22c70fe51a2d2040b001548052b2577f9864fceeaa3a9683
IEDL.DBID RIE
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322364300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Tue Nov 18 22:41:40 EST 2025
Sat Nov 29 02:26:00 EST 2025
Wed Aug 27 02:48:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-e8597a7c33a7b75af22c70fe51a2d2040b001548052b2577f9864fceeaa3a9683
PageCount 12
ParticipantIDs ieee_primary_6471753
crossref_primary_10_1109_TAC_2013_2250071
crossref_citationtrail_10_1109_TAC_2013_2250071
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
godsil (ref5) 2001
ref14
qin (ref19) 2010
nesterov (ref15) 2004
knuth (ref10) 1981
ho (ref7) 1980; 1
ref2
ref17
ref16
ref18
wei (ref22) 2011
chang (ref3) 2008; 9
bertsekas (ref1) 1999
ref23
ref26
ref25
ref20
wright (ref21) 2010
li (ref11) 2009; 3
necoara (ref13) 2011
ref8
ref9
ref4
yuan (ref24) 2011
ref6
References_xml – year: 1999
  ident: ref1
  publication-title: Nonlinear Programming
– ident: ref25
  doi: 10.1007/s10589-009-9251-8
– year: 1981
  ident: ref10
  publication-title: The art of computer programming
– ident: ref6
  doi: 10.2307/2296432
– ident: ref18
  doi: 10.1109/TSP.2009.2039825
– volume: 9
  start-page: 1369
  year: 2008
  ident: ref3
  article-title: Coordinate descent method for large-scale <tex Notation="TeX">$l_{2}$</tex>-loss linear support vector machines
  publication-title: J Mach Learn Res
– ident: ref4
  doi: 10.1137/090780705
– ident: ref14
  doi: 10.1137/100802001
– ident: ref8
  doi: 10.1017/CBO9780511752940.002
– year: 2011
  ident: ref13
  publication-title: ?A random coordinate descent method on large optimization problems with linear constraints ?
– ident: ref12
  doi: 10.1007/s10107-007-0170-0
– year: 2011
  ident: ref22
  publication-title: ?A distributed newton method for network utility maximization ?
– year: 2004
  ident: ref15
  publication-title: Introductory Lectures on Convex Optimization A Basic Course
  doi: 10.1007/978-1-4419-8853-9
– ident: ref16
  doi: 10.1007/s10107-012-0614-z
– ident: ref2
  doi: 10.1110/ps.0242703
– ident: ref20
  doi: 10.1109/32.92917
– year: 2001
  ident: ref5
  publication-title: Algebraic Graph Theory
  doi: 10.1007/978-1-4613-0163-9
– ident: ref26
  doi: 10.1007/s10107-003-0471-x
– volume: 3
  start-page: 487
  year: 2009
  ident: ref11
  article-title: Coordinate descent optimization for <tex Notation="TeX">$l_{1}$</tex> minimization with application to compressed sensing; A greedy algorithm
  publication-title: Inverse Problems Imag
  doi: 10.3934/ipi.2009.3.487
– volume: 1
  start-page: 51
  year: 1980
  ident: ref7
  article-title: A class of center-free resource allocation algorithms
  publication-title: Large Scale Syst
– year: 2010
  ident: ref21
  publication-title: ?Accelerated block coordinate relaxation for regularized optimization ?
– ident: ref9
  doi: 10.1109/12.24272
– ident: ref23
  doi: 10.1007/s10957-006-9080-1
– year: 2011
  ident: ref24
  publication-title: ?Recent advances of large-scale linear classification ?
– ident: ref17
  doi: 10.1007/s10957-008-9458-3
– year: 2010
  ident: ref19
  publication-title: ?Efficient block-coordinate descent algorithms for the group lasso ?
SSID ssj0016441
Score 2.4178247
Snippet In this paper, we develop randomized block-coordinate descent methods for minimizing multi-agent convex optimization problems with linearly coupled constraints...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 2001
SubjectTerms Algorithm design and analysis
Convergence
Convex functions
Distributed control
Eigenvalues and eigenfunctions
Linear programming
linearly coupled constraints
Optimization
random coordinate descent
rate of convergence
resource allocation problems
smooth convex optimization
Vectors
Title Random Coordinate Descent Algorithms for Multi-Agent Convex Optimization Over Networks
URI https://ieeexplore.ieee.org/document/6471753
Volume 58
WOSCitedRecordID wos000322364300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA_b8KAHX1OcL3LwItitTdomPY7p8LSJTNmtJGmqg62VrRv--X5Ja5kggpdSylcov3zPfi-EbqTgnqfcwFGJ7zu-govkKnJEKHzflZrIhNtlE2w04tNp9NRAd3UvjNbaFp_prrm1ufwkV2vzq6wXgiYF97qJmoyFZa9WnTEwdr3UuiDAhNcpSTfqTfoDU8NFu8C7xqT-MEFbO1WsSRke_O9jDtF-5TrifnnWR6ihs2O0tzVQsI1en0WW5As8yCGmnGXgR-L7cl4T7s_f8uWseF-sMPip2DbeOn3TWAXU2UZ_4jFoj0XVlonHwOJ4VNaIr07Qy_BhMnh0qs0JjiIhLRzNIU4QTFEqmGSBSAlRzE114AmSEJDbKlZxAyJBZllqhrSnYC-FoCIKOT1FrSzP9BnCRGmfUy1FRCFyiiIhXUG9NOTKc9M0UB3U-wYzVtVYcbPdYh7b8MKNYoA_NvDHFfwddFu_8VGO1PiDtm2Qr-kq0M9_f3yBdondVmHq8y5Rq1iu9RXaUZtitlpeW375AonHvYI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5oFdSDWxV35-BFMHYyk2VyLNWiqK1IFW9hMplooU2kjeLP900SQwURvIQQXiB889a8DeAkksK2FXUtFTuO5Si8REIFlvSk49BIsygWxbIJv9cTz8_B_Ryc1b0wWuui-Eyfm9silx9n6t38Kmt5qEnRvZ6HBddxGC27teqcgbHspd5FEWaiTkrSoDVod0wVFz9H7jVG9YcRmtmqUhiV7tr_PmcdVivnkbTL096AOZ1uwsrMSMEmPD3INM7GpJNhVDlM0ZMkF-XEJtIevWSTYf46nhL0VEnRemu1TWsVUqcf-pP0UX-Mq8ZM0kcmJ72ySny6BY_dy0Hnyqp2J1iKeTy3tMBIQfqKc-lHvisTxpRPE-3aksUMJbeKVqjLIpRaPzFj2hO0mFJyGXiCb0MjzVK9A4Qp7QiuIxlwjJ2CQEZUcjvxhLJpkrhqF1rfYIaqGixu9luMwiLAoEGI8IcG_rCCfxdO6zfeyqEaf9A2DfI1XQX63u-Pj2HpanB3G95e9272YZkVuytMtd4BNPLJuz6ERfWRD6eTo4J3vgCSrcDJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Coordinate+Descent+Algorithms+for+Multi-Agent+Convex+Optimization+Over+Networks&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Necoara%2C+Ion&rft.date=2013-08-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=58&rft.issue=8&rft.spage=2001&rft.epage=2012&rft_id=info:doi/10.1109%2FTAC.2013.2250071&rft.externalDocID=6471753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon